
Registered charity number: 207890

As featured in:

See Feng Ding, Xiao Wang et al., 
Chem. Sci., 2026, 17, 2547.

Showcasing collaborative research from Professor Xiao Wang and 
Professor Feng Ding, Suzhou Laboratory, Suzhou, China.

Unveiling sodium storage mechanisms in hard carbon via machine learning-
driven simulations integrated with accurate site occupation identifi cation

Hard carbon (HC) has attracted considerable interest as a promising 
anode material for sodium-ion batteries (SIBs). Nevertheless, the sodium 
storage mechanism in HC remains poorly understood owing to challenges 
in precisely characterizing its structure. Xiao Wang and co-workers unveils 
atomic-scale sodium storage mechanisms in HC via machine learning-driven 
simulations. By integrating a neural network potential with random forest site 
identifi cation, contributions from adsorption, intercalation, and pore-fi lling 
sites were quantitatively disentangled. This work accurately correlates specifi c 
storage sites with voltage and capacity, providing a computational framework 
for investigating SIB anodes. 

Image reproduced by permission of Xiao Wang from Chem. Sci., 2026, 17, 
2547. 

Artwork generated in part using Google Gemini.

rsc.li/chemical-science



Chemical
Science

EDGE ARTICLE

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 2
/9

/2
02

6 
9:

14
:0

3 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
View Journal  | View Issue
Unveiling sodium
aSuzhou Laboratory, Suzhou 215000, China
bInstitute of Technology for Carbon Neut

Technology, Chinese Academy of Sciences, S
cSchool of Physics, Southeast University, Na
dSchool of Articial Intelligence and Da

Technology of China, Hefei 230026, China
eSchool of Chemistry and Materials Science

China, Hefei 230026, China

Cite this: Chem. Sci., 2026, 17, 2547

All publication charges for this article
have been paid for by the Royal Society
of Chemistry

Received 13th September 2025
Accepted 8th January 2026

DOI: 10.1039/d5sc07068f

rsc.li/chemical-science

© 2026 The Author(s). Published by
storage mechanisms in hard
carbon via machine learning-driven simulations
integrated with accurate site occupation
identification

Zhaoming Wang,abc Guanghui Shi,abc Guanghui Wang,bd Man Wang,abe Feng Ding*ab

and Xiao Wang *ab

Hard carbon (HC) has attracted considerable interest as a promising anode material for sodium-ion

batteries (SIBs) due to its high specific capacity, excellent cycling stability, and cost-effectiveness.

Nevertheless, the sodium storage mechanism in HC remains poorly understood owing to challenges in

precisely characterizing its structural disorder, complexity, and intricate interatomic interactions. In this

work, we investigate the sodium storage behavior in HC anodes using a machine learning potential (MLP)

integrated with a random forest-based sodium insertion site identification framework. The trained MLP

accurately captures both the structural features of HC and the sodium insertion behavior. HC comprises

an amorphous network of defects, edges, graphitic domains, and nanopores, primarily interconnected

through sp/sp2/sp3-hybridized carbon bonds. For the first time, we simulate the continuous voltage

profile associated with the stepwise sodium insertion during both the charging and overcharging states.

This voltage profile reproduces experimental observations and disentangles the contributions of

adsorption, intercalation, and pore filling, offering a pathway to elucidate the storage mechanisms across

different systems and rationalize the discrepancies observed in experiments. During the overcharging

stage, excessively short Na–Na distances enhance repulsion, leading to negative voltages. Besides, the

formation of sodium clusters was observed, which pose a safety risk to the battery. Our findings

demonstrate that machine learning-based simulations constitute a powerful and emerging approach for

investigating sodium storage mechanisms and offer valuable guidance for the experimental optimization

of HC anodes. Moreover, this strategy can be extended to other electrodes, electrolytes in SIBs, and

even alternative battery systems.
Introduction

Sodium-ion batteries (SIBs) have emerged as a promising
rechargeable battery technology for large-scale energy storage,
owing to sodium's natural abundance and cost-effectiveness.1–10

Among the anode candidates for SIBs, hard carbon (HC)
demonstrates compelling advantages including low cost, envi-
ronmental benignity, and tunable microstructures, establishing
its viability for commercial deployment.11–19 Nevertheless, the
atomic-scale sodium storage mechanism in HC remains
incompletely resolved, stemming from its intricate yet
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disordered architecture featuring abundant defects, edges,
curved graphene domains, and hierarchical porosity.2,4 These
structural characteristics induce complex C–C and Na–C inter-
actions that collectively govern ion adsorption, intercalation,
and pore-lling processes.20–25

The sodium storage mechanism in HC has been debated for
decades, with competing models proposed to rationalize the
characteristic voltage prole featuring a sloping region (>0.1 V)
and a plateau region (<0.1 V).4,6,26–29 The “intercalation–lling”
model proposed by Stevens and Dahn posits that sodium
storage occurs via interlayer intercalation and nanopore lling.3

Interlayer intercalation provides a stable contribution to
capacity but is constrained by the intrinsic layer spacing of HC;
excessive intercalation may damage the layered structure and
compromise the cycling stability. In contrast, nanopore lling is
the primary source of high capacity in HC, with the pore size
and distribution directly determining the upper limit of lling
capacity. If the pore size is too small, the transport of sodium
ions is hindered, ultimately reducing the rate capability of the
Chem. Sci., 2026, 17, 2547–2558 | 2547
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material. Cyclic voltammetry proles reported by Cao et al.
revealed an additional pair of redox peaks distinct from those in
lithium-based systems, suggesting an “adsorption–intercala-
tion” mechanism.30 Mitlin et al. observed voltage-dependent
interlayer expansion via X-ray diffraction (XRD), further
corroborating the intercalation process.31 Furthermore, Li et al.
correlated sodium capacity with tunable interlayer spacing
achieved via heteroatom doping, reinforcing the role of inter-
calation in sodium storage.32 The adsorption process primarily
occurs at defect sites and edges on the HC surface, which can
rapidly accommodate sodium ions and signicantly enhance
the rate performance. However, the adsorption capacity is
limited by the specic surface area, and excessive defects may
reduce the electrical conductivity. Interlayer intercalation
contributes to maintaining the structural stability, and the
synergy between the two processes enables a balanced perfor-
mance between high rate capability and long cycle life. Never-
theless, this mechanism does not account for the capacity
contribution of pore structures and could hardly explain the
origin of capacity in the low-potential region. Li et al. detected
no interlayer spacing change during sodiation via high-
resolution transmission electron microscopy (HRTEM) while
identifying metallic sodium signatures in the plateau region
through X-ray photoelectron spectroscopy (XPS), supporting an
“adsorption–lling” mechanism.33 The high activity of adsorp-
tion sites enhances the adsorption kinetics of sodium ions,
while pore lling compensates for the limited adsorption
capacity. However, because interlayer intercalation is not
involved, structural stability depends on the rigidity of the pore
framework; pore collapse during long-term cycling can lead to
rapid capacity decay. Recently, small- and wide-angle X-ray
scattering (SAXS/WAXS) analyses by Yamada et al. revealed
concurrent interlayer expansion and pore lling, proposing
a unied “adsorption–intercalation–lling” mechanism.34 In
this mechanism, adsorption ensures high-rate performance,
intercalationmaintains structural stability, and lling increases
the total capacity. However, this mechanism previously lacked
direct atomic-scale evidence, and the dynamic evolution of the
three processes during sodium insertion remained unclear,
making it difficult to accurately guide structural optimization of
HC materials. Despite these advances, the persistence of these
controversies stems from the lack of effective atomic-scale
methods to capture sodium storage processes. A comprehen-
sive atomic-scale framework linking voltage prole character-
istics, sodium storage mechanisms, and microstructure
engineering remains elusive, hindering the rational design of
advanced HC anodes.35–40

Atomic-scale investigations of the sodium storage mecha-
nism in HC primarily rely on experimental characterization and
theoretical simulations, both of which have made signicant
progress. Experimentally, Grey et al. employed operando 23Na
solid-state nuclear magnetic resonance (ssNMR) combined with
pair distribution function (PDF) analysis to reveal the formation
of sodium clusters within closed pores during the low-voltage
plateau region.41 Chisholm et al. utilized aberration-corrected
transmission electron microscopy (TEM) to identify pentag-
onal and heptagonal ring defects in curved graphene sheets and
2548 | Chem. Sci., 2026, 17, 2547–2558
elucidated their role in inducing nanopore formation. Fujiwara
et al. further conrmed, via ex situ XRD and Raman spectros-
copy, the reversible expansion and contraction of graphene
interlayer spacing induced by Na intercalation and dein-
tercalation. However, current experimental characterization
techniques generally can hardly achieve atomic-level resolution,
and most methods are challenging to implement under oper-
ando conditions, limiting the ability to capture the dynamic
sodium storage process under realistic conditions.42 On the
theoretical side, Youn et al. employed density functional theory
(DFT) calculations to evaluate the energetic favorability of AA-
stacked graphite domains for Na intercalation and the
stability of Na4 clusters on defective graphene.43 Hoster et al.
applied entropy proling and molecular dynamics (MD) simu-
lations, concluding that sodium deposition on pore walls is
thermodynamically more favorable than pore interior lling,
with the Na binding energy being dependent on the pore size.44

Liu et al. further demonstrated through DFT calculations that
the energy barrier for Na intercalation decreases signicantly
when the graphene interlayer spacing exceeds 3.7 Å.30,45 While
rst-principles calculations provide high accuracy, they are
inherently limited by system size, making large-scale simula-
tions computationally challenging. Classical MD simulations
can achieve large-scale modeling, but their accuracy is relatively
lower, and the results oen deviate from experimental obser-
vations. Consequently, theoretical simulations remain con-
strained by the difficulty in simultaneously achieving high
accuracy and large spatiotemporal scales.

Recently, machine learning (ML) methods have been
increasingly applied across various research elds and hold
great potential for investigating the sodium storage mecha-
nisms in HC.46–48 On one hand, MLmodels can rapidly establish
quantitative relationships between structural features and the
electrochemical performance in HC, thereby uncovering
intrinsic correlations.48–51 On the other hand, ML potentials
(MLPs), trained on rst-principles calculation data as reference,
enable high-accuracy simulations, and MLP-based MD simula-
tions facilitate large-scale modeling.52–54 Such simulations can
more comprehensively account for experimental factors,
offering a promising approach for in-depth elucidation of the
microscopic mechanisms underlying sodium storage.

Herein, we developed an MLP integrated with a random
forest (RF)-based site identication algorithm as a robust plat-
form for investigating the intrinsic sodium storage mechanism
in HC.55–59 A curated dataset encompassing diverse atomic
congurations of sodium, carbon, and sodium–carbon systems
was constructed. Leveraging this dataset, we trained an MLP
capable of accurately capturing the complex interatomic inter-
actions within the Na–HC systems. Implementation of an RF
classier enabled accurate identication and categorization of
sodium storage sites into adsorption, intercalation, and pore-
lling types. By synergistically combining the MLP with site
identication, we investigated the sodium storage process in
HC and simulated the voltage prole in stepwise, atom-by-atom
sodium insertion. The simulation results distinctly resolve the
contributions of different site types to voltage and capacity at
each stage. This study provides a powerful methodological
© 2026 The Author(s). Published by the Royal Society of Chemistry
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framework for probing microscopic sodium storage mecha-
nisms and links atomic-scale sodium behavior with macro-
scopic electrochemical performance, contributing to resolving
long-standing mechanistic controversies surrounding the HC
anode in SIBs and laying a theoretical foundation for under-
standing sodium storage, diffusion processes and the rational
design of high-performance HC anodes.
Methods
MLP training

The workow for MLP training is illustrated in Fig. 1. The main
training process will be explained in detail below.

Initial structure collection. To develop a high-accuracy MLP,
a high-quality dataset with structural diversity and complete-
ness is required. Existing bulk and surface structures were rst
collected, and simple models including sodium, carbon, and
sodium–carbon systems were constructed to serve as initial
structures.

Ab initio MD (AIMD) simulations and structural perturba-
tions. AIMD simulations and structural perturbations are the
main methods to enrich the initial structures. AIMD was per-
formed on the initial structures, with intentional lattice
distortions introduced to enhance structural diversity.
Temperature was controlled with a Nosé–Hoover thermostat.60

Comprehensive sampling of sodium insertion congurations,
including adsorption, intercalation, and pore lling, was con-
ducted across a wide range of temperatures (200–5000 K) and
pressures (0–5 GPa).52

Initial dataset. First-principles self-consistent (SC) calcula-
tions were carried out using the Projector Augmented Wave
(PAW) method within the Vienna Ab initio Simulation Package
(VASP) for all initial structures.61 The Perdew–Burke–Ernzerhof
(PBE) functional was employed for electronic exchange-corre-
lation,62 with long-range van der Waals interactions corrected
using the DFT-D3 method.63 A plane-wave energy cutoff of
500 eV and a k-point spacing of 0.03 Å−1 were adopted.64 The
above methods, functionals, and parameters ensure the accu-
racy of the SC results and the subsequent MLP training. Struc-
tures, energies and forces from SC calculations comprise the
initial datasets.

MLP pre-training. The initial dataset was rst subjected to
principal component analysis (PCA) and then split into training
and test sets at a ratio of 9 : 1. The neuroevolution potential
Fig. 1 The workflow for MLP training.

© 2026 The Author(s). Published by the Royal Society of Chemistry
(NEP) framework, a type of MLP optimized via neuroevolution
algorithms, was employed. Its key advantage lies in dynamically
rening the neural network architecture, enabling accurate
representation of complex interatomic interactions while
maintaining the computational efficiency.59 NEP training was
performed using the Graphics Processing Units Molecular
Dynamics (GPUMD) package,59 with four models trained
concurrently using identical hyperparameters which are the
framework parameters set prior to training, including the
number of neural network layers set as 3, training steps set as 4
× 105, the number of neurons set as 100 and the cutoff radius
set as 7.0 Å, which were tuned to prevent undertting or
overtting.

MLP testing. The loss function measures the deviation
between MLP-predicted and DFT reference values and serves as
a core metric to test the accuracy of trained MLP. The objective
of training is to minimize the loss function. In this work, root-
mean-square error (RMSE) was used as the loss function, with
weights for energy, force, and virial set to le = 1.0, lf = 1.0, and
lv = 0.1, respectively. A smaller RMSE indicates a higher accu-
racy of the trainedMLP. The performance of theMLPmodel was
further evaluated via RMSEs in its predictions of energy, force,
and virial.

Supplementary data by pre-trained MLP MD simulations.
Typically pre-trained MLP or MLP trained once cannot achieve
the required accuracy. Therefore, it is necessary to supplement
the initial dataset by generating extended structures. In this
work, the extended structures were generated using the Large-
scale Atomic/Molecular Massively Parallel Simulator
(LAMMPS),65 a high-efficiency classical MD simulation package
based on the pre-trained MLP, to reduce the computational cost
of AIMD simulations. Supplementary datasets were processed
using an active learning workow implemented in the GPUMD
package,58 which efficiently explores previously uncharted
conguration spaces. To avoid redundant data and ensure
structural diversity, structures exhibiting signicant force
deviations were ltered, and representative congurations were
selected via principal component analysis (PCA)—a common
method to determine the correlation between the newly gener-
ated structures and those in the initial dataset.66 For all the
selected structures, DFT SC calculations were performed
following the above methods and parameters to obtain ener-
gies, atomic forces and virial, constituting fundamental data
components to supplement the initial dataset.
Chem. Sci., 2026, 17, 2547–2558 | 2549
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MLP re-training. Aer enriching the dataset, the MLP was re-
trained, and its accuracy was evaluated through testing. If the
accuracy converged, the MLP training was considered complete;
otherwise, the workow returned to “MD simulations via the
trained MLP” step, incorporating representative data into the
dataset, and re-training the MLP. This process was repeated
until the desired level of accuracy was achieved.
Initial construction of the HC model

The initial HC structures were generated using the trained NEP
model. In particular, 5000 carbon atoms were randomly
distributed within a 41.4 × 41.4 × 41.4 Å3 simulation box, fol-
lowed by high-temperature NVT MD simulations at 4000 K for 4
ps. To capture the structural evolution of HC during the
annealing process and to obtain representative models for
subsequent studies, the congurations corresponding to 1 ps, 2
ps, and 4 ps of the annealing process were selected.
HC model construction with sodium insertion

Having established the stable HC models, we next investigated
sodium insertion behavior within this structural framework. A
three-step screening procedure was then employed to identify
optimal sodium insertion sites: (i) spatial screening: potential
sites were identied under spatial constraints (minimum Na–
Na distance: 3.0 Å; minimum Na–C distance: 2.0 Å) to mitigate
strong coulombic repulsion, generating an initial candidate list;
(ii) SC calculation screening: SC calculations using the trained
MLP were performed on candidates by traversing the sodium
insertion list, selecting the 50 congurations with the lowest
energies; (iii) geometry optimization screening: the selected
congurations underwent minimization via the conjugate
gradient (CG) algorithm to determine global energy minima.
This procedure was iterated until all candidate sites in the list
were evaluated. To simulate the overcharging behavior, 1000
sodium atoms were inserted into the HCmodel (Na/C ratio= 1 :
5), corresponding to a theoretical capacity of 446.7 mA h g−1.
Sodium site identication

Following the determination of optimal sodium insertion sites
via the aforementioned screening procedure, we performed
a systematic classication of these sites to elucidate their
structural characteristics and the corresponding sodium
storage mechanisms. Sodium insertion site identication can
be accomplished through a two-step protocol: potential inter-
calation sites were rst identied via geometric analysis of
sodium and carbon atomic arrangements. Adsorption and pore-
lling sites were subsequently distinguished using an ML
classier.44 For each target sodium atom, the local carbon
environment within a 5.0 Å radius was analyzed. Intercalation
site identication requires (i) the presence of at least two carbon
networks, each comprising a minimum of eight carbon atoms
around the sodium atom; (ii) sufficient planarity of tted
carbon planes (the root mean square deviation of the carbon
atomic position from the tted plane is less than 0.35 Å in this
study); (iii) dihedral angle between the tted planes within
2550 | Chem. Sci., 2026, 17, 2547–2558
dened ranges (<35° or >145°); (iv) location of the sodium atom
within the projection area of each carbon network onto its tted
plane.

ML algorithms chosen for site identication

To achieve accurate and comprehensive identication of
sodium insertion sites in HC, we employed several ML algo-
rithms commonly used for classication, including RF, support
vector machine (SVM), and clustering, as detailed below:

RF. A supervised learning model composed of multiple
decision trees, offering strong resistance to overtting and
exhibiting high classication accuracy when capturing complex
correlations between structural features and site types.

SVM. A supervised learning method that constructs an
optimal classication hyperplane in high-dimensional feature
space. By maximizing the margin, it enables accurate discrim-
ination among different categories of sodium insertion sites.

Clustering. An unsupervised learning approach that auto-
matically partitions sodium sites into distinct groups based on
structural feature similarity, without the need for labeled
samples.

ML model training for site identication

The algorithms were subsequently applied to discriminate
adsorption sites from pore-lling sites. To construct the dataset,
the HC models corresponding to 1 ps and 4 ps were selected,
and sodium atoms were incrementally inserted into these
models following the procedure described above. Thus, we ob-
tained a total of 2000 data points by inserting 1000 sodium
atoms into each of the two HC models. For each inserted
sodium atom, the local atomic environment (within 5.0 Å of
each sodium atom) and the corresponding binding energies
(referenced to bulk sodium) were extracted. 0.1 eV is
a commonly used threshold in experiments to distinguish the
sloping region from the plateau region.4,6,26–29 The sloping
region indicates stronger interactions between sodium and the
HC anode, mainly contributed by adsorption and intercalation
sites, whereas the plateau region reects weaker interactions,
primarily due to intercalation and pore-lling sites. Since we
have already screened intercalation sites using geometric
criteria, 0.1 eV can serve as a cutoff to further distinguish
adsorption sites from pore-lling sites, i.e., sites with binding
energy >0.1 eV were designated as adsorption sites, while those
<0.1 eV were classied as pore-lling sites.4,6,26–29 Fourteen
structural features were extracted, including the number of
sodium and carbon atoms. PCA was used to evaluate the
effectiveness of these features. The ML classier was trained to
establish feature-site correlations, with the optimized model
ultimately categorizing sodium sites as adsorption or pore-
lling types. The dataset was split into training and test sets
at a ratio of 4 : 1, followed by model training and evaluation
based on aforementioned RF, SVM and clustering algorithms.

Analyses of ML models

To quantitatively evaluate the classication performance of the
ML models, we performed the following analyses:
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Feature importance evaluation. Features were ranked
according to their importance derived from the RF model. Top-
ranked features are considered the most inuential for predic-
tions, whereas lower-ranked features contribute less. Feature
importance is a core metric for measuring the degree of inu-
ence of each structural feature on the model's classication
results. A higher value indicates that the feature plays a more
critical role in distinguishing between different types of sodium
storage sites. It helps us quickly identify the key structural
parameters that determine sodium storage behavior.

Pearson correlation. A measure that quanties the strength
and direction of the linear relationship between two variables.
Its correlation coefficient ranges from −1 to 1. The closer the
coefficient is to 1 or −1, the stronger the linear correlation
between the two variables; a coefficient close to 0 indicates that
there is almost no linear correlation between them. In this
study, it is mainly used to quantify the strength of the correla-
tion between the 14 selected structural features and the types of
sodium storage sites.

Receiver operating characteristic (ROC). A widely adopted
metric for evaluating the performance of binary classication
models. In this study, the binary classication task corresponds
to distinguishing absorption sites from pore-lling sites. The
area under the ROC curve (AUC) obtained was employed as a key
quantitative measure to assess the discriminative power of the
model in differentiating these two types of sodium storage sites.

Shapley Additive exPlanations (SHAP) summary plot. In the
SHAP summary plot, the horizontal axis represents the SHAP
value, indicating both the direction and magnitude of
a feature's contribution to the prediction. A positive SHAP value
(SHAP > 0) denotes a positive contribution of the feature to the
prediction, whereas a negative value (SHAP < 0) indicates
a negative contribution. The absolute value reects the strength
of the impact. The color of each point corresponds to the feature
value for the given sample, with red indicating high values and
blue indicating low values. We employed SHAP to interpret the
RF model, thereby quantitatively analyzing the direction and
magnitude of each structural feature's contribution to site
classication, while providing a visual representation of feature
importance and the potential correlation with sodium storage
behavior.

Results and discussion
Construction of the MLP model

The dataset comprises three structural categories: pure sodium,
pure carbon, and NaxC structures, totaling 6183 congurations.
Pure sodium systems include sodium atoms, clusters and bulk
phases. Pure carbon systems encompass four subtypes: amor-
phous carbon, layered carbon (e.g. graphite and graphene),
spherical carbon (e.g. fullerene) and tubular carbon (e.g. carbon
nanotube). The NaxC system covers sodium concentrations
from x = 0 to 0.25, including overcharging states. Fig. S1 illus-
trates the dataset composition (Table S1). Aer training the
MLP (Fig. 1), we validated the NEP against DFT calculations.
The RMSEs for energy and force are 21.6 meV per atom and
427.8 meV Å−1,67 respectively, demonstrating close agreement
© 2026 The Author(s). Published by the Royal Society of Chemistry
with DFT values (Fig. S2a and b). Energy calculations of various
Na–C structures using the developed MLP reveal minimal
deviations (<41.8 meV per atom) from DFT references, vali-
dating the force eld's accuracy and applicability for modeling
sodium storage behavior of HC anodes (Fig. S2c and d).
Analysis of HC models

Following the development of the well-trained MLP, we con-
structed HCmodels (Fig. S3). As shown in Fig. 2a, the HCmodel
exhibits a highly disordered carbon network with a density of
1.4 g cm−3, well within the characteristic range of experimental
HC materials (1.2–2.0 g cm−3).9,68–74 This relatively low density
facilitates larger interlayer spacing and porous structures,
benecial for sodium ion insertion and transport.54–56 Our HC
model exhibits distinct defects, edge congurations, graphitic
domains, and porous architectures (Fig. 2a and S4),75 The
fractions of sp-, sp2-, and sp3-hybridized carbon atoms are 1.1%,
98.7%, and 0.2%, respectively. Collectively, these features
dene the intrinsic structural characteristics of HC materials.
The sp-hybridized carbon concentrates at edges or defect sites,
while the sp3-hybridized carbon predominates in interlayer
cross-linking regions. The simulated XRD patterns exhibit
characteristic graphitic peaks at 21.22° and 43.68°, which are
ascribed to the (002) and (101) planes in graphitic carbon
(Fig. 2b). The interlayer spacing estimated from the (002) peak
from XRD is 4.18 Å, in agreement with experimental measure-
ments (3.7–4.2 Å).9,28,76,77 As illustrated in Fig. 2c, the radial
distribution function (RDF) exhibits a sharp primary peak at
1.42 Å78,79 and a secondary peak at 2.42 Å, corresponding to the
sp2 C–C bond length and the distance between carbon atoms
and their second-nearest neighbors in graphite, respectively,
indicating the predominance of the sp2-hybridized layered
graphitic structures with short-range order. We extracted ve-,
six-, and seven-membered rings from the HC structure and
computed the corresponding RDF proles (Fig. S5). The RDF
peaks of six-membered rings well aligned with those of the
overall HC structure, demonstrating that six-membered rings
constitute the dominant structural motif. The RDF peaks of ve-
membered rings appear at 1.42 Å and 2.31 Å, generally consis-
tent with previous reports.79–81 Compared to six-membered
rings, the next-nearest neighbor C–C distances in ve-
membered rings are shorter, primarily due to compressive
strain and reduced bond angles. The RDF peaks of seven-
membered rings appear at 1.44 Å, 2.55 Å, and 3.25 Å, in good
agreement with previous studies.81–83 Relative to six-membered
rings, the next-nearest and third-nearest neighbor distances
in seven-membered rings are larger, largely owing to the larger
bond angles. At increasing radial distances, the RDF exhibits
damped oscillations, with amplitudes decaying rapidly, con-
rming the amorphous nature and long-range disorder of the
HC structure.

Pores constitute critical domains for sodium-ion storage and
transport within the HC architecture, wherein micropores
primarily contribute to high sodium storage capacity.84–86 In
particular, micropores with size below 2 nm serve as the
primary region for sodium cluster lling and contribute most
Chem. Sci., 2026, 17, 2547–2558 | 2551
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Fig. 2 Structure and characterization of the HC model. (a) Atomic structure of the HC model, with representative local features of defects,
edges, graphitic domains and nanopores colored in dark blue, light blue, green and red, respectively. (b) XRD pattern. (c) RDF. (d) Pore size
distribution of the HC model.
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signicantly to the overall sodium storage capacity.86 As pre-
sented in Fig. 2d, the pore size distribution of the constructed
HC model demonstrates that all the pores are micropores (<2
nm).84 A distinct series of peaks are observed in the 0.3–1.5 nm
range, with a dominant peak at 0.8 nm accounting for 41.3% of
the total pore volume. This micropore-dominated conguration
signicantly enhances the specic surface area, increases
available sites for sodium-ion adsorption and pore lling, and
improves rate capability.84

Collectively, the constructed HC model replicates key struc-
tural attributes of experimentally characterized HCs, including
local atomic congurations, bonding environments, interlayer
distances and pore size distribution. Subsequent studies will
utilize this model to identify sodium storage sites and simulate
voltage proles.
Sodium storage site identication

Given that intercalation exhibits more distinct geometric
features, we employed structural information to preliminarily
identify intercalation sites. Subsequently, the RF algorithm was
applied to distinguish adsorption and pore-lling sites. Before
training the model, 14 structural descriptors were selected,
including the coordination environment (F1/F2: coordination
2552 | Chem. Sci., 2026, 17, 2547–2558
number of sodium ions/carbon atoms and F3/F4: distance to
the nearest sodium ion/carbon atom), tted carbon plane (F5:
number of tted carbon planes, F6: maximum atness of tted
carbon planes, F7: distance to the structure formed by projec-
ting the carbon network onto tted planes, and F8: dihedral
angle between tted carbon planes), and polygon information
(F9–F14: numbers of 3–8-membered carbon rings). Subse-
quently, PCA was applied to the 14 structural feature descriptors
to reduce the high-dimensional feature space to a three-
dimensional representation (detailed contribution of each
feature to the three principal components are provided in Table
S2), thereby validating their discriminative completeness for the
three types of sodium sites and facilitating effective separation
among the site categories (Fig. S6). The results revealed that the
three types of storage sites form distinct clusters in the feature
space, demonstrating the discriminative capability of the
selected descriptors for classifying different site categories. A
screening model was then developed based on the RF algo-
rithm. The ROC curve presented in Fig. S7 yielded an AUC value
of 0.94 (close to 1), further conrming the robust screening
performance of the 14 structural descriptors within the RF
framework.

We rst constructed the Pearson correlation matrix encom-
passing 14 features along with the binding energy Eb (relative to
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Feature extraction for sodium site identification. (a) Pearson correlationmatrix of 14 features, the intercalation site and the binding energy,
with orange and blue indicating positive and negative correlations, respectively. (b) SHAP summary plot of feature importance. F1/F2: coordi-
nation number of sodium ions/carbon atoms, F3/F4: distance to the nearest sodium ion/carbon atom, F5: number of fitted carbon planes, F6:
maximum flatness of fitted carbon planes, F7: distance to the structure formed by projecting the carbon network onto fitted planes, F8: dihedral
angle between fitted carbon planes, and F9–F14: numbers of 3–8-membered carbon rings. Eb denotes the binding energy. I represents the
intercalation sites.
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the energy of bulk Na). As shown in Fig. 3a, features F7 (−0.05),
F9 (0.00), and F10 (0.04) exhibit an extremely weak correlation
with the binding energy. Features F1 (−0.66) and F4 (−0.14)
show a negative correlation with binding energy, suggesting
that an increased coordination number and a decreased
distance of the surrounding sodium atoms favor the weakening
of the binding energy. The remaining features exhibit varying
degrees of positive correlation with the binding energy. Addi-
tionally, few features exhibit strong correlations (value > 0.70),
indicating the mutual independence of the selected features. F1
exhibits a positive correlation with F4 while showing varying
degrees of negative correlation with the remaining features.
Notably, its negative correlations with F2 and F3 are particularly
strong. Generally, considering the spatial effect, a higher
number of sodium ions surrounding a central sodium ion
correlates with a relatively lower number of surrounding carbon
atoms. This will cause a relative negative correlation with the
tted plane parameters (F5–F8) and the polygon features (F9–
F14), albeit with a weak correlation strength. The remaining
correlations can be analogously explained based on spatial
effects. Further analysis reveals that F2 exhibits a greater
number of strong associations with other features, primarily
because F3 through F14 all pertain to carbon-related charac-
teristics. It is noteworthy that the number of 5-membered rings
(F11) and the number of 7-membered rings (F13) display
a signicant positive correlation (0.51). This implies that, in our
simulated structures, topological defects in the form of 5j7 pairs
are energetically more stable than the isolated 5-membered or
7-membered rings.87

Subsequently, we evaluated the feature importance. As can
be seen from Fig. S8, the coordination environment features
(F1–F4) have the most signicant impact, accounting for 67.3%.
Specically, the importance values are F1 (0.248), F3 (0.210),
and F2 (0.152). This indicates that the coordination
© 2026 The Author(s). Published by the Royal Society of Chemistry
environment, including the number of atoms and their
distances, has the most prominent effect. It also validates the
higher correlation among F1, F2, and F3 mentioned in the
previous correlation analysis. The next most important feature
is F6 (0.101), which suggests that the irregularity of the carbon
surface may lead to energy-unstable structures, thereby facili-
tating adsorption. The importance of F4 (0.063) is signicantly
reduced, consistent with its weak correlation with the highly
important F1 and F3. The importance of other features related
to the tting planes and polygons is even lower, which is in line
with their insensitivity in distinguishing adsorption and pore
lling.

The correlation between the 14 selected structural features
and the intercalation site was analyzed further. As shown in
Fig. 3a, features F2, F5, F6, F8, and F12 exhibit pronounced
correlations with intercalation sites. Among them, F2, F5, F8,
and F12 show positive correlations. A higher carbon coordina-
tion number (F2) indicates a dense arrangement of the
surrounding carbon atoms, suggesting an increased likelihood
of forming honeycomb-like motifs and a higher degree of
graphitization. A larger number of tted carbon planes (F5) and
a smaller dihedral angle between carbon layers (F8) imply
a higher probability of forming interlayer spaces composed of
multiple carbon planes. Similarly, an increased count of six-
membered rings (F12) indicates enhanced graphitization,
thereby promoting the formation of intercalation sites. In
contrast, feature F6 is negatively correlated with intercalation
sites, primarily because a larger atness value indicates reduced
planarity, which is unfavorable for intercalation.

The SHAP summary plot was generated to illustrate the
association of each feature with adsorption/lling identica-
tion. As shown in Fig. 3b, features F1, F3, F2, and F6 rank the
highest, indicating the greater importance of the coordination
environment in distinguishing adsorption and pore-lling sites.
Chem. Sci., 2026, 17, 2547–2558 | 2553
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This nding aligns with the conclusions drawn from our earlier
importance assessments. Moreover, features F2, F3, F5, F6, F8,
F11, F13, and F14 exhibit positive correlations with adsorption.
Increases in these feature values could enhance the probability
of sodium ions encountering defective or edge carbon atoms.
Conversely, F1 shows a positive correlation with pore-lling.
This is primarily because higher values of F1 either increase
the likelihood of being surrounded by sodium ions or reduce
the probability of encountering nearby defective carbon atoms.
Notably, the SHAP dependence of features F4, F7, F10, and F12
displays weak sensitivity to its feature values, reecting their
limited relevance in adsorption/lling identication. This
observation is consistent with both our aforementioned feature
importance evaluation and correlation matrix analysis.
Regarding feature F9, SHAP values are predominantly distrib-
uted near zero, suggesting an extremely weak correlation with
adsorption/lling behavior. We speculate this might be related
to the scarcity of triangular rings in the samples due to their
high energy states.

Fig. 4 presents our identication results for sodium sites at
different sodiation stages, encompassing adsorption, interca-
lation, and lling sites. The results demonstrate that nearly all
sites are accurately identied, achieving an identication
accuracy of 86.1% (Fig. S9). Compared to other models, this RF
model outperformed both SVM (84.2%) and clustering (78.2%),
demonstrating its superior prediction accuracy in identifying
adsorption and pore-lling sites (Fig. S10 and S11). Further-
more, the dominant insertion sites evolve as sodiation prog-
resses. Taking adsorption as an example, initial adsorption
Fig. 4 Site identification of the inserted sodium ion. Illustration of the loc
HC structure: (a) adsorption sites, (b) Intercalation sites, and (c) Pore-fill

2554 | Chem. Sci., 2026, 17, 2547–2558
preferentially occurs at defect sites (Fig. 4a-i), while later in the
adsorption process, it shis towards edge sites (Fig. 4a-v). This
is consistent with the generally higher binding energy associ-
ated with defect sites. Similarly, during intercalation and pore
lling (Fig. 4b and c), we observe that as the number of inserted
sodium ions increases, clustering of sodium ions tends to occur
between the graphite layers and within the lled regions. This
clustering phenomenon also contributes to a reduction in the
sodium–carbon binding energy as sodiation progresses.
Voltage prole simulation

Subsequently, we simulated the voltage prole during the
stepwise insertion of sodium ions. The calculation formula is as
follows:88

V ¼ �1

e

Efðx2Þ � Efðx1Þ
x2 � x1

(1)

where e is the elementary charge; x1 and x2 represent the
number of inserted sodium ions before and aer insertion,
respectively. Ef(x2) and Ef(x1), respectively, denote the formation
energies corresponding to the inserted x1 and x2 sodium ions,
dened as

Ef(x) = EHC−Na − EHC − xENa(bulk) (2)

where EHC−Na, EHC, and ENa(bulk) correspond to the total energy
of the HC structure with x inserted sodium ions, the energy of
the HC structure and the energy of a sodium atom in the bulk
phase, respectively. In our simulation, we chose x2 − x1 = 1.
al environments of sodium atoms within a cutoff radius of 5.0 Å in our
ing sites.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 presents the simulated voltage prole. By integrating
the RF-based site identication model, the insertion sites were
classied, and the voltage contribution from each site type were
quantitatively determined via tting analysis. During the initial
sodiation stage (N # 11), sodium ions exclusively occupied
adsorption sites (blue curve in Fig. 5 and S12a). The sodium
atoms were predominantly located at surface topological
defects, such as ve- and seven-membered rings and edge sites,
forming 4–6 coordination bonds with neighboring carbon
atoms (bond length: 2.3–2.6 Å) and exhibiting a high binding
energy (>1.08 eV). The corresponding XRD simulation demon-
strates an invariant interlayer spacing of 4.18 Å (Fig. S13), which
unequivocally conrms the absence of intercalated sodium. At
this adsorption only stage, the voltage precipitously drops from
3.37 eV to 1.08 eV (dV/dN = −0.20 V per Na). As sodiation pro-
gressed (12 < N # 327), sodium ions progressively populated
intercalation sites while initiating pore-lling occupation (green
curve in Fig. 5 and S12b). XRD analysis reveals a pronounced
shi of the (002) peak toward larger angles, indicating interlayer
expansion from 4.18 Å to 4.23 Å (Fig. S13), which directly
conrms the contribution of intercalation. Each sodium atom is
coordinated by 10–15 nearest-neighbor carbon atoms, with Na–
C distances ranging from 2.4 Å to 3.5 Å. The number of neigh-
boring sodium atoms continues to increase from 0.27 to 1.57.
The voltage declined from 1.08 eV to 0.10 eV with a moderate
slope (dV/dN = −0.03 V per Na). Site population showed an
intercalation and adsorption stage (57.6%), supplemented by
adsorption (32.6%) and pore lling (9.81%), characteristic of
the intercalation-governed regime. Upon deeper sodiation (328
< N # 585), the system enters a characteristic plateau region
with negligible voltage decay (dV/dN = −0.004 V per Na). At this
stage, sodium atoms predominantly aggregate to form clusters
within the pores. Initially, the coordination number of neigh-
boring sodium atoms is 1.57, which increases markedly to 3.30
as the lling progresses, indicative of sodium clustering.
Further analysis shows that the spatial distribution of sodium
Fig. 5 The voltage profile during the gradual sodiation of our HC
model. The fitted curves for the adsorption only, intercalation and
adsorption and pore-filling dominated stages are colored in blue,
green and red, respectively.

© 2026 The Author(s). Published by the Royal Society of Chemistry
atoms within nanopores is strongly inuenced by the pore size
and pore wall structure: in micropores with smooth, graphite-
like walls, sodium atoms tend to form small clusters
comprising 3–5 atoms; whereas in mesopores with diameters of
1–2 nm and defective pore walls, the cluster sizes are larger,
typically consisting of 5–8 sodium atoms. Despite progressive
interlayer expansion (4.35 Å at N = 585) (Fig. S13), pore lling
emerges as the dominant contributor to sodium storage
capacity (60.1%), surpassing intercalation (33.9%) and adsorp-
tion (6.1%) (red line in Fig. 5 and S12c). Our analysis explicitly
resolves three distinct regimes: adsorption only (steep slope),
intercalation and adsorption (moderate slope), and pore-lling
dominated (plateau), reproducing the experimentally reported
“adsorption–intercalation–lling” mechanism.34 At full sodia-
tion (N = 585), the specic capacity reached 261.3 mA h g−1 at
0 V, with intercalation contributing the largest fraction (46.2%),
exceeding the contributions from pore lling (31.4%) and
adsorption (22.4%), indicative of a relatively high degree of
graphitization in the HC model. Unlike most experimentally
synthesized HCs, which are prepared via targeted design strat-
egies such as activation to generate abundant micropores,
heteroatom doping, or controlling the degree of graphitization
to balance interlayer spacing and defect density, our model
utilizes a pristine, impurity-free carbon framework with rela-
tively ordered layer stacking. This structural characteristic
facilitates sodium intercalation but limits contributions from
surface adsorption and pore lling, resulting in a lower total
capacity compared to structurally engineered, high-capacity
HCs. The capacity may be further enhanced by future tuning
the HC microstructure. Through such microstructural optimi-
zation, a deeper understanding of alternative sodium storage
mechanisms might be achieved, enabling the elucidation of
correlations between HC structural features and performance
such as sodium diffusion and cycling stability.

It should be noted that a stage in which a particular type of
site is dominant merely indicates that the proportion of that site
type is the highest among the three site categories within that
specic stage (Table S3); it does not imply that the proportion of
this site type reaches its overall maximum in that stage across
the entire sodiation process. For instance, among adsorption
sites, only 8.5% are present in the adsorption only stage, 79.2%
in the intercalation and adsorption stage, and 12.3% in the
pore-lling dominated stage.; for intercalation sites, 67.4% are
in the intercalation and adsorption stage, while 32.6% are in the
lling-dominated stage.

Finally, the overcharging process was explicitly considered.
Upon voltage descent to 0 V (N > 588), overcharging behavior
occurs on the HC anode. During this stage (grey line in Fig. 5),
inserted sodium ions predominantly populate pore-lling
(51.0%) and intercalation (47.8%) sites (Fig. S12d and S13).
XRD simulations reveal a further increased average interlayer
spacing (4.56 Å), conrming partial sodium retention in inter-
calated congurations (Fig. S13). In the overcharging stage, the
HC structure does not induce slippage or delamination of the
graphitic layers, and the nanopore structure is largely preserved
(Fig. S14a and b), with pore sizes predominantly ranging from
0.3 to 1.5 nm (Fig. S14c). Notably, the mean shortest Na–Na
Chem. Sci., 2026, 17, 2547–2558 | 2555
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distance is 3.65 Å, markedly smaller than that observed during
the charging stage (4.59 Å) and even shorter than the Na–Na
bond length in bulk sodium (Fig. S14d). This observation
suggests that, on one hand, the intercalation process intensies
the electrostatic repulsion among inserted sodium ions, thereby
introducing an energy penalty that manifests as negative
voltage;89 on the other hand, Na aggregation occurs under
overcharging, forming sodium clusters coordinated with 5.67
sodium atoms, indicative of the initial nucleation of sodium
dendrites. Further investigation by tuning the structural
features of HC could provide deeper insight into the overcharge
behavior, offering theoretical guidance for the rational design
of safer HC anodes.

Conclusion

This study provides an in-depth investigation of the sodium
storage mechanism in HC for SIBs by synergistically integrating
MLP with RF-based site identication methodologies.
Leveraging the well-trained MLP, we have successfully con-
structed an atomistically accurate HC model that faithfully
reproduces the structural features observed experimentally.
Utilizing our site identication approach, we simulated the
atom-by-atom voltage prole during sodiation and deconvo-
luted the respective contributions of adsorption, intercalation,
and pore-lling sites to sodium storage. Furthermore, over-
charging simulations reveal that the formation of sodium
clusters constitutes a critical factor driving dendrite growth and
associated safety concerns. Our studies verify that MLP is
a powerful and versatile tool for building HC structures and
studying the surface/interface evolution and the sodium storage
mechanism not only in HC but also extendable to other SIB
electrode materials, opening new avenues for the rational
design of high-performance SIB components.
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