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12 Abstract

13 Hard carbon (HC) has attracted considerable interest as a promising anode material for

14 sodium-ion batteries (SIBs) due to its high specific capacity, excellent cycling stability,

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

15  and cost-effectiveness. Nevertheless, the sodium storage mechanism in HC remains

16  poorly understood owing to challenges in precisely characterizing its structural disorder,

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

17 complexity, and intricate interatomic interactions. In this work, we investigate sodium

(cc)

18  storage behavior in HC anodes using a machine learning potential (MLP) integrated
19 with a random forest-based sodium insertion site identification framework. The trained
20  MLP accurately captures both the structural features of HC and the sodium insertion
21 behavior. HC comprises an amorphous network of defects, edges, graphitic domains,
22 and nanopores, primarily interconnected through sp/sp?/sp*-hybridized carbon bonds.
23 For the first time, we simulate the continuous voltage profile associated with the
24 stepwise sodium insertion during both the charging and overcharging states. This
25 voltage profile reproduces experimental observations and disentangles the
26  contributions of adsorption, intercalation, and pore filling, offering a pathway to
27  elucidate the storage mechanisms across different systems and rationalize the
28  discrepancies observed in experiments. During the overcharging stage, excessively
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short Na-Na distances enhance repulsion, leading to negative voltages. Besides,,th.
formation of sodium clusters was observed, which poses a safety risk to the battery.
Our findings demonstrate that machine learning-based simulations constitute a
powerful and emerging approach for investigating sodium storage mechanisms and
offer valuable guidance for the experimental optimization of HC anodes. Moreover,
this strategy can be extended to other electrodes, electrolytes in SIBs, and even

alternative battery systems.

Introduction

Sodium-ion batteries (SIBs) have emerged as a promising rechargeable battery
technology for large-scale energy storage, owing to sodium’s natural abundance and
cost-effectiveness.!'!© Among anode candidates for SIBs, hard carbon (HC)
demonstrates compelling advantages including low cost, environmental benignity, and
tunable microstructures, establishing its viability for commercial deployment.!!-1
Nevertheless, the atomic-scale sodium storage mechanism in HC remains incompletely
resolved, stemming from its intricate yet disordered architecture featuring abundant
defects, edges, curved graphene domains, and hierarchical porosity.>* These structural
characteristics induce complex C-C and Na-C interactions that collectively govern ion

adsorption, intercalation, and pore-filling processes.?%->3

The sodium storage mechanism in HC has been debated for decades, with
competing models proposed to rationalize the characteristic voltage profile featuring a
sloping region (> 0.1 V) and a plateau region (< 0.1 V).4626-2% The "intercalation-
filling" model proposed by Stevens and Dahn posits that sodium storage occurs via
interlayer intercalation and nanopores filling.? Interlayer intercalation provides a stable
contribution to capacity but is constrained by the intrinsic layer spacing of HC;
excessive intercalation may damage the layered structure and compromise cycling
stability. In contrast, nanopore filling is the primary source of high capacity in HC, with
the pore size and distribution directly determining the upper limit of filling capacity. If
the pore size is too small, the transport of sodium ions is hindered, ultimately reducing
the rate capability of the material. Cyclic voltammetry profiles reported by Cao et al.
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1 revealed an additional pair of redox peaks distinct from those in lithium-based §ystenisg/pssco7oesr
2 suggesting an "adsorption-intercalation" mechanism.’® Mitlin et al. observed voltage-
3 dependent interlayer expansion via X-ray diffraction (XRD), furthering corroborating
4  the intercalation process.! Furthermore, Li et al. correlated sodium capacity with
5  tunable interlayer spacing achieved via heteroatom doping, reinforcing the role of
6 intercalation in sodium storage.3?> The adsorption process primarily occurs at defect
7 sites and edges on the HC surface, which can rapidly accommodate sodium ions and
8  significantly enhance rate performance. However, adsorption capacity is limited by the
9 specific surface area, and excessive defects may reduce electrical conductivity.
10  Interlayer intercalation contributes to maintaining structural stability, and the synergy
11 between the two processes enables a balanced performance between high rate capability
12 and long cycle life. Nevertheless, this mechanism does not account for the capacity
13 contribution of pore structures and could hardly explain the origin of capacity in the
14 low-potential region. Li et al. detected no interlayer spacing change during sodiation
15  via high-resolution transmission electron microscopy (HRTEM) while identifying
16  metallic sodium signatures in the plateau region through X-ray photoelectron

17 spectroscopy (XPS), supporting an "adsorption-filling" mechanism.3? The high activity

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

18 of adsorption sites enhances the adsorption kinetics of sodium ions, while pore filling

19  compensates for the limited adsorption capacity. However, because interlayer

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

20 intercalation is not involved, structural stability depends on the rigidity of the pore

(cc)

21 framework; pore collapse during long-term cycling can lead to rapid capacity decay.
22 Recently, small and wide-angle X-ray scattering (SAXS/WAXS) analyses by Yamada
23 et al. revealed concurrent interlayer expansion and pore filling, proposing a unified
24 "adsorption-intercalation-filling" mechanism.3* In this mechanism, adsorption ensures
25  high-rate performance, intercalation maintains structural stability, and filling increases
26  total capacity. However, this mechanism previously lacked direct atomic-scale
27  evidence, and the dynamic evolution of the three processes during sodium insertion
28  remained unclear, making it difficult to accurately guide structural optimization of HC
29  materials. Despite these advances, the persistence of these controversies stems from the

30 lack of effective atomic-scale methods to capture sodium storage processes. A
3
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comprehensive atomic-scale framework linking voltage profile characteristics Psodiutep/p55c07068¢

storage mechanisms, and microstructure engineering remains elusive, hindering the

rational design of advanced HC anode.33-4°

Atomic-scale investigations of the sodium storage mechanism in HC primarily rely
on experimental characterization and theoretical simulations, both of which have made
significant progress. Experimentally, Grey et al. employed operando >3Na solid-state
nuclear magnetic resonance (ssNMR) combined with pair distribution function (PDF)
analysis to reveal the formation of sodium clusters within closed pores during the low-
voltage plateau region.*! Chisholm et al. utilized aberration-corrected transmission
electron microscopy (TEM) to identify pentagonal and heptagonal ring defects in
curved graphene sheets and elucidated their role in inducing nanopore formation.
Fujiwara et al. further confirmed, via ex-situ XRD and Raman spectroscopy, the
reversible expansion and contraction of graphene interlayer spacing induced by Na
intercalation and deintercalation. However, current experimental characterization
techniques generally can hardly achieve atomic-level resolution, and most methods are
challenging to implement under operando conditions, limiting the ability to capture the
dynamic sodium storage process under realistic conditions.** On the theoretical side,
Youn et al. employed density functional theory (DFT) calculations to evaluate the
energetic favorability of AA-stacked graphite domains for Na intercalation and the
stability of Na, clusters on defective graphene.*3 Hoster et al. applied entropy profiling
and molecular dynamics (MD) simulations, concluding that sodium deposition on pore
walls is thermodynamically more favorable than pore interior filling, with the Na
binding energy dependent on pore size.** Liu et al. further demonstrated through DFT
calculations that the energy barrier for Na intercalation decreases significantly when
the graphene interlayer spacing exceeds 3.7 A.3045 While first-principles calculations
provide high accuracy, they are inherently limited by system size, making large-scale
simulations computationally challenging. Classical MD simulations can achieve large-
scale modeling, but their accuracy is relatively lower, and the results often deviate from

experimental observations. Consequently, theoretical simulations remain constrained
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1 by the difficulty of simultaneously achieving high accuracy and large spatiotemporab/D5sco706sr

2 scales.

3 Recently, machine learning (ML) methods have been increasingly applied across
4  various research fields and hold great potential for investigating the sodium storage
5 mechanisms in HC.*-*8 On one hand, ML models can rapidly establish quantitative
6  relationships between structural features and electrochemical performance in HC,
7 thereby uncovering intrinsic correlations.*3-3! On the other hand, ML potentials (MLPs),
8§ trained on first-principles calculation data as reference, enable high-accuracy
9  simulations, and MLP-based MD simulations facilitate large-scale modeling.52-3* Such
10  simulations can more comprehensively account for experimental factors, offering a
11 promising approach for in-depth elucidation of the microscopic mechanisms underlying

12 sodium storage.

13 Herein, we develop an MLP integrated with a random forest (RF)-based site
14 identification algorithm as a robust platform for investigating the intrinsic sodium
15  storage mechanism in HC.>>*° A curated dataset encompassing diverse atomic

16  configurations of sodium, carbon, and sodium-carbon systems was constructed.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

17 Leveraging this dataset, we trained an MLP capable of accurately capturing the

18  complex interatomic interactions within the Na-HC systems. Implementation of an RF

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

19  classifier enabled accurate identification and categorization of sodium storage sites into

(cc)

20  adsorption, intercalation, and pore-filling types. By synergistically combining the MLP
21 with site identification, we investigated the sodium storage process in HC and simulated
22 the voltage profile under stepwise, atom-by-atom sodium insertion. The simulation
23 results distinctly resolve the contributions of different site types to voltage and capacity
24 at each stage. This study provides a powerful methodological framework for probing
25  microscopic sodium storage mechanisms and links atomic-scale sodium behavior with
26 macroscopic electrochemical performance, contributing to resolving long-standing
27 mechanistic controversies surrounding HC anode in SIBs and laying a theoretical
28  foundation for understanding sodium storage, diffusion processes and the rational

29  design of high-performance HC anodes.
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MLP training

The workflow for MLP training is illustrated in Fig. 1. The main training process will

be explained in detail below.

Initial structures collection: to develop a high-accuracy MLP, a high-quality dataset
with structural diversity and completeness is required. Existing bulk and surface
structures were first collected, and simple models including sodium, carbon, and

sodium-carbon systems were constructed to serve as initial structures.

Ab initio MD (AIMD) simulations and structural perturbations: AIMD simulations
and structural perturbations are the main methods to enrich the initial structures. AIMD
was performed on the initial structures, with intentional lattice distortions introduced to
enhance structural diversity. Temperature was controlled with a Nosé-Hoover
thermostat.®®© Comprehensive sampling of sodium insertion configurations including
adsorption, intercalation, and pore filling, was conducted across a wide range of

temperatures (200-5000 K) and pressure (0-5 GPa).5?

Initial dataset: first-principles self-consistent (SC) calculations were carried out using
the Projector augmented wave (PAW) method within the Vienna Ab initio Simulation
Package (VASP) for all initial structures.®’ The Perdew-Burke-Ernzerhof (PBE)
functional was employed for electronic exchange-correlation,%? with long-range van der
Waals interactions corrected using the DFT-D3 method.®* A plane-wave energy cutoff
of 500 eV and k-point spacing of 0.03 A-! were adopted.®* The above methods,
functionals, and parameters ensure the accuracy of the SC results and the subsequent
MLP training. Structures, energies and forces from SC calculations comprise the initial

datasets.

MLP pre-training: the initial dataset was first subjected to principal component
analysis (PCA), and then split into training and test sets at a ratio of 9:1. The
neuroevolution potential (NEP) framework, a type of MLP optimized via

neuroevolution algorithms, was employed. Its key advantage lies in dynamically
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1 refining the neural network architecture, enabling accurate representation of ¢oniplese/pssco7o6sr
2 interatomic interactions while maintaining computational efficiency.’® NEP training
3 was performed using the Graphics Processing Units Molecular Dynamics (GPUMD)
4  package,® with four models trained concurrently using identical hyperparameters
5  which are the framework parameters set prior to training, including the number of
6  neural network layers set as 3, training steps set as 4x10°, and number of neurons set
7 as 100 and the cutoff radius set as 7.0 A, which were tuned to prevent underfitting or

8  overfitting.

9  MLP testing: The loss function measures the deviation between MLP-predicted and
10  DFT references values and serves as a core metric to test the accuracy of trained MLP.
11 The objective of training is to minimize the loss function. In this work, root-mean-
12 square error (RMSE) was used as the loss function, with weights for energy, force, and
13 virial set to 4. = 1.0, 4;= 1.0, and 4, = 0.1. Smaller RMSE indicates higher accuracy of
14 the trained MLP. The performance of the MLP model was further evaluated via RMSEs

15  in its predictions of energy, force, and virial.

16  Supplementary data by pre-trained MLP MD simulations: Typically pre-trained

17 MLP or MLP trained once cannot achieve the required accuracy. Therefore, it is

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

18  necessary to supplement the initial dataset by generating extended structures. In this

19 work, the extended structures were generated using the Large-scale Atomic/Molecular

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

20  Massively Parallel Simulator (LAMMPS),% a high-efficiency classical MD simulation

(cc)

21 package based on the pre-trained MLP, to reduce the computational cost of AIMD
22 simulations. Supplementary datasets were processed using an active learning workflow
23 implemented in the GPUMD package,®® which efficiently explores previously
24 uncharted configuration spaces. To avoid redundant data and ensure structural diversity,
25  structures exhibiting significant force deviations were filtered, and representative
26  configurations were selected via principal component analysis (PCA)—a common
27 method to determine the correlation between the newly generated structures and those
28 in the initial dataset.®® For all the selected structures, DFT SC calculations were

29  performed following the above methods and parameters to obtain energies, atomic
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forces and virial, constituting fundamental data components to supplement theinitigb/psscoroesr

dataset.

MLP re-training: After enriching the dataset, the MLP was re-trained and its accuracy
evaluated through testing. If the accuracy converged, the MLP training was considered
complete; otherwise, the workflow returned to "MD simulations via trained MLP" step,
incorporating representative data into the dataset, and re-training the MLP. This process

was repeated until the desired level of accuracy was achieved.

Iital strugtures » AIMD/perturbations > Seit-conslstant > Initial dataset »|  MLP pre-training
collection calculations
High- _ Yes . P Supplementary data generated by pre-trained =
accuracy MLP MLP testing < MLP MD simulations < MLP re-training
[
No |  Representative | Self-consistent = Dataset
structures selection calculations 5 augmentation

Fig. 1 The workflow for the MLP training.

Initial construction of HC model

The initial HC structures were generated using the trained NEP model. Specially, 5000
carbon atoms were randomly distributed within a 41.4x41.4x41.4 A3 simulation box,
followed by high-temperature NVT MD simulation at 4000 K for 4 ps. To capture the
structural evolution of HC during the annealing process and to obtain representative
models for subsequent studies, the configurations corresponding to 1 ps, 2 ps, and 4 ps

of the annealing process were selected.

HC model construction with sodium insertion

Having established the stable HC models, we next investigated sodium insertion
behavior within this structural framework. A three-step screening procedure was then
employed to identify optimal sodium insertion sites: (i) spatial screening: potential sites
were identified under spatial constraints (minimum Na-Na distance: 3.0 A; minimum
Na-C distance: 2.0 A) to mitigate strong Coulombic repulsion, generating an initial
candidate list; (i1)) SC calculation screening: SC calculations using the trained MLP
were performed on candidates by traversing the sodium insertion list, selecting the 50

8
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1 configurations with lowest energies; (ii1) geometry optimization screening: the 8eleeteeh/5sco7oesr
2 configurations underwent minimization via the conjugate gradient (CG) algorithm to
3 determine global energy minima. This procedure was iterated until all candidate sites
4 in the list were evaluated. To simulate the overcharging behavior, 1,000 sodium atoms
5 were inserted into the HC model (Na/C ratio = 1:5), corresponding to a theoretical

6  capacity of 446.7 mA-h-g'l.

7 Sodium site identification

8  Following determination of optimal sodium insertion sites via the aforementioned
9  screening procedure, we performed a systematic classification of these sites to elucidate
10  their structural characteristics and the corresponding sodium storage mechanisms.
11 Sodium insertion site identification can be accomplished through a two-step protocol:
12 potential intercalation sites were first identified via geometric analysis of sodium and
13 carbon atomic arrangements. Adsorption and pore-filling sites were subsequently
14 distinguished using a ML classifier.** For each target sodium atom, the local carbon
15  environment within a 5.0 A radius was analyzed. Intercalation site identification

16  requires: (i) presence of at least two carbon networks, each comprising a minimum of

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

17 eight carbon atoms around the sodium atom; (ii) sufficient planarity of fitted carbon

18 planes (the root mean square deviation of the carbon atomic position from the fitted

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

19 plane is less than 0.35 A in this study); (iii) dihedral angle between the fitted planes

(cc)

20  within defined ranges (<<35° or > 145°); (iv) location of the sodium atom within the

21 projection area of each carbon network onto its fitted plane.

22 ML algorithms chosen for site identification

23 To achieve accurate and comprehensive identification of sodium insertion sites in HC,
24 we employed several ML algorithms commonly used for classification, including RF,
25  support vector machine (SVM), and clustering, as detailed below:

26  RF: a supervised learning model composed of multiple decision trees, offering strong
27  resistance to overfitting and exhibiting high classification accuracy when capturing

28  complex correlations between structural features and site types.
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SVM: a supervised learning method that constructs an optimal classificatiozp/pssco7068F

hyperplane in high-dimensional feature space. By maximizing the margin, it enables
accurate discrimination among different categories of sodium insertion sites.

Clustering: an unsupervised learning approach that automatically partitions sodium
sites into distinct groups based on structural feature similarity, without the need for

labeled samples.

ML models training for site identification

The algorithms were subsequently applied to discriminate adsorption sites from pore-
filling sites. To construct the dataset, the HC models corresponding to 1 ps and 4 ps
were selected, and sodium atoms were incrementally inserted into these models
following the procedure described above. Thus, we obtained a total of 2,000 data points
by inserting 1,000 sodium atoms into each of the two HC models. For each inserted
sodium atom, local atomic environment (within 5.0 A of each sodium atom) and
corresponding binding energies (referenced to bulk sodium) were extracted. 0.1 eV is
a commonly used threshold in experiments to distinguish the sloping region from the
plateau region.*%2¢2% The sloping region indicates stronger interactions between
sodium and the HC anode, mainly contributed by adsorption and intercalation sites,
whereas the plateau region reflects weaker interactions, primarily due to intercalation
and pore-filling sites. Since we have already screened intercalation sites using
geometric criteria, 0.1 eV can serve as a cutoff to further distinguish adsorption sites
from pore-filling sites, i. e., sites with binding energy > 0.1 eV were designated as
adsorption sites, while those << 0.1 eV were classified as pore-filling sites.*6-26-29
Fourteen structural features were extracted, including the number of sodium and carbon
atoms. PCA was used to evaluate the effectiveness of these features. The ML classifier
was trained to establish feature-site correlations, with the optimized model ultimately
categorizing sodium sites as adsorption or pore-filling types. The dataset was split into
training and test sets using a ratio of 4:1, followed by model training and evaluation

based on aforementioned RF, SVM and Clustering algorithms.

10
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1 Analyses of ML models

2 To quantitatively evaluate the classification performance of the the ML models, we
3 performed the following analyses:

4  Feature importance evaluation: Features were ranked according to their importance
5  derived from the RF model. Top-ranked features are considered the most influential for
6  predictions, whereas lower-ranked features contribute less. Feature importance is a core
7 metric for measuring the degree of influence of each structural feature on the model's
8  classification results. A higher value indicates that the feature plays a more critical role
9 in distinguishing between different types of sodium storage sites. It helps us quickly

10  identify the key structural parameters that determine sodium storage behavior.

11 Pearson correlation: a measure that quantifies the strength and direction of the linear
12 relationship between two variables. Its correlation coefficient ranges from -1 to 1. The
13 closer the coefficient is to 1 or -1, the stronger the linear correlation between the two
14  variables; a coefficient close to 0 indicates that there is almost no linear correlation
15  between them. In this study, it is mainly used to quantify the strength of the correlation

16  between the 14 selected structural features and the types of sodium storage sites.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

17 Receiver operating characteristic (ROC): a widely adopted metric for evaluating the

18 performance of binary classification models. In this study, the binary classification task

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

19 corresponds to distinguishing absorption sites from pore-filling sites. The area under

(cc)

20  the ROC curve (AUC) obtained was employed as a key quantitative measure to assess
21 the discriminative power of the model in differentiating these two types of sodium

22 storage sites.

23 Shapley Additive exPlanations (SHAP) summary plot: in the SHAP summary plot,
24  the horizontal axis represents the SHAP value, indicating both the direction and
25  magnitude of a feature’s contribution to the prediction. A positive SHAP value
26  (SHAP > 0) denotes a positive contribution of the feature to the prediction, whereas a
27  negative value (SHAP < 0) indicates a negative contribution. The absolute value reflects
28 the strength of the impact. The color of each point corresponds to the feature value for

29  the given sample, with red indicating high values and blue indicating low values. We
11
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employed SHAP to interpret the RF model, thereby quantitatively analyziigothe/psscoroesr

direction and magnitude of each structural feature's contribution to site classification,
while providing a visual representation of feature importance and the potential

correlation with sodium storage behavior.

Results and discussion

Construction of the MLP model

The dataset comprises three structural categories: pure sodium, pure carbon, and Na,C
structures, totaling 6,183 configurations. Pure sodium systems include sodium atoms,
clusters and bulk phases. Pure carbon systems encompass four subtypes: amorphous
carbon, layered carbon (e. g. graphite and graphene), spherical carbon (e. g. fullerene)
and tubular carbon (e. g. carbon nanotube). Na,C system cover sodium concentrations
from x = 0 to 0.25, including overcharging states. Figure S1 illustrates the dataset
composition (Table S1). After training the MLP (Fig. 1), we validated the NEP against
DFT calculations. The RMSEs for energy and force are 21.6 meV/atom and 427.8
meV/A,% respectively, demonstrating close agreement with DFT values (Figs. S2a, b).
Energy calculations of various Na-C structures using the developed MLP reveal
minimal deviations (<41.8 meV/atom) from DFT references, validating the force field's
accuracy and applicability for modeling sodium storage behavior of HC anodes (Figs.

S2c¢, d).

Analysis of HC models

Following the development of the well-trained MLP, we constructed HC models (Fig.
S3). As shown in Fig. 2a, the HC model exhibits a highly disordered carbon network
with a density of 1.4 g/cm?3, well within the characteristic range of experimental HC
materials (1.2-2.0 g/cm?).>-6874 This relatively low density facilitates larger interlayer
spacing and porous structures, beneficial for sodium ion insertion and transport.>*36
Our HC model exhibits distinct defects, edge configurations, graphitic domains, and
porous architectures (Figs 2a and S4),7° The fractions of sp-, sp-, and sp3- hybridized

carbon atoms are 1.1%, 98.7%, and 0.2%, respectively. Collectively, these features
12
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1 define the intrinsic structural characteristics of HC materials. sp-hybridized>@arbozp/05sco7068r
2 concentrates at edges or defect sites, while sp3-hybridized carbon predominates in
3 interlayer cross-linking regions. The simulated XRD patterns exhibits characteristic
4  graphitic peaks at 21.22° and 43.68°, which are ascribed to the (002) and (101) planes
5  in graphitic carbon (Fig. 2b). The interlayer spacing estimated from the (002) peak from
6 XRDis 4.18 A, in agreement with experimental measurements (3.7-4.2 A).928.76.77 Ag
7 illustrated in Fig. 2c, the radial distribution function (RDF) exhibits a sharp primary
8  peak at 1.42 A7 and a secondary peak at 2.42 A, corresponding to the sp? C-C bond
9 length and the distance between carbon atoms and their second-nearest neighbors in
10  graphite, respectively, indicating the predominance of the sp>-hybridized layered
11 graphitic structures with short-range order. We extracted five-, six-, and seven-
12 membered rings from the HC structure and computed the corresponding RDF profiles
13 (Fig. S5). The RDF peaks of six-membered rings are well aligned with those of the
14 overall HC structure, demonstrating that six-membered rings constitute the dominant
15 structural motif. The RDF peaks of five-membered rings appear at 1.42 A and 2.31 A,
16  generally consistent with previous reports.”>-8! Compared to six-membered rings, the

17 next-nearest neighbor C-C distances in five-membered rings are shorter, primarily due

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

18  to compressive strain and reduced bond angles. The RDF peaks of seven-membered

19  rings appear at 1.44 A, 2.55 A, and 3.25 A, in good agreement with previous works.5!-

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

20 83 Relative to six-membered rings, the next-nearest and third-nearest neighbor distances

(cc)

21 in seven-membered rings are larger, largely owing to the larger bond angles. At
22 increasing radial distances, the RDF exhibits damped oscillations, with amplitudes
23 decaying rapidly, confirming the amorphous nature and long-range disorder of the HC

24 structure.

13


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc07068f

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

10

11

12

13

14

15

16

17

18

19

Chemical Science

Page 14 of 30

View Article Online

Intensity (a.u.)

15 25 35 45
26 (degrees)

w
1

X)
1

G

Incremental Pore Volume (cm?g)

o
1

o-

T T
Ll Ll T T T
10 15 20 0.0 0.5 10 15 20

r(A) Pore size (nm)

o

Fig. 2 Structure and characterization of the HC model. (a) Atomic structure of the HC
model, with representative local features of defect, edge, graphitic domain and
nanopore colored in dark blue, light blue, green and red, respectively. (b) XRD pattern.
(c) RDF. (d) pore size distribution of the HC model.

Pores constitute critical domains for sodium-ion storage and transport within the
HC architecture, wherein micropores primarily contribute to high sodium storage
capacity.®*-% In particular, micropores with size below 2 nm serve as the primary region
for sodium cluster filling and contribute most significantly to the overall sodium storage
capacity.’® As presented in Fig. 2d, the pore size distribution of the constructed HC
model demonstrates that all the pores are micropores (< 2 nm).3* A distinct series of
peaks is observed in the 0.3-1.5 nm range, with a dominant peak at 0.8 nm accounting
for 41.3% of the total pore volume. This micropore-dominated configuration
significantly enhances the specific surface area, increases available sites for sodium-

ion adsorption and pore filling, and improves rate capability.3*

Collectively, the constructed HC model replicates key structural attributes of
experimentally characterized HCs, including local atomic configurations, bonding
environments, interlayer distances and pore size distribution. Subsequent studies will

utilize this model to identify sodium storage sites and simulate voltage profiles.
14

b DOI: 10.1039/D5SC07068F
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1 Sodium storage site identification PO 101035/D55C07068F

2 Given that intercalation exhibits more distinct geometric features, we employed
3 structural information to preliminarily identify intercalation sites. Subsequently, the RF
4 algorithm was applied to distinguish adsorption and pore-filling sites. Before training
5  the model, 14 structural descriptors were selected, including coordination environment
6  (F1/F2: coordination number of sodium ions / carbon atoms, F3/F4: distance to the
7 nearest sodium ion/carbon atom), fitted carbon plane (F5: number of fitted carbon
8  planes, F6: maximum flatness of fitted carbon planes, F7: distance to the structure
9  formed by projecting carbon network onto fitted planes, F8: dihedral angle between
10  fitted carbon planes), and polygon information (F9-F14: numbers of 3-8-membered
11 carbon rings). Subsequently, PCA was applied to the 14 structural feature descriptors
12 to reduce the high-dimensional feature space to a three-dimensional representation
13 (detailed contribution of each feature to the three principal components are provided in
14 Table S2), thereby validating their discriminative completeness for the three types of
15  sodium site and facilitating effective separation among the site categories (Fig. S6). The
16  results revealed that the three types of storage sites form distinct clusters in the feature

17  space, demonstrating the discriminative capability of the selected descriptors for

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

18 classifying different site categories. A screening model was then developed based on

19 the RF algorithm. The ROC curve presented in Fig. S7 yielded an AUC value of 0.94

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

20  (close to 1), further confirming the robust screening performance of the 14 structural

(cc)

21 descriptors within the RF framework.

22 We first constructed the Pearson correlation matrix encompassing 14 features
23 along with the binding energy E, (relative to the energy of bulk Na). As shown in Fig.
24 3a, features F7 (-0.05), F9 (0.00), and F10 (0.04) exhibit an extremely weak correlation
25  with the binding energy. Features F1 (-0.66) and F4 (-0.14) show a negative correlation
26  with binding energy, suggesting that an increased coordination number and decreased
27  distance of surrounding sodium atoms favor a weakening of binding energy. The
28  remaining features exhibit varying degrees of positive correlation with the binding

29  energy. Additionally, few features exhibit strong correlations (value > 0.70), indicating

15
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the mutual independence of the selected features. F1 exhibits a positive correlation wvitkp/pssco7oesr

F4, while showing varying degrees of negative correlation with the remaining features.
Notably, its negative correlations with F2 and F3 are particularly strong. Generally,
considering the spatial effect, a higher number of sodium ions surrounding a central
sodium ion correlates with a relatively lower number of surrounding carbon atoms. This
will cause a relative negative correlation with the fitted plane parameters (F5-F8) and
the polygon features (F9-F14), albeit with a weak correlation strength. The remaining
correlations can be analogously explained based on spatial effects. Further analysis
reveals that F2 exhibits a greater number of strong associations with other features,
primarily because F3 through F14 all pertain to carbon-related characteristics. It is
noteworthy that the number of 5-membered rings (F11) and the number of 7-membered
rings (F13) display a significant positive correlation (0.51). This implies that, in our
simulated structures, topological defects in the form of 5|7 pairs are energetically more

stable than isolated 5-membered or 7-membered rings.?’
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Fig. 3 The feature extraction for the sodium site identification. (a) Pearson correlation
matrix of 14 features, intercalation site and the binding energy, with orange and blue
indicating positive and negative correlations, respectively. (b) SHAP summary plot of
feature importance. F1/F2: coordination number of sodium ions / carbon atoms, F3/F4:
distance to the nearest sodium ion/carbon atom, F5: number of fitted carbon planes, F6:
maximum flatness of fitted carbon planes, F7: distance to the structure formed by

projecting carbon network onto fitted planes, F8: dihedral angle between fitted carbon

16
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1 planes F9-F14: numbers of 3-8-membered carbon rings. Ey,: denotes the bindingenergypo/05sco7068F

2 I: represents the intercalation sites.

3 Subsequently, we evaluated the feature importance. As can be seen from Fig. S8,
4  the coordination environment features (F1-F4) have the most significant impact,
5  accounting for 67.3%. Specifically, the importance values are F1 (0.248), F3 (0.210),
6  and F2 (0.152). This indicates that the coordination environment, including the number
7 of atoms and their distances, has the most prominent effect. It also validates the higher
8  correlation among F1, F2, and F3 mentioned in the previous correlation analysis. The
9  next most important feature is F6 (0.101), which suggests that the irregularity of the
10  carbon surface may lead to energy-unstable structures, thereby facilitating adsorption.
11 The importance of F4 (0.063) is significantly reduced, consistent with its weak
12 correlation with the highly important F1 and F3. The importance of other features
13 related to the fitting planes and polygons is even lower, which is in line with their

14 insensitivity in distinguishing adsorption and pore filling.

15 The correlation between the 14 selected structural features and the intercalation site

16  were further analyzed. As shown in Fig. 3a, Features F2, F5, F6, F8, and F12 exhibit

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

17 pronounced correlations with intercalation sites. Among them, F2, F5, F§, and F12

18 show positive correlations. A higher carbon coordination number (F2) indicates a dense

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

19  arrangement of surrounding carbon atoms, suggesting an increased likelihood of

(cc)

20  forming honeycomb-like motifs and a higher degree of graphitization. A larger number
21 of fitted carbon planes (F5) and a smaller dihedral angle between carbon layers (F8)
22 imply a higher probability of forming interlayer spaces composed of multiple carbon
23 planes. Similarly, an increased count of six-membered rings (F12) indicates enhanced
24 graphitization, thereby promoting the formation of intercalation sites. In contrast,
25  feature F6 is negatively correlated with intercalation sites, primarily because a larger

26  flatness value indicates reduced planarity, which is unfavorable for intercalation.

27 The SHAP summary plot was generated to illustrate the association of each feature
28 with adsorption/filling identification. As shown in Fig. 3b, features F1, F3, F2, and F6

29  rank highest, indicating the greater importance of the coordination environment in
17
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distinguishing adsorption and pore-filling sites. This finding aligns with the conetusions/psscozoesr

drawn from our earlier importance assessments. Moreover, features F2, F3, F5, F6, F8,
F11, F13, and F14 exhibit positive correlations with adsorption. Increases in these
feature values could enhance the probability of sodium ions encountering defective or
edge carbon atoms. Conversely, F1 shows a positive correlation with pore-filling. This
is primarily because higher values of F1 either increase the likelihood of being
surrounded by sodium ions or reduce the probability of encountering nearby defective
carbon atoms. Notably, the SHAP dependence of features F4, F7, F10, F12 displays
weak sensitivity to its feature values, reflecting their limited relevance in
adsorption/filling identification. This observation is consistent with both our
aforementioned feature importance evaluation and correlation matrix analysis.
Regarding feature F9, SHAP values are predominantly distributed near zero, suggesting
an extremely weak correlation with adsorption/filling behavior. We speculate this
might be related to the scarcity of triangular rings in the samples due to their high energy

states.

Figure 4 presents our identification results for sodium sites at different sodiation
stages, encompassing adsorption, intercalation, and filling sites. The results
demonstrate that nearly all sites are accurately identified, achieving an identification
accuracy of 86.1% (Fig. S9). Compared to other models, this RF model outperformed
both SVM (84.2%) and clustering (78.2%), demonstrating its superior prediction
accuracy in identifying adsorption and pore-filling sites (Figs. S10 and S11).
Furthermore, the dominant insertion sites evolve as sodiation progresses. Taking
adsorption as an example, initial adsorption preferentially occurs at defect sites (Fig.
4a-1), while later in the adsorption process, it shifts towards edge sites (Fig. 4a-v). This
is consistent with the generally higher binding energy associated with defect sites.
Similarly, during intercalation and pore filling (Figs. 4b, c), we observe that as the
number of inserted sodium ions increases, clustering of sodium ions tends to occur

between the graphite layers and within the filled regions. This clustering phenomenon

18
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1 also contributes to a reduction in the sodium-carbon binding energy as sodiatiop/D5sC07068F

2 progresses.

K55 o
T W W

i ii iii

C"".ﬁ": f?"‘ ‘;f.‘ .:.. e:

iii iv v

4  Fig. 4 The site identification of inserted sodium ion. Illustration of the local
5 environments of sodium atoms within a cutoff radius of 5.0 A in our HC structure: (a)

6  adsorption sites. (b) intercalation sites. (c) pore-filling sites.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

7 Voltage profile simulation

8  Subsequently, we simulated the voltage profile during the stepwise insertion of sodium

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

9 ions. The calculation formula is as follows:%8

(cc)

_ 1Ef(x2)—Ef(x1)
e Xp—Xq

10 V= (1)
11 where e is the elementary charge, x; and x, represent the number of inserted sodium
12 ions before and after insertion, respectively. Efx,) and E(x;) denote the formation
13 energies corresponding to the inserted x; and x; sodium ions, defined by:

14 E¢(x) = Euc—xNa — Enc —xEna(bulk) (2)
15 where Eyc.anas Enc, Ena(bulk) correspond to the total energy of the HC structure with x

16  inserted sodium ions, the energy of HC structure and the energy of a sodium atom in

17 the bulk phase, respectively. In our simulation, we chose x,-x;=1.

19
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Figure 5 presents the simulated voltage profile. By Integrating the RF-basedosite/pssco7ossr

identification model, the insertion sites were classified and the voltage contribution
from each site type were quantitatively determined via fitting analysis. During the initial
sodiation stage (N < 11), sodium ions exclusively occupied adsorption sites (blue
curve in Fig. 5 and S12a). The sodium atoms were predominantly located at surface
topological defects, such as five- and seven-membered rings and edge sites, forming 4-
6 coordination bonds with neighboring carbon atoms (bond length: 2.3-2.6 A) and
exhibiting a high binding energy (> 1.08 eV). Corresponding XRD simulation
demonstrates an invariant interlayer spacing of 4.18 A (Fig. S13), which unequivocally
confirms the absence of intercalated sodium. At this adsorption only stage, the voltage
precipitously drops from 3.37 eV to 1.08 eV (dV/dN = -0.20 V/Na). As sodiation
progressed (12 <N < 327), sodium ions progressively populated intercalation sites
while initiating pore-filling occupation (green curve in Fig. 5 and S12b). XRD analysis
reveals a pronounced shift of the (002) peak toward larger angles, indicating interlayer
expansion from 4.18 A to 4.23 A (Fig. S13), which directly confirms the contribution
of intercalation. Each sodium atom is coordinated by 10-15 nearest-neighbor carbon
atoms, with Na-C distances ranging from 2.4 A to 3.5 A. The number of neighboring
sodium atoms continues to increase from 0.27 to 1.57. Voltage declined from 1.08 eV
to 0.10 eV with a moderated slope (dV//dN = -0.03 V/Na). Site population showed an
intercalation and adsorption stage (57.6%), supplemented by adsorption (32.6%) and
pore filling (9.81%), characteristic of the intercalation-governed regime. Upon deeper
sodiation (328 < N < 585), the system enters a characteristic plateau region with
negligible voltage decay (dV/dN = -0.004 V/Na). At this stage, sodium atoms
predominantly aggregate to form clusters within the pores. Initially, the coordination
number of neighboring sodium atoms is 1.57, which increases markedly to 3.30 as the
filling progresses, indicative of sodium clustering. Further analysis shows that the
spatial distribution of sodium atoms within nanopores is strongly influenced by pore
size and pore wall structure: in micropores with smooth, graphite-like walls, sodium
atoms tend to form small clusters comprising 3-5 atoms; whereas in mesopores with

diameters of 1-2 nm and defective pore walls, the cluster sizes are larger, typically
20
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1 consisting of 5-8 sodium atoms. Despite progressive interlayer expansion (48% 1Aicsp/Ds5sc07068F
2 N=585) (Fig. S13), pore filling emerges as the dominant contributor to sodium storage
3 capacity (60.1%), surpassing intercalation (33.9%) and adsorption (6.1%) (red line in
4 Figs 5 and S12¢). Our analysis explicitly resolves three distinct regimes: adsorption
5 only (steep slope), intercalation and adsorption (moderate slope), pore-filling
6 dominated (plateau), reproducing the experimentally reported "adsorption-
7 intercalation-filling" mechanism.’* At full sodiation (N = 585), the specific capacity
8  reached 261.3 mAh/gat 0 V, with intercalation contributing the largest fraction (46.2%),
9 exceeding the contributions from pore filling (31.4%) and adsorption (22.4%),
10  indicative of a relatively high degree of graphitization in the HC model. Unlike most
11 experimentally synthesized HCs, which are prepared via targeted design strategies such
12 as activation to generate abundant micropores, heteroatom doping, or controlling the
13 degree of graphitization to balance interlayer spacing and defect density, our model
14 utilizes a pristine, impurity-free carbon framework with relatively ordered layer
15  stacking. This structural characteristic facilitates sodium intercalation but limits
16  contributions from surface adsorption and pore filling, resulting in a lower total capacity

17 compared to structurally engineered, high-capacity HCs. The capacity may be further

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

18  enhanced by future tuning the HC microstructure. Through such microstructural

19  optimization, a deeper understanding of alternative sodium storage mechanisms might

Open Access Article. Published on 09 January 2026. Downloaded on 1/10/2026 9:58:46 AM.

20  be achieved, enabling the elucidation of correlations between HC structural features

(cc)

21 and performance such as sodium diffusion and cycling stability.

22 It should be noted that a stage in which a particular type of site is dominant merely
23 indicates that the proportion of that site type is the highest among the three site
24 categories within that specific stage (Table S3); it does not imply that the proportion of
25  this site type reaches its overall maximum in that stage across the entire sodiation
26  process. For instance, among adsorption sites, only 8.5% are present in the adsorption
27  only stage, 79.2% in the intercalation and adsorption stage, and 12.3% in the pore-
28  filling dominated stage.; for intercalation sites, 67.4% are in the intercalation and

29  adsorption stage, while 32.6% are in the filling-dominated stage.

21
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Fig. 5 The voltage profile during the gradual sodiation of our HC model. The fitted
curves for the adsorption only, intercalation and adsorption and pore-filling dominated

stages are colored in blue, green and red, respectively.

Finally, the overcharging process was explicitly considered. Upon voltage descent
to 0 V (N > 588), overcharging behavior occurs on the HC anode. During this stage
(grey line in Fig. 5), inserted sodium ions predominantly populate pore-filling (51.0%)
and intercalation (47.8%) sites (Figs S12d, S13). XRD simulations reveal a further
increased average interlayer spacing (4.56 A), confirming partial sodium retention in
intercalated configurations (Fig. S13). At overcharging stage, the HC structure does not
induce slippage or delamination of the graphitic layers, and the nanopore structure is
largely preserved (Figs. S14a, b), with pore sizes predominantly ranging from 0.3 to
1.5 nm (Fig. S14c). Notably, the mean shortest Na-Na distance is 3.65 A, markedly
smaller than that observed during the charging stage (4.59 A) and even shorter than the
Na-Na bond length in bulk sodium (Fig. S14d). This observation suggests that, on one
hand, the intercalation process intensifies the electrostatic repulsion among inserted
sodium ions, thereby introducing an energy penalty that manifests as negative voltage;®’
on the other hand, Na aggregation occurs under overcharging, forming sodium clusters

coordinated with 5.67 sodium atoms, indicative of the initial nucleation of sodium

22
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1 dendrites. Further investigation by tuning the structural features of HC couldfsrovide/pssco7ossr
2 deeper insight into overcharge behavior, offering theoretical guidance for the rational

3 design of safer HC anodes.

4 Conclusion

5  This study provides an in-depth investigation of the sodium storage mechanism in HC
6 for SIBs by synergistically integrating MLP with RF-based site identification
7 methodologies. Leveraging the well-trained MLP, we have successfully constructed an
8  atomistically accurate HC model that faithfully reproduces the structural features
9  observed experimentally. Utilizing our site identification approach, we simulated the
10  atom-by-atom voltage profile during sodiation and deconvoluted the respective
11 contributions of adsorption, intercalation, and pore-filling sites to sodium storage.
12 Furthermore, overcharging simulations reveal that the formation of sodium clusters
13 constitutes a critical factor driving dendrite growth and associated safety concerns. Our
14 works verifies that MLP is a powerful and versatile tool for building HC structures and
15 studying the surface/interface evolution and the sodium storage mechanism not only in

16  HC but also extendable to other SIB electrode materials, opening new avenues for the

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

17 rational design of high-performance SIB components.
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