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Understanding and controlling radical reactions for selective transformations under mild conditions remains one of the key

challenges in synthetic chemistry. The detailed investigation of previously inaccessible structural motifs can grant important

insights, provide new stimuli, and offer innovative strategies for further developments in the field. In this respect, the

controlled release of simple phosphanyl radicals [PR;]* from metal precursors is significantly underdeveloped to date. Here

we report the synthesis, isolation, and full characterization of a series of homoleptic parent bismuth phosphanides [Bi(PRR’)s]

(R, R’ = alkyl). The ability of these compounds to release phosphanyl radicals under mild conditions is demonstrated, revealing

an unprecedented radical pathway for the inversion of phosphorus atoms, enabling ethylene activation, and facilitating

reversible olefin insertion into Bi—P bonds.

Introduction

The exploration of simple, homoleptic complexes forms the
basis for the profound understanding of principal classes of
compounds. Such fundamental studies grant important insights into
the intrinsic properties and reactivity patterns of the structural motif
under investigation and can often be extrapolated to its behavior in
more complex molecular frameworks. Among the various functional
groups known in coordination chemistry, phosphanides, i.e.
compounds featuring an M—PR; bond (M = metal atom, R = H, alkyl,
aryl) open up unusual pathways in CH activation and small molecule
activation and play key roles in stoichiometric and catalyzed P—P and
P—C bond formation as well as olefin hydrogenation reactions.?*2 In
addition, unexpected selectivities in insertion reactions and unusual
spectroscopic features such as intermolecular through-space spin-
spin coupling have been reported.’3'* Key questions in the
understanding of the M-PR; structural motif center around the
potential M—P multiple bond character,’>-!8 the inversion of the
phosphorus atom,'82! and potential radical character of the PR,
ligand in the coordination sphere of a transition metal.?2 The design
of reactive metal phosphanide complexes [M]-PR; is an intriguing,
but yet underdeveloped strategy for the release of reactive
phosphanyl radicals under mild conditions to be utilized in selective
intermolecular reactions.?>%7 In this context, bismuth compounds
appear as very promising candidates due to their typically low
homolytic Bi-X bond dissociation energies (e.g.: X =C, N, O, Bi).2840

However, compounds featuring Bi—P bonds are rare and
investigations have mostly been focused on the synthesis and
structure elucidation of heteroleptic species.*’>1 Well-defined
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homoleptic bismuth phosphanides have so far been limited to a very
small number of special cases. For instance, the serendipitously
generated complex anion [Bi(PstBus);]~ could be structurally
characterized (Figure 1a), but its high sensitivity precluded a
satisfactory spectroscopic characterization.’2 More recently, the
neutral species [Bi(P4tBus)s] with its unusual phosphacyclic ligand

- b
Bu, o Bu—P P-tBu
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Scheme 1. a,b) Homoleptic bismuth compounds with phosphorus-based ligands.
c) Reaction of isolable radical [Bi]* wiht P4; [Bi] = Bi(NDippSiMe,),0. d) Bismuth-
mediated P—P coupling via suggested radical intermediates (R, R’ = alkyl, aryl). e)
This work: simple homoleptic Bi(PR); for [PR;]* release, radical P-inversion, and
reversible olefin insertion (R = alkyl).
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motif has been reported (Figure 1b), revealing a pronounced
photosensitivity,>® while selective reactivity patterns remain to be
explored. In a broader context, the reversible addition of isolable
Bi(Il) radical species to P4 has been reported on a single instance and
selective PP bond formation from suggested [Bi]-PR; intermediates
has recently been observed (Figure 1c,d).3%*! However, there are no
examples of simple homoleptic bismuth phosphanides Bi(PR;)s,
which could act as isolable sources of phosphanyl radicals [PRz]* (R =
alkyl).

Here we report the synthesis, isolation, and full
characterization of the first simple homoleptic bismuth
phospanides, [Bi(PR2)3], uncovering the facile release of
phosphanyl radicals [PR:]°, suggesting an unprecedented
mechanism for phosphorus inversion, and demonstrating the
reversible insertion of unactivated a-olefins into Bi—P bonds

involving BiC/BiP homolysis (Scheme 1le).

Results and discussion

the first simple bismuth
phosphanides Bi(PR2)s was granted via salt elimination
strategies (R = alkyl; Scheme 2a). Balancing dispersion
interactions and steric congestion proved to be a decisive factor
in order to suppress thermal decomposition pathways in this
class of compounds and to sufficiently stabilize the target
species. Hints at the accessibility of compounds Bi(PR2)s could
be obtained through single-crystal XRD data on Bi(PCy,)s (1),
which eluded a detailed characterization in solution due to its
thermal instability (vide infra and Supp. Inf.). By increasing the
steric bulk of the substituents at the phosphorus atom,
compounds Bi(PtBuCy)s (2), Bi(PtBu,)s (3), and Bi(PAd2)s (4)
could be isolated, representing the first examples of simple
homoleptic bismuth phosphanides that could be characterized
in detail (Cy = cyclohexyl, Ad = adamantyl). Multiple
recrystallization steps were required to obtain compound 4 in
pure form leading to low isolated yields, but facile, high-yielding
multi-gram syntheses could be realized for compounds 2 and 3,
respectively. Compounds 2-4 were obtained as intensely
colored orange (2) to deep-red (3, 4) solids. Aryl groups at the
phosphorus atom increased the lability of the targeted
homoleptic bismuth phosphanides (Supp. Inf.).

Straightforward access to

Crystallographic characterization of compounds 2 and 3

Single-crystal XRD analysis of 2 and 3 (triclinic space group P1)
confirmed the expected trigonal pyramidal coordination
geometry around the central atom (Scheme 2b). The molecular
structures show an apparent Cs axis which runs through the Bi
atom and is orthogonal to the plane defined by the three
phosphorus atoms. For each phosphorus atom, one of the
organic substituents points towards the bismuth atom, while
the other one points away from it. In the case of compound 2,
it is important to note that each phosphorus atom represents a
stereocenter, i.e. in the solid state, a racemic mixture of the
(R,R,R)- and the (S5,5,5)-enantiomer is realized. The bond angles
in tri-coordinate bismuth(lll) compounds commonly approach
90°, because the 6s(Bi) orbital tends not to contribute
significantly to bond formation in these compounds due to

2| J. Name., 2012, 00, 1-3
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Scheme 2. a) Synthetic access to bismuth phosphanides 1-4 (Cy = cyclohexyl; Ad
= adamantyl); *: small amounts of single-crystals confirmed the formation of 1,
but a yield could not be determined due its instability. b) Molecular structures of
2 and 3 in solid state. Displacement ellipsoids are shown at the 50% probability
level. Hydrogen atoms are omitted for clarity. Selected bond lengths [A] and
angles [°]: 2: Bi—P1, 2.6605(5); Bi—P2, 2.6709(6); Bi—P3, 2.6484(7); P1-Bi-P2,
98.902(17); P2-Bi—P3, 99.515(19); P2-Bi-P3, 97.168(19). 3: Bi—P1, 2.7011(9); Bi—
P2,2.6971(9); Bi—P3, 2.6890(9); P1-Bi—P2, 106.87(3); P2—-Bi—P3, 105.93(3); P2-Bi—
P3, 104.11(3).

hybridization defects.>*%> In compound 2, this situation is
reflected by an angle sum of 295.6° around bismuth. In contrast,
the higher steric pressure of the tBu groups in 3 (vs. Cy groups
in 2) induces a remarkably large angle sum of 316.9° around the
central atom. This is also reflected by the Bi—P bond lengths in
2 and 3, which range from 2.6484(7) to 2.7011(9) A and are on
average 0.04 A longer for the bulkier species 3. In the case of
compound 1, data from single-crystal X-ray diffraction
experiments could be obtained, but suffered from poor quality
due to higher twinning of the crystal. Thus, a discussion of the
bonding parameters is not possible, but the connectivity is
definite (for details, see Supp. Info).

NMR spectroscopic analysis

NMR spectroscopic investigations of compounds 2—4 in solution
indicate the formation of typical molecular complexes without
significant  intermolecular interactions. The 3P NMR
spectroscopic chemical shifts cover a relatively broad range of
42.4-86.4 ppm. For compounds 3 and 4 with their
symmetrically substituted phosphorus atoms, one set of signals
is observed in the solution NMR spectra, indicating that the
bonding situation that has been found for 3 in the solid state is
preserved in solution. In contrast, two sets of signals are
observed for compound 2 with its unsymmetrically substituted
phosphorus atoms. In the 3P NMR spectrum, one singlet is
ascribed to compound 2a, which resembles the bonding
situation found in the solid state (Scheme 3, top left). The
second set of signals consists of three resonances of identical
intensity, with 2/pp coupling constants being barely resolved.
This set of signals is ascribed to the diastereomer 2b, which can
formally be obtained from 2a by the inversion of one
phosphorus center followed by a 180° rotation about the
respective Bi—P bond. Note that 2b shows three chemically
inequivalent phosphorus atoms, since the C3 symmetry element
that is present in 2a is no longer present in 2b due to the
inversion of the configuration at one P atom. Variable
temperature NMR spectroscopic analysis in the range of =80 to

This journal is © The Royal Society of Chemistry 20xx
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+80 °C reveal that the relative intensities of the resonances
ascribed to 2a and 2b are reversibly shifted from 2a:2b =
1.00/0.93 at —-80 °C via 2a:2b = 1.00/1.09 at +25 °C to 2a:2b =
1.00/1.21 at +80 °C (concomitant decomposition is observed at
elevated temperatures, but does not interfere with these
analyses; vide infra). This translates into thermodynamic
parameters of AG(293K) = -0.027 kcal'mol™!, AH =
+0.50 kcal-mol-1, and AS = +1.8 cal-mol~! for the isomerization
process 2a=2b, as determined from a van’t Hoff plot (Supp.
Inf.). Dynamic exchange between 2a and 2b was further
supported by 3'P-31p EXSY NMR spectroscopic experiments
(Supp. Inf.). From a mechanistic point of view, two classical
scenarios have been encountered for the inversion of
phosphorus centers:*®>7 i) a planar transition state in the
absence of electron-withdrawing substituents (with barriers
commonly ranging from ca. 30-40 kcal-mol™ for trialkyl
phosphanes®®%0) and ii) a T-shaped transition state in the
presence of electron-withdrawing groups at the phosphorus
atom (with a calculated barrier of 53.8 kcal-mol= for PF3).61.62

Computational studies

In order to gain insights into the isomerization mechanism, we
performed computational studies. In a first approach, the
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Scheme 3. Theoretical analyses. Top: Isomerization of compounds 2a and 2b (top
left), along with mechanistic considerations proposing viable reaction pathways.
Bottom: Overall isomerization barriers for radical vs rotation-inversion sequence
for systems 2, s1, s2 and s3. Energies were determined by DFT calculations (see
discussion and Supp. Inf.).
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thermodynamic stability of relevant isomers of 2 wgs evaluated.
Our study shows that isomers 2a and 2BJ/SEREPAR B)SpPEsEmt
similar thermodynamic stabilities (AGb-a
=+0.5 kcal-mol1),which agrees with the experimental detection
of two isomers of 2. Isomers 2c and 2d represent complexes
with different relative orientations of the tBu and Cy groups
(see Supp. Inf.) and are predicted to be less stable, presenting
AG values that are > 8.0 kcal-mol= higher than that of 2a, and
are therefore unlikely to be detected experimentally. Next, we
focused on investigating the possible isomerization pathways
for the interconversion of 2a and 2b. A sequence of inversion-
rotation via TS1 and TS2, was found to be the most plausible
reaction pathway, which accounts for an overall free energy
barrier of +20.9 kcal-mol™* (Scheme 3; for correlation with
experimental data from an Eyring plot see Supp. Inf.). Notably,
a radical isomerization pathway involving homolytic Bi—P bond
dissociation and re-association, presents a barrier that is only
2.0 kcal-mol=! higher in energy than the former pathway,
suggesting that both mechanisms could be competing,
especially at elevated temperature due to the positive entropy
term in the barrierless homolytic bond splitting.®3 A crossing
point for the two pathways was predicted at a temperature of
334 K based on DFT calculations. In order to evaluate the impact
of the substituents at the phosphorus atoms on the
isomerization process, the analogous systems Bi(PtBuR)s were
studied computationally (R = iPr (s1), Ph (s2), Mes (s3); Scheme
3 (bottom) and Supp. Inf.). Our results show that an inversion-
rotation sequence is slightly preferred for s1 and s2.
Remarkably, s3 is predicted to favor isomerization via the newly
proposed radical pathway, even at ambient temperature.

EPR spectroscopic investigations

In view of the low calculated Bi—P bond dissociation energy in
compounds 2 (22.9 kcal-mol?) and 3 (18.3 kcal-mol™1), these
compounds were investigated by EPR spectroscopy. Indeed,

a) 0o, R(RR H
@AN/B” ® 9 . Bu
| _ .
R._.R o I
7 /113 BI® o
13 R Bi R | detected [EPR] |
‘v \P/ ./R R\ _.R
| : - K 12 _P—P,
R R -1/3 Bi R R R!
20r3 detected [EPR] 5: R/R! = Cy/tBu
6: R/R' = tBu/tBu
b) T T — c) [ T T T r
— exp L — exp o
| — sim | — sim
w @ M
T T
9 \Iw"\h‘\\ I 1 .
J H|||\ | |\|\“ Ml | “77—77—7jl‘kﬁ7_77"4{)|
i V| u I \ U ]
3‘32 334 336 338 SAItO 34;2 325 330 335 340 345 350

magnetic field [mT] magnetic field [mT]

Scheme 4. a) Bi—P bond homolysis to give the corresponding phosphanyl radical
in the presence (top) and absence (bottom) of PBN. b) X-band EPR spectrum of
the (PtBu,)* radical (starting from 3 (c = 0.121 mol/L)) trapped by PBN (3 equiv.
used) in THF at room temperature; giso = 2.0052; coupling constants: a(**N) = 1.46
mT, a(3'P) =9.32 mT, a(*H) = 0.455 mT. c) X-band EPR spectrum of the free (PtBuy)*
radical (starting from 3 (c = 0.0132 mol/L))in toluene at 70 °C; gisc = 2.0058;
coupling constant: a(3!P) =9.32 mT.
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resonances of the free phosphanyl radicals, (PCytBu)* and
(PtBuy)*, could be detected, when monitoring toluene solutions
of compounds 2 and 3 at elevated temperatures of 95 °C and
70 °C, respectively, in the cavity of the EPR spectrometer
(Scheme 4, for details see Supp. Inf.). To the best of our
knowledge, this is the first example of the direct detection of
simple dialkylphosphanyl radicals in typical wet-chemical
approaches without the use of stabilization strategies such as
chelation or excessive bulk.64#%> The spectroscopic signature of
reactive [PRtBu]*® radicals reveals large coupling constants of
a(3!P) =9.31 mT. This is in congruency with data reported for an
isolable sterically protected dialkylphosphanyl radical
[P(C(SiMe3)2CH>),]* (a(31P) = 9.07 mT).64

When adding the spin trap PBN (phenyl-N-t-butylnitrone) to
solutions of 2 and 3, the corresponding radicals could readily be
detected at ambient temperature (Scheme 4 and Supp. Inf.).

The facile entrance into radical chemistry provided by
compounds 2 and 3 motivated the closer investigation of their
solution behavior. In benzene solution at 25°C, these
compounds selectively form the corresponding diphosphanes
CytBuP—PtBuCy (5) and (tBu),P—P(tBu), (6) along with Bi°,
leading to half-life times of 15.3 d and 9.8 d for compounds 2
and 3, respectively. At elevated temperatures of 110 °C (for 2)
nd 65 °C (for 3) or upon irradiation of the reaction mixture with
an LED (A = 365 nm), near-quantitative yields are obtained in
15 min (for 5 and 6).

H-Atom abstractions reactions

In order to evaluate the reactivity of 2 and 3 towards external
substrates, reactions with a series of hydrocarbon-based H-
atom donors were performed. While H-atom transfer to the
phosphorus atom to give phosphanes HPR; was feasible in both
cases, it was more effective for compound 3, the formation of
diphosphanes 5 or 6 being the competing transformation
(Scheme 5 and Supp. Inf.). For compound 3, H-atom transfer
proved to be the preferred reaction pathway for substrates with
a C—H bond dissociation free energy of up to 75.7 kcal-mol.
Thus, balancing the steric bulk of the substituents at the
phosphorus atoms appears to be crucial: a sufficient bulk is
essential to grant access to these compounds (cf. compound 1

R\P.»R'
R! é' R 20 H-IC] 3 5
2 1 0 = ~
"p7 Yp” CeDs RPR!
I : ;
R R -Bi? yields of HPRR!
20r3 (see below)
H H H H H H H H oh
0 CLO 0D v
o Ph
H H HH
CHD XAN DHA FLU PhsCH
2:34%  2:30% 2: 25% 2:11% 2:17%
(3:90%  3:83% 3: 54% 3:23% 3:23% |

Scheme 5. Reactions of 2 and 3 with H-atom donors (that require the scission of a
C—H bond) to the corresponding phosphanes. Yields are given after 43 h reaction
time (for details see Supp. Inf.).

4| J. Name., 2012, 00, 1-3

vs.compound 2), but further increasing the steric \hulk.in.smal
increments quickly enhances the reactiVity 18G@3HE>Steriealy
promoted Bi—P bond homolysis (cf. compound 2 vs. 3).

Reactivity as a phosphanyl radical precursor

The diphospane R2P—PR; (R = NDippCH,) has been reported to readily
insert CS; into its P-P bond via a radical pathway, involving [PR;]".6¢
In contrast, compounds (alkyl),P—P(alkyl); do not readily release
phosphanyl radicals [P(alkyl);]* under moderate conditions, as
confirmed by EPR spectroscopic experiments with isolated CytBuP-
PtBuCy (5) and (tBu),P—P(tBu), (6) (Supp. Inf.). In view of the ability
of 3 to release phosphanyl radicals, its reactivity towards the
potential phosphanyl radical scavenger CS; was probed (Scheme 6).
Indeed, the addition of CS; (2.2 equiv.) to a solution of 3 led to an
immediate color change from dark red via dark violet to smaragd
green, along with the precipitation of a dark solid (presumably Bi°).
After workup, compound 7 was isolated as a dark green solid in 92%
yield and fully characterized (Supp. Inf.). This demonstrates the
ability of 3 to transfer phosphanyl radicals to external substrates.

2 =
tBu\F> «1tBu Bu W
1 cs, /P*tBu ¥ ¥ 9
tBu,, P’BI‘P/tBu — > 3p S:C\ >—&
| g n-pentane S P g
{Bu Bu _Bi® _ o o'd aC
Bu—R LS
3 7 fBu rade

Scheme 6. Left: reaction of 3 with CS, to give 7. Right: molecular structure of 7 in the
solid state as determined by single-crystal X-ray diffraction analysis (for details see Supp.
Inf.).

Reactivity towards olefins

With compound 3 as a promising candidate, we conducted
initial reactivity studies towards olefins including ethylene, a
benchmark substrate in the field.7-%° Reactions of 3 with
ethylene yielded mixtures of compounds tBu,P(CyHa),PtBu>
(8a—c) suggesting that up to three consecutive olefin insertion
reactions into Bi—P/Bi—C bonds as well as reductive elimination
processes can take place (Scheme 7).70-72 Reactions with non-
activated terminal alkenes H,C=CHR (R = Et, nPr, nBu) were
monitored by 3P NMR spectroscopy, showing one new set of
resonances each, which was ascribed to the mono-insertion
products (tBuyP).Bi—(C2HsR)PtBu, (9-R, Scheme 7). These
reactions were strongly impeded by the exclusion of ambient
light.

Irradiation of the reaction mixtures with LEDs (A = 365—
525 nm) increased the rates of reactions, but even in the most
promising cases (A = 525 nm), the selectivity towards the
insertion product was only improved at early stages of the
reaction (32% spectroscopic yield of 9-nBu after 2 h), when
significant amounts of unreacted and inseparable 3 were still
present (for details see Supp. Inf.)

In stoichiometric reactions of 3 with 1-pentene and 1-
hexene under ambient light, only partial conversion of the
starting material 3 was observed, which was accompanied by its
slow degradation to give the diphosphane 6 (vide supra). This
led to the initial hypothesis of an equilibrium reaction, which
could be confirmed: reacting 3 with neat 1-pentene or 1-hexene

This journal is © The Royal Society of Chemistry 20xx
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followed by a tedious work-up to remove the side-product 6 led
to the isolation of yellow powders of 9-nPr and 9-nBu, which
were pure by 3P NMR spectroscopy, when using the respective
olefin as the solvent. When other solvents were applied,
mixtures of 3, 6, and 9-R were obtained, i.e. the starting
material 3 is partially regenerated when there is no excess olefin

20 bar .~
ar =~ tBUZPNnPtBUZ
/m 8 an=1, 15%*
824, 2k aC  bn=2 9%*
c:n=3, 2%"
PiBu, 10-100eq. Z R l':tBu2
1 i Bi R R=Et. 11%*
Bi = ' R = nPr: 27%*
tBu,P” _ “PtBu, CeDe 10d.1t Uzl R = nBu: 34%*
3 9-R “py,
PR 85-100eq. 2 R g.nPr : 5%
= CF3 neat, 10 d, rt 9-nBu: 13%
PBU, B . oo
1
Bi CF —@ C1
tBu,P” 3 3@ oo
9-CF3 PtBU2 .P2
42%*

Scheme 7. Reactivity of 3 towards olefines, namely: ethylene; the chemical
equilibrium between 3 and 1-butene, 1-pentene and 1-hexene; reactions under
neat conditions; the Insertion of 3,3,3-trifluoropropene and the molecular
structure of 9-CF; in solid state, the displacement ellipsoids being shown at the
50% probability level. Hydrogen atoms are omitted, and the tBu units are shown
as wireframe for clarity. Selected bond lengths [A] and angles [°]: 9-CFs: Bi—P2,
2.6796(15); Bi—P3, 2.6881(16); Bi—C1, 2.382(6); C1-C2, 1.501(8); C1-C3, 1.488(8);
P2-Bi—P3, 105.18(5); P2—-Bi—C1, 95.66(14); P3-Bi—C1, 106.79(17). Yields marked
with * were determined via 3'P NMR spectroscopy.

E_tBUZ 150 eq. B';’_tBUZ
1 neat, 4.5d 1
BuP” Y —————— Bu,P” Y *
~ ~
PtBu PtBu
9-nBu 2 9-nPr 2

Scheme 8. Crossover experiment between 8-nBu and 1-pentene (H,C=CHnPr),
demonstrating the reversibility of olefin insertion with Bi(PtBu,)s via Bi—P and

Bi—C bond cleavage / formation.

present in solution. In good agreement with these findings,
compounds 9-R proved to be also vacuum-sensitive, hampering
a detailed characterization of these compounds to date.
Furthermore, a crossover experiment was performed:
dissolving 9-nBu in 1-pentene led to its slow conversion to 9-nPr
(and vice versa), confirming the reversible insertion of a-olefins
into Bi—P bonds (Scheme 8).

When it comes to the utilization of reactive radical
intermediates for synthetic purposes, the reversibility of
homolytic bond dissociation reactions can be crucial. For
literature-known, carbon-centered radicals generated by
reversible Bi—C homolysis, this has led to unprecedented
catalytic applications in olefin polymerization, C—N coupling,
and radical cyclo-isomerization.29:31.327172 The key steps in such
synthetic applications have been focused on the reversible
homolytic Bi—X bond dissociation of one type of Bi—-X bond
(typically a Bi—C bond). Here we show that the peerless release
of [PR;]* radicals under mild reaction conditions (tied to

This journal is © The Royal Society of Chemistry 20xx
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reversible Bi—P bond cleavage/formation) can be,cambined
with reversible Bi—C bond formation, an irApoaHEsYEpYowates
greater functional in controlled radical
reactions.

A more robust olefin insertion product 9-CF3 could be
obtained from the reaction of 3 with electron-deficient 3,3,3-
trifluoropropene (Scheme 7, bottom). In contrast to the other
insertion products 9-R, compound 9-CF; did not release the
previously inserted olefin, when dissolved in common organic
solvents such as benzene, which can be ascribed to the more
polar nature of the Bi—C bond in 9-CF with its electron-
withdrawing CFs group at the bismuth-bound carbon atom. 3P
NMR spectroscopy indicated the presence of only one
phosphorus compound 9-CF; besides traces (<2%) of
diphosphane 6. However, the *H NMR spectrum showed
additional broadened resonances in the aliphatic region, which
was ascribed to lower oligomers of 3,3,3-trifluoropropene. This
was in agreement with an oily residue that co-precipitated with
crystalline 9-CF; and could not be separated due to similar
solubility properties. The oligomeric nature of this side product
was further confirmed by elemental analysis and high-
resolution mass spectrometry, the latter also supporting the
formation of 9-CFs. Despite the difficulties in isolating 9-CF3 in
pure form, its molecular structure in the solid state could
unambiguously be identified by single-crystal X-ray diffraction
analyses (monoclinic space group P2i/n; Z = 4; Scheme 7
bottom). Compound 9-CF; forms a typical mononuclear species
with a trigonal pyramidal coordination geometry around the
bismuth atom (angle sum around Bi, 307°). Notably, the
introduction of the secondary alkyl group as a bismuth-bound
ligand increases the pyramidalization of the central atom (as
compared to 3), with two large (P1-Bi—P2/C1, 105.2-106.8°)
and one small angle (P2—Bi—C1, 95.7°) around the central atom.
The newly formed Bi-C bond (2.38 A) is exceptionally long
compared to Bi-C bonds in more traditional motifs,*647.73-76
which was ascribed to steric congestion around the central
atom and the presence of the electron-withdrawing CFs; group
at the a-C-atom.

group diversity

Conclusions

In summary we present the synthesis, isolation, and
characterization of the first series of parent dialkyl bismuth
phosphanides Bi(PRR’)s. This new class of compounds shows
facile release of simple phosphanyl radicals [P(alkyl)z]*. This
enables the inversion of the bismuth-bound P atoms through a
radical dissociation/re-association mechanism, adding a
peerless alternative to the two well-established pathways for P-
inversion via trigonal planar or T-shaped transition states.
Reactivity studies on the title compounds Bi(PRR’); show that in
the absence of external substrates, selective near-quantitative
radical P—P coupling reactions dominate. The radical reactivity
can be extended to external substrates: the radical transfer on
CS; and the insertion of ethylene and unactivated a-olefins into
Bi—P bonds is facilitated, the latter proceeding in a reversible
manner. This combines reversible Bi—P homolysis with
reversible Bi—C homolysis for the first time, opening up
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perspectives for dual mode controlled radical reactions. It is
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anticipated that these fundamental investigations of a new
class of compounds will stimulate research into selective ¢
stoichiometric and catalyzed radical reactions of bismuth
phosphanide structural motifs [Bi]-PR. embedded in supporting

ligand scaffolds. Research along these lines is currently being

pursued in our laboratories.
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Crystallographic data of 1 (CCDC 2451991), 2 (CCDC 2451992), 3 (GCDC: o
2451993), 5 (CCDC 2451994), 7 (CCDC 2502129), and 9-CF3; (CCDC 2451995)
have been deposited in the Cambridge Crystallographic Data Centre and can be
provided free of charge by the joint Cambridge Crystallographic Data Centre and
Fachinformationszentrum Karlsruhe Access Structures service
www.ccdc.cam.ac.uk/structures. Further data supporting this article have been

included as part of the SI.
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