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12 Abstract
13 Hard carbon (HC) has attracted considerable interest as a promising anode material for 

14 sodium-ion batteries (SIBs) due to its high specific capacity, excellent cycling stability, 

15 and cost-effectiveness. Nevertheless, the sodium storage mechanism in HC remains 

16 poorly understood owing to challenges in precisely characterizing its structural disorder, 

17 complexity, and intricate interatomic interactions. In this work, we investigate sodium 

18 storage behavior in HC anodes using a machine learning potential (MLP) integrated 

19 with a random forest-based sodium insertion site identification framework. The trained 

20 MLP accurately captures both the structural features of HC and the sodium insertion 

21 behavior. HC comprises an amorphous network of defects, edges, graphitic domains, 

22 and nanopores, primarily interconnected through sp/sp2/sp3-hybridized carbon bonds. 

23 For the first time, we simulate the continuous voltage profile associated with the 

24 stepwise sodium insertion during both the charging and overcharging states. This 

25 voltage profile reproduces experimental observations and disentangles the 

26 contributions of adsorption, intercalation, and pore filling, offering a pathway to 

27 elucidate the storage mechanisms across different systems and rationalize the 

28 discrepancies observed in experiments. During the overcharging stage, excessively 
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1 short Na-Na distances enhance repulsion, leading to negative voltages. Besides, the 

2 formation of sodium clusters was observed, which poses a safety risk to the battery. 

3 Our findings demonstrate that machine learning-based simulations constitute a 

4 powerful and emerging approach for investigating sodium storage mechanisms and 

5 offer valuable guidance for the experimental optimization of HC anodes. Moreover, 

6 this strategy can be extended to other electrodes, electrolytes in SIBs, and even 

7 alternative battery systems.

8 Introduction
9 Sodium-ion batteries (SIBs) have emerged as a promising rechargeable battery 

10 technology for large-scale energy storage, owing to sodium’s natural abundance and 

11 cost-effectiveness.1-10 Among anode candidates for SIBs, hard carbon (HC) 

12 demonstrates compelling advantages including low cost, environmental benignity, and 

13 tunable microstructures, establishing its viability for commercial deployment.11-19 

14 Nevertheless, the atomic-scale sodium storage mechanism in HC remains incompletely 

15 resolved, stemming from its intricate yet disordered architecture featuring abundant 

16 defects, edges, curved graphene domains, and hierarchical porosity.2,4 These structural 

17 characteristics induce complex C-C and Na-C interactions that collectively govern ion 

18 adsorption, intercalation, and pore-filling processes.20-25

19 The sodium storage mechanism in HC has been debated for decades, with 

20 competing models proposed to rationalize the characteristic voltage profile featuring a 

21 sloping region (> 0.1 V) and a plateau region (< 0.1 V).4,6,26-29 The "intercalation-

22 filling" model proposed by Stevens and Dahn posits that sodium storage occurs via 

23 interlayer intercalation and nanopores filling.3 Interlayer intercalation provides a stable 

24 contribution to capacity but is constrained by the intrinsic layer spacing of HC; 

25 excessive intercalation may damage the layered structure and compromise cycling 

26 stability. In contrast, nanopore filling is the primary source of high capacity in HC, with 

27 the pore size and distribution directly determining the upper limit of filling capacity. If 

28 the pore size is too small, the transport of sodium ions is hindered, ultimately reducing 

29 the rate capability of the material. Cyclic voltammetry profiles reported by Cao et al. 
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1 revealed an additional pair of redox peaks distinct from those in lithium-based systems, 

2 suggesting an "adsorption-intercalation" mechanism.30 Mitlin et al. observed voltage-

3 dependent interlayer expansion via X-ray diffraction (XRD), furthering corroborating 

4 the intercalation process.31 Furthermore, Li et al. correlated sodium capacity with 

5 tunable interlayer spacing achieved via heteroatom doping, reinforcing the role of 

6 intercalation in sodium storage.32 The adsorption process primarily occurs at defect 

7 sites and edges on the HC surface, which can rapidly accommodate sodium ions and 

8 significantly enhance rate performance. However, adsorption capacity is limited by the 

9 specific surface area, and excessive defects may reduce electrical conductivity. 

10 Interlayer intercalation contributes to maintaining structural stability, and the synergy 

11 between the two processes enables a balanced performance between high rate capability 

12 and long cycle life. Nevertheless, this mechanism does not account for the capacity 

13 contribution of pore structures and could hardly explain the origin of capacity in the 

14 low-potential region. Li et al. detected no interlayer spacing change during sodiation 

15 via high-resolution transmission electron microscopy (HRTEM) while identifying 

16 metallic sodium signatures in the plateau region through X-ray photoelectron 

17 spectroscopy (XPS), supporting an "adsorption-filling" mechanism.33 The high activity 

18 of adsorption sites enhances the adsorption kinetics of sodium ions, while pore filling 

19 compensates for the limited adsorption capacity. However, because interlayer 

20 intercalation is not involved, structural stability depends on the rigidity of the pore 

21 framework; pore collapse during long-term cycling can lead to rapid capacity decay. 

22 Recently, small and wide-angle X-ray scattering (SAXS/WAXS) analyses by Yamada 

23 et al. revealed concurrent interlayer expansion and pore filling, proposing a unified 

24 "adsorption-intercalation-filling" mechanism.34 In this mechanism, adsorption ensures 

25 high-rate performance, intercalation maintains structural stability, and filling increases 

26 total capacity. However, this mechanism previously lacked direct atomic-scale 

27 evidence, and the dynamic evolution of the three processes during sodium insertion 

28 remained unclear, making it difficult to accurately guide structural optimization of HC 

29 materials. Despite these advances, the persistence of these controversies stems from the 

30 lack of effective atomic-scale methods to capture sodium storage processes. A 
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1 comprehensive atomic-scale framework linking voltage profile characteristics, sodium 

2 storage mechanisms, and microstructure engineering remains elusive, hindering the 

3 rational design of advanced HC anode.35-40

4 Atomic-scale investigations of the sodium storage mechanism in HC primarily rely 

5 on experimental characterization and theoretical simulations, both of which have made 

6 significant progress. Experimentally, Grey et al. employed operando 23Na solid-state 

7 nuclear magnetic resonance (ssNMR) combined with pair distribution function (PDF) 

8 analysis to reveal the formation of sodium clusters within closed pores during the low-

9 voltage plateau region.41 Chisholm et al. utilized aberration-corrected transmission 

10 electron microscopy (TEM) to identify pentagonal and heptagonal ring defects in 

11 curved graphene sheets and elucidated their role in inducing nanopore formation. 

12 Fujiwara et al. further confirmed, via ex-situ XRD and Raman spectroscopy, the 

13 reversible expansion and contraction of graphene interlayer spacing induced by Na 

14 intercalation and deintercalation. However, current experimental characterization 

15 techniques generally can hardly achieve atomic-level resolution, and most methods are 

16 challenging to implement under operando conditions, limiting the ability to capture the 

17 dynamic sodium storage process under realistic conditions.42 On the theoretical side, 

18 Youn et al. employed density functional theory (DFT) calculations to evaluate the 

19 energetic favorability of AA-stacked graphite domains for Na intercalation and the 

20 stability of Na4 clusters on defective graphene.43 Hoster et al. applied entropy profiling 

21 and molecular dynamics (MD) simulations, concluding that sodium deposition on pore 

22 walls is thermodynamically more favorable than pore interior filling, with the Na 

23 binding energy dependent on pore size.44 Liu et al. further demonstrated through DFT 

24 calculations that the energy barrier for Na intercalation decreases significantly when 

25 the graphene interlayer spacing exceeds 3.7 Å.30,45 While first-principles calculations 

26 provide high accuracy, they are inherently limited by system size, making large-scale 

27 simulations computationally challenging. Classical MD simulations can achieve large-

28 scale modeling, but their accuracy is relatively lower, and the results often deviate from 

29 experimental observations. Consequently, theoretical simulations remain constrained 
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1 by the difficulty of simultaneously achieving high accuracy and large spatiotemporal 

2 scales.

3 Recently, machine learning (ML) methods have been increasingly applied across 

4 various research fields and hold great potential for investigating the sodium storage 

5 mechanisms in HC.46-48 On one hand, ML models can rapidly establish quantitative 

6 relationships between structural features and electrochemical performance in HC, 

7 thereby uncovering intrinsic correlations.48-51 On the other hand, ML potentials (MLPs), 

8 trained on first-principles calculation data as reference, enable high-accuracy 

9 simulations, and MLP-based MD simulations facilitate large-scale modeling.52-54 Such 

10 simulations can more comprehensively account for experimental factors, offering a 

11 promising approach for in-depth elucidation of the microscopic mechanisms underlying 

12 sodium storage.

13 Herein, we develop an MLP integrated with a random forest (RF)-based site 

14 identification algorithm as a robust platform for investigating the intrinsic sodium 

15 storage mechanism in HC.55-59 A curated dataset encompassing diverse atomic 

16 configurations of sodium, carbon, and sodium-carbon systems was constructed. 

17 Leveraging this dataset, we trained an MLP capable of accurately capturing the 

18 complex interatomic interactions within the Na-HC systems. Implementation of an RF 

19 classifier enabled accurate identification and categorization of sodium storage sites into 

20 adsorption, intercalation, and pore-filling types. By synergistically combining the MLP 

21 with site identification, we investigated the sodium storage process in HC and simulated 

22 the voltage profile under stepwise, atom-by-atom sodium insertion. The simulation 

23 results distinctly resolve the contributions of different site types to voltage and capacity 

24 at each stage. This study provides a powerful methodological framework for probing 

25 microscopic sodium storage mechanisms and links atomic-scale sodium behavior with 

26 macroscopic electrochemical performance, contributing to resolving long-standing 

27 mechanistic controversies surrounding HC anode in SIBs and laying a theoretical 

28 foundation for understanding sodium storage, diffusion processes and the rational 

29 design of high-performance HC anodes.
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1 Methods

2 MLP training

3 The workflow for MLP training is illustrated in Fig. 1. The main training process will 

4 be explained in detail below.

5 Initial structures collection: to develop a high-accuracy MLP, a high-quality dataset 

6 with structural diversity and completeness is required. Existing bulk and surface 

7 structures were first collected, and simple models including sodium, carbon, and 

8 sodium-carbon systems were constructed to serve as initial structures.

9 Ab initio MD (AIMD) simulations and structural perturbations: AIMD simulations 

10 and structural perturbations are the main methods to enrich the initial structures. AIMD 

11 was performed on the initial structures, with intentional lattice distortions introduced to 

12 enhance structural diversity. Temperature was controlled with a Nosé-Hoover 

13 thermostat.60 Comprehensive sampling of sodium insertion configurations including 

14 adsorption, intercalation, and pore filling, was conducted across a wide range of 

15 temperatures (200-5000 K) and pressure (0-5 GPa).52

16 Initial dataset: first-principles self-consistent (SC) calculations were carried out using 

17 the Projector augmented wave (PAW) method within the Vienna Ab initio Simulation 

18 Package (VASP) for all initial structures.61 The Perdew-Burke-Ernzerhof (PBE) 

19 functional was employed for electronic exchange-correlation,62 with long-range van der 

20 Waals interactions corrected using the DFT-D3 method.63 A plane-wave energy cutoff 

21 of 500 eV and k-point spacing of 0.03 Å-1 were adopted.64 The above methods, 

22 functionals, and parameters ensure the accuracy of the SC results and the subsequent 

23 MLP training. Structures, energies and forces from SC calculations comprise the initial 

24 datasets.

25 MLP pre-training: the initial dataset was first subjected to principal component 

26 analysis (PCA), and then split into training and test sets at a ratio of 9:1. The 

27 neuroevolution potential (NEP) framework, a type of MLP optimized via 

28 neuroevolution algorithms, was employed. Its key advantage lies in dynamically 
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1 refining the neural network architecture, enabling accurate representation of complex 

2 interatomic interactions while maintaining computational efficiency.59 NEP training 

3 was performed using the Graphics Processing Units Molecular Dynamics (GPUMD) 

4 package,59 with four models trained concurrently using identical hyperparameters 

5 which are the framework parameters set prior to training, including the number of 

6 neural network layers set as 3, training steps set as 4×105, and number of neurons set 

7 as 100 and the cutoff radius set as 7.0 Å, which were tuned to prevent underfitting or 

8 overfitting. 

9 MLP testing: The loss function measures the deviation between MLP-predicted and 

10 DFT references values and serves as a core metric to test the accuracy of trained MLP. 

11 The objective of training is to minimize the loss function. In this work, root-mean-

12 square error (RMSE) was used as the loss function, with weights for energy, force, and 

13 virial set to λₑ = 1.0, λf = 1.0, and λv = 0.1. Smaller RMSE indicates higher accuracy of 

14 the trained MLP. The performance of the MLP model was further evaluated via RMSEs 

15 in its predictions of energy, force, and virial.

16 Supplementary data by pre-trained MLP MD simulations: Typically pre-trained 

17 MLP or MLP trained once cannot achieve the required accuracy. Therefore, it is 

18 necessary to supplement the initial dataset by generating extended structures. In this 

19 work, the extended structures were generated using the Large-scale Atomic/Molecular 

20 Massively Parallel Simulator (LAMMPS),65 a high-efficiency classical MD simulation 

21 package based on the pre-trained MLP, to reduce the computational cost of AIMD 

22 simulations. Supplementary datasets were processed using an active learning workflow 

23 implemented in the GPUMD package,58 which efficiently explores previously 

24 uncharted configuration spaces. To avoid redundant data and ensure structural diversity, 

25 structures exhibiting significant force deviations were filtered, and representative 

26 configurations were selected via principal component analysis (PCA)—a common 

27 method to determine the correlation between the newly generated structures and those 

28 in the initial dataset.66 For all the selected structures, DFT SC calculations were 

29 performed following the above methods and parameters to obtain energies, atomic 
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1 forces and virial, constituting fundamental data components to supplement the initial 

2 dataset.

3 MLP re-training: After enriching the dataset, the MLP was re-trained and its accuracy 

4 evaluated through testing. If the accuracy converged, the MLP training was considered 

5 complete; otherwise, the workflow returned to "MD simulations via trained MLP" step, 

6 incorporating representative data into the dataset, and re-training the MLP. This process 

7 was repeated until the desired level of accuracy was achieved.

8  

9 Fig. 1 The workflow for the MLP training.

10 Initial construction of HC model

11 The initial HC structures were generated using the trained NEP model. Specially, 5000 

12 carbon atoms were randomly distributed within a 41.4×41.4×41.4 Å3 simulation box, 

13 followed by high-temperature NVT MD simulation at 4000 K for 4 ps. To capture the 

14 structural evolution of HC during the annealing process and to obtain representative 

15 models for subsequent studies, the configurations corresponding to 1 ps, 2 ps, and 4 ps 

16 of the annealing process were selected.

17 HC model construction with sodium insertion

18 Having established the stable HC models, we next investigated sodium insertion 

19 behavior within this structural framework. A three-step screening procedure was then 

20 employed to identify optimal sodium insertion sites: (i) spatial screening: potential sites 

21 were identified under spatial constraints (minimum Na-Na distance: 3.0 Å; minimum 

22 Na-C distance: 2.0 Å) to mitigate strong Coulombic repulsion, generating an initial 

23 candidate list; (ii) SC calculation screening: SC calculations using the trained MLP 

24 were performed on candidates by traversing the sodium insertion list, selecting the 50 
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1 configurations with lowest energies; (iii) geometry optimization screening: the selected 

2 configurations underwent minimization via the conjugate gradient (CG) algorithm to 

3 determine global energy minima. This procedure was iterated until all candidate sites 

4 in the list were evaluated. To simulate the overcharging behavior, 1,000 sodium atoms 

5 were inserted into the HC model (Na/C ratio = 1:5), corresponding to a theoretical 

6 capacity of 446.7 mA·h·g-1.

7 Sodium site identification

8 Following determination of optimal sodium insertion sites via the aforementioned 

9 screening procedure, we performed a systematic classification of these sites to elucidate 

10 their structural characteristics and the corresponding sodium storage mechanisms. 

11 Sodium insertion site identification can be accomplished through a two-step protocol: 

12 potential intercalation sites were first identified via geometric analysis of sodium and 

13 carbon atomic arrangements. Adsorption and pore-filling sites were subsequently 

14 distinguished using a ML classifier.44 For each target sodium atom, the local carbon 

15 environment within a 5.0 Å radius was analyzed. Intercalation site identification 

16 requires: (i) presence of at least two carbon networks, each comprising a minimum of 

17 eight carbon atoms around the sodium atom; (ii) sufficient planarity of fitted carbon 

18 planes (the root mean square deviation of the carbon atomic position from the fitted 

19 plane is less than 0.35 Å in this study); (iii) dihedral angle between the fitted planes 

20 within defined ranges (＜35° or ＞ 145°)；(iv) location of the sodium atom within the 

21 projection area of each carbon network onto its fitted plane.

22 ML algorithms chosen for site identification

23 To achieve accurate and comprehensive identification of sodium insertion sites in HC, 

24 we employed several ML algorithms commonly used for classification, including RF, 

25 support vector machine (SVM), and clustering, as detailed below:

26 RF: a supervised learning model composed of multiple decision trees, offering strong 

27 resistance to overfitting and exhibiting high classification accuracy when capturing 

28 complex correlations between structural features and site types.
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10

1 SVM: a supervised learning method that constructs an optimal classification 

2 hyperplane in high-dimensional feature space. By maximizing the margin, it enables 

3 accurate discrimination among different categories of sodium insertion sites. 

4 Clustering: an unsupervised learning approach that automatically partitions sodium 

5 sites into distinct groups based on structural feature similarity, without the need for 

6 labeled samples.

7 ML models training for site identification

8 The algorithms were subsequently applied to discriminate adsorption sites from pore-

9 filling sites. To construct the dataset, the HC models corresponding to 1 ps and 4 ps 

10 were selected, and sodium atoms were incrementally inserted into these models 

11 following the procedure described above. Thus, we obtained a total of 2,000 data points 

12 by inserting 1,000 sodium atoms into each of the two HC models. For each inserted 

13 sodium atom, local atomic environment (within 5.0 Å of each sodium atom) and 

14 corresponding binding energies (referenced to bulk sodium) were extracted. 0.1 eV is 

15 a commonly used threshold in experiments to distinguish the sloping region from the 

16 plateau region.4,6,26-29 The sloping region indicates stronger interactions between 

17 sodium and the HC anode, mainly contributed by adsorption and intercalation sites, 

18 whereas the plateau region reflects weaker interactions, primarily due to intercalation 

19 and pore-filling sites. Since we have already screened intercalation sites using 

20 geometric criteria, 0.1 eV can serve as a cutoff to further distinguish adsorption sites 

21 from pore-filling sites, i. e., sites with binding energy ＞ 0.1 eV were designated as 

22 adsorption sites, while those ＜  0.1 eV were classified as pore-filling sites.4,6,26-29 

23 Fourteen structural features were extracted, including the number of sodium and carbon 

24 atoms. PCA was used to evaluate the effectiveness of these features. The ML classifier 

25 was trained to establish feature-site correlations, with the optimized model ultimately 

26 categorizing sodium sites as adsorption or pore-filling types. The dataset was split into 

27 training and test sets using a ratio of 4:1, followed by model training and evaluation 

28 based on aforementioned RF, SVM and Clustering algorithms.
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11

1 Analyses of ML models 

2 To quantitatively evaluate the classification performance of the the ML models, we 

3 performed the following analyses:

4 Feature importance evaluation: Features were ranked according to their importance 

5 derived from the RF model. Top-ranked features are considered the most influential for 

6 predictions, whereas lower-ranked features contribute less. Feature importance is a core 

7 metric for measuring the degree of influence of each structural feature on the model's 

8 classification results. A higher value indicates that the feature plays a more critical role 

9 in distinguishing between different types of sodium storage sites. It helps us quickly 

10 identify the key structural parameters that determine sodium storage behavior.

11 Pearson correlation: a measure that quantifies the strength and direction of the linear 

12 relationship between two variables. Its correlation coefficient ranges from -1 to 1. The 

13 closer the coefficient is to 1 or -1, the stronger the linear correlation between the two 

14 variables; a coefficient close to 0 indicates that there is almost no linear correlation 

15 between them. In this study, it is mainly used to quantify the strength of the correlation 

16 between the 14 selected structural features and the types of sodium storage sites.

17 Receiver operating characteristic (ROC): a widely adopted metric for evaluating the 

18 performance of binary classification models. In this study, the binary classification task 

19 corresponds to distinguishing absorption sites from pore-filling sites. The area under 

20 the ROC curve (AUC) obtained was employed as a key quantitative measure to assess 

21 the discriminative power of the model in differentiating these two types of sodium 

22 storage sites. 

23 Shapley Additive exPlanations (SHAP) summary plot: in the SHAP summary plot, 

24 the horizontal axis represents the SHAP value, indicating both the direction and 

25 magnitude of a feature’s contribution to the prediction. A positive SHAP value 

26 (SHAP > 0) denotes a positive contribution of the feature to the prediction, whereas a 

27 negative value (SHAP < 0) indicates a negative contribution. The absolute value reflects 

28 the strength of the impact. The color of each point corresponds to the feature value for 

29 the given sample, with red indicating high values and blue indicating low values. We 
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12

1 employed SHAP to interpret the RF model, thereby quantitatively analyzing the 

2 direction and magnitude of each structural feature's contribution to site classification, 

3 while providing a visual representation of feature importance and the potential 

4 correlation with sodium storage behavior.

5 Results and discussion

6 Construction of the MLP model

7 The dataset comprises three structural categories: pure sodium, pure carbon, and NaxC 

8 structures, totaling 6,183 configurations. Pure sodium systems include sodium atoms, 

9 clusters and bulk phases. Pure carbon systems encompass four subtypes: amorphous 

10 carbon, layered carbon (e. g. graphite and graphene), spherical carbon (e. g. fullerene) 

11 and tubular carbon (e. g. carbon nanotube). NaxC system cover sodium concentrations 

12 from x = 0 to 0.25, including overcharging states. Figure S1 illustrates the dataset 

13 composition (Table S1). After training the MLP (Fig. 1), we validated the NEP against 

14 DFT calculations. The RMSEs for energy and force are 21.6 meV/atom and 427.8 

15 meV/Å,67 respectively, demonstrating close agreement with DFT values (Figs. S2a, b). 

16 Energy calculations of various Na-C structures using the developed MLP reveal 

17 minimal deviations (< 41.8 meV/atom) from DFT references, validating the force field's 

18 accuracy and applicability for modeling sodium storage behavior of HC anodes (Figs. 

19 S2c, d).

20 Analysis of HC models

21 Following the development of the well-trained MLP, we constructed HC models (Fig. 

22 S3). As shown in Fig. 2a, the HC model exhibits a highly disordered carbon network 

23 with a density of 1.4 g/cm3, well within the characteristic range of experimental HC 

24 materials (1.2-2.0 g/cm3).9,68-74 This relatively low density facilitates larger interlayer 

25 spacing and porous structures, beneficial for sodium ion insertion and transport.54-56 

26 Our HC model exhibits distinct defects, edge configurations, graphitic domains, and 

27 porous architectures (Figs 2a and S4),75 The fractions of sp-, sp2-, and sp3- hybridized 

28 carbon atoms are 1.1%, 98.7%, and 0.2%, respectively. Collectively, these features 
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13

1 define the intrinsic structural characteristics of HC materials. sp-hybridized carbon 

2 concentrates at edges or defect sites, while sp3-hybridized carbon predominates in 

3 interlayer cross-linking regions. The simulated XRD patterns exhibits characteristic 

4 graphitic peaks at 21.22° and 43.68°, which are ascribed to the (002) and (101) planes 

5 in graphitic carbon (Fig. 2b). The interlayer spacing estimated from the (002) peak from 

6 XRD is 4.18 Å, in agreement with experimental measurements (3.7-4.2 Å).9,28,76,77 As 

7 illustrated in Fig. 2c, the radial distribution function (RDF) exhibits a sharp primary 

8 peak at 1.42 Å,78,79 and a secondary peak at 2.42 Å, corresponding to the sp2 C-C bond 

9 length and the distance between carbon atoms and their second-nearest neighbors in 

10 graphite, respectively, indicating the predominance of the sp2-hybridized layered 

11 graphitic structures with short-range order. We extracted five-, six-, and seven-

12 membered rings from the HC structure and computed the corresponding RDF profiles 

13 (Fig. S5). The RDF peaks of six-membered rings are well aligned with those of the 

14 overall HC structure, demonstrating that six-membered rings constitute the dominant 

15 structural motif. The RDF peaks of five-membered rings appear at 1.42 Å and 2.31 Å, 

16 generally consistent with previous reports.79-81 Compared to six-membered rings, the 

17 next-nearest neighbor C-C distances in five-membered rings are shorter, primarily due 

18 to compressive strain and reduced bond angles. The RDF peaks of seven-membered 

19 rings appear at 1.44 Å, 2.55 Å, and 3.25 Å, in good agreement with previous works.81-

20 83 Relative to six-membered rings, the next-nearest and third-nearest neighbor distances 

21 in seven-membered rings are larger, largely owing to the larger bond angles. At 

22 increasing radial distances, the RDF exhibits damped oscillations, with amplitudes 

23 decaying rapidly, confirming the amorphous nature and long-range disorder of the HC 

24 structure.  
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1

2 Fig. 2 Structure and characterization of the HC model. (a) Atomic structure of the HC 

3 model, with representative local features of defect, edge, graphitic domain and 

4 nanopore colored in dark blue, light blue, green and red, respectively. (b) XRD pattern. 

5 (c) RDF. (d) pore size distribution of the HC model.

6 Pores constitute critical domains for sodium-ion storage and transport within the 

7 HC architecture, wherein micropores primarily contribute to high sodium storage 

8 capacity.84-86 In particular, micropores with size below 2 nm serve as the primary region 

9 for sodium cluster filling and contribute most significantly to the overall sodium storage 

10 capacity.86 As presented in Fig. 2d, the pore size distribution of the constructed HC 

11 model demonstrates that all the pores are micropores (< 2 nm).84 A distinct series of 

12 peaks is observed in the 0.3-1.5 nm range, with a dominant peak at 0.8 nm accounting 

13 for 41.3% of the total pore volume. This micropore-dominated configuration 

14 significantly enhances the specific surface area, increases available sites for sodium-

15 ion adsorption and pore filling, and improves rate capability.84

16 Collectively, the constructed HC model replicates key structural attributes of 

17 experimentally characterized HCs, including local atomic configurations, bonding 

18 environments, interlayer distances and pore size distribution. Subsequent studies will 

19 utilize this model to identify sodium storage sites and simulate voltage profiles.
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1 Sodium storage site identification

2 Given that intercalation exhibits more distinct geometric features, we employed 

3 structural information to preliminarily identify intercalation sites. Subsequently, the RF 

4 algorithm was applied to distinguish adsorption and pore-filling sites. Before training 

5 the model, 14 structural descriptors were selected, including coordination environment 

6 (F1/F2: coordination number of sodium ions / carbon atoms, F3/F4: distance to the 

7 nearest sodium ion/carbon atom), fitted carbon plane (F5: number of fitted carbon 

8 planes, F6: maximum flatness of fitted carbon planes, F7: distance to the structure 

9 formed by projecting carbon network onto fitted planes, F8: dihedral angle between 

10 fitted carbon planes), and polygon information (F9-F14: numbers of 3-8-membered 

11 carbon rings). Subsequently, PCA was applied to the 14 structural feature descriptors 

12 to reduce the high-dimensional feature space to a three-dimensional representation 

13 (detailed contribution of each feature to the three principal components are provided in 

14 Table S2), thereby validating their discriminative completeness for the three types of 

15 sodium site and facilitating effective separation among the site categories (Fig. S6). The 

16 results revealed that the three types of storage sites form distinct clusters in the feature 

17 space, demonstrating the discriminative capability of the selected descriptors for 

18 classifying different site categories. A screening model was then developed based on 

19 the RF algorithm. The ROC curve presented in Fig. S7 yielded an AUC value of 0.94 

20 (close to 1), further confirming the robust screening performance of the 14 structural 

21 descriptors within the RF framework.

22 We first constructed the Pearson correlation matrix encompassing 14 features 

23 along with the binding energy Eb (relative to the energy of bulk Na). As shown in Fig. 

24 3a, features F7 (-0.05), F9 (0.00), and F10 (0.04) exhibit an extremely weak correlation 

25 with the binding energy. Features F1 (-0.66) and F4 (-0.14) show a negative correlation 

26 with binding energy, suggesting that an increased coordination number and decreased 

27 distance of surrounding sodium atoms favor a weakening of binding energy. The 

28 remaining features exhibit varying degrees of positive correlation with the binding 

29 energy. Additionally, few features exhibit strong correlations (value > 0.70), indicating 
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1 the mutual independence of the selected features. F1 exhibits a positive correlation with 

2 F4, while showing varying degrees of negative correlation with the remaining features. 

3 Notably, its negative correlations with F2 and F3 are particularly strong. Generally, 

4 considering the spatial effect, a higher number of sodium ions surrounding a central 

5 sodium ion correlates with a relatively lower number of surrounding carbon atoms. This 

6 will cause a relative negative correlation with the fitted plane parameters (F5-F8) and 

7 the polygon features (F9-F14), albeit with a weak correlation strength. The remaining 

8 correlations can be analogously explained based on spatial effects. Further analysis 

9 reveals that F2 exhibits a greater number of strong associations with other features, 

10 primarily because F3 through F14 all pertain to carbon-related characteristics. It is 

11 noteworthy that the number of 5-membered rings (F11) and the number of 7-membered 

12 rings (F13) display a significant positive correlation (0.51). This implies that, in our 

13 simulated structures, topological defects in the form of 5|7 pairs are energetically more 

14 stable than isolated 5-membered or 7-membered rings.87

15

16 Fig. 3 The feature extraction for the sodium site identification. (a) Pearson correlation 

17 matrix of 14 features, intercalation site and the binding energy, with orange and blue 

18 indicating positive and negative correlations, respectively. (b) SHAP summary plot of 

19 feature importance. F1/F2: coordination number of sodium ions / carbon atoms, F3/F4: 

20 distance to the nearest sodium ion/carbon atom, F5: number of fitted carbon planes, F6: 

21 maximum flatness of fitted carbon planes, F7: distance to the structure formed by 

22 projecting carbon network onto fitted planes, F8: dihedral angle between fitted carbon 
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17

1 planes F9-F14: numbers of 3-8-membered carbon rings. Eb: denotes the binding energy. 

2 I: represents the intercalation sites.

3 Subsequently, we evaluated the feature importance. As can be seen from Fig. S8, 

4 the coordination environment features (F1-F4) have the most significant impact, 

5 accounting for 67.3%. Specifically, the importance values are F1 (0.248), F3 (0.210), 

6 and F2 (0.152). This indicates that the coordination environment, including the number 

7 of atoms and their distances, has the most prominent effect. It also validates the higher 

8 correlation among F1, F2, and F3 mentioned in the previous correlation analysis. The 

9 next most important feature is F6 (0.101), which suggests that the irregularity of the 

10 carbon surface may lead to energy-unstable structures, thereby facilitating adsorption. 

11 The importance of F4 (0.063) is significantly reduced, consistent with its weak 

12 correlation with the highly important F1 and F3. The importance of other features 

13 related to the fitting planes and polygons is even lower, which is in line with their 

14 insensitivity in distinguishing adsorption and pore filling.

15 The correlation between the 14 selected structural features and the intercalation site 

16 were further analyzed. As shown in Fig. 3a, Features F2, F5, F6, F8, and F12 exhibit 

17 pronounced correlations with intercalation sites. Among them, F2, F5, F8, and F12 

18 show positive correlations. A higher carbon coordination number (F2) indicates a dense 

19 arrangement of surrounding carbon atoms, suggesting an increased likelihood of 

20 forming honeycomb-like motifs and a higher degree of graphitization. A larger number 

21 of fitted carbon planes (F5) and a smaller dihedral angle between carbon layers (F8) 

22 imply a higher probability of forming interlayer spaces composed of multiple carbon 

23 planes. Similarly, an increased count of six-membered rings (F12) indicates enhanced 

24 graphitization, thereby promoting the formation of intercalation sites. In contrast, 

25 feature F6 is negatively correlated with intercalation sites, primarily because a larger 

26 flatness value indicates reduced planarity, which is unfavorable for intercalation.

27 The SHAP summary plot was generated to illustrate the association of each feature 

28 with adsorption/filling identification. As shown in Fig. 3b, features F1, F3, F2, and F6 

29 rank highest, indicating the greater importance of the coordination environment in 
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1 distinguishing adsorption and pore-filling sites. This finding aligns with the conclusions 

2 drawn from our earlier importance assessments. Moreover, features F2, F3, F5, F6, F8, 

3 F11, F13, and F14 exhibit positive correlations with adsorption. Increases in these 

4 feature values could enhance the probability of sodium ions encountering defective or 

5 edge carbon atoms. Conversely, F1 shows a positive correlation with pore-filling. This 

6 is primarily because higher values of F1 either increase the likelihood of being 

7 surrounded by sodium ions or reduce the probability of encountering nearby defective 

8 carbon atoms. Notably, the SHAP dependence of features F4, F7, F10, F12 displays 

9 weak sensitivity to its feature values, reflecting their limited relevance in 

10 adsorption/filling identification. This observation is consistent with both our 

11 aforementioned feature importance evaluation and correlation matrix analysis. 

12 Regarding feature F9, SHAP values are predominantly distributed near zero, suggesting 

13 an extremely weak correlation with adsorption/filling behavior. We speculate this 

14 might be related to the scarcity of triangular rings in the samples due to their high energy 

15 states.

16 Figure 4 presents our identification results for sodium sites at different sodiation 

17 stages, encompassing adsorption, intercalation, and filling sites. The results 

18 demonstrate that nearly all sites are accurately identified, achieving an identification 

19 accuracy of 86.1% (Fig. S9). Compared to other models, this RF model outperformed 

20 both SVM (84.2%) and clustering (78.2%), demonstrating its superior prediction 

21 accuracy in identifying adsorption and pore-filling sites (Figs. S10 and S11). 

22 Furthermore, the dominant insertion sites evolve as sodiation progresses. Taking 

23 adsorption as an example, initial adsorption preferentially occurs at defect sites (Fig. 

24 4a-i), while later in the adsorption process, it shifts towards edge sites (Fig. 4a-v). This 

25 is consistent with the generally higher binding energy associated with defect sites. 

26 Similarly, during intercalation and pore filling (Figs. 4b, c), we observe that as the 

27 number of inserted sodium ions increases, clustering of sodium ions tends to occur 

28 between the graphite layers and within the filled regions. This clustering phenomenon 

Page 18 of 30Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

0/
20

26
 9

:5
8:

46
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5SC07068F

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc07068f


19

1 also contributes to a reduction in the sodium-carbon binding energy as sodiation 

2 progresses.

3

4 Fig. 4 The site identification of inserted sodium ion. Illustration of the local 

5 environments of sodium atoms within a cutoff radius of 5.0 Å in our HC structure: (a) 

6 adsorption sites. (b) intercalation sites. (c) pore-filling sites.

7 Voltage profile simulation

8 Subsequently, we simulated the voltage profile during the stepwise insertion of sodium 

9 ions. The calculation formula is as follows:88

10 𝑉 = ― 1
𝑒

𝐸𝑓(𝑥2)―𝐸𝑓(𝑥1)
𝑥2―x1

                        (1)

11 where e is the elementary charge, x1 and x2 represent the number of inserted sodium 

12 ions before and after insertion, respectively. Ef(x2) and Ef(x1) denote the formation 

13 energies corresponding to the inserted x1 and x2 sodium ions, defined by:

14 𝐸𝑓(𝑥) = 𝐸HC―𝑥Na ― 𝐸HC ―𝑥𝐸Na(bulk)                (2)

15 where EHC-xNa, EHC, ENa(bulk) correspond to the total energy of the HC structure with x 

16 inserted sodium ions, the energy of HC structure and the energy of a sodium atom in 

17 the bulk phase, respectively. In our simulation, we chose x2-x1=1.
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1 Figure 5 presents the simulated voltage profile. By Integrating the RF-based site 

2 identification model, the insertion sites were classified and the voltage contribution 

3 from each site type were quantitatively determined via fitting analysis. During the initial 

4 sodiation stage (N ≤  11), sodium ions exclusively occupied adsorption sites (blue 

5 curve in Fig. 5 and S12a). The sodium atoms were predominantly located at surface 

6 topological defects, such as five- and seven-membered rings and edge sites, forming 4-

7 6 coordination bonds with neighboring carbon atoms (bond length: 2.3-2.6 Å) and 

8 exhibiting a high binding energy (> 1.08 eV). Corresponding XRD simulation 

9 demonstrates an invariant interlayer spacing of 4.18 Å (Fig. S13), which unequivocally 

10 confirms the absence of intercalated sodium. At this adsorption only stage, the voltage 

11 precipitously drops from 3.37 eV to 1.08 eV (dV/dN = -0.20 V/Na). As sodiation 

12 progressed (12 < N ≤ 327), sodium ions progressively populated intercalation sites 

13 while initiating pore-filling occupation (green curve in Fig. 5 and S12b). XRD analysis 

14 reveals a pronounced shift of the (002) peak toward larger angles, indicating interlayer 

15 expansion from 4.18 Å to 4.23 Å (Fig. S13), which directly confirms the contribution 

16 of intercalation. Each sodium atom is coordinated by 10-15 nearest-neighbor carbon 

17 atoms, with Na-C distances ranging from 2.4 Å to 3.5 Å. The number of neighboring 

18 sodium atoms continues to increase from 0.27 to 1.57. Voltage declined from 1.08 eV 

19 to 0.10 eV with a moderated slope (dV/dN = -0.03 V/Na). Site population showed an 

20 intercalation and adsorption stage (57.6%), supplemented by adsorption (32.6%) and 

21 pore filling (9.81%), characteristic of the intercalation-governed regime. Upon deeper 

22 sodiation (328 < N ≤  585), the system enters a characteristic plateau region with 

23 negligible voltage decay (dV/dN = -0.004 V/Na). At this stage, sodium atoms 

24 predominantly aggregate to form clusters within the pores. Initially, the coordination 

25 number of neighboring sodium atoms is 1.57, which increases markedly to 3.30 as the 

26 filling progresses, indicative of sodium clustering. Further analysis shows that the 

27 spatial distribution of sodium atoms within nanopores is strongly influenced by pore 

28 size and pore wall structure: in micropores with smooth, graphite-like walls, sodium 

29 atoms tend to form small clusters comprising 3-5 atoms; whereas in mesopores with 

30 diameters of 1-2 nm and defective pore walls, the cluster sizes are larger, typically 
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1 consisting of 5-8 sodium atoms. Despite progressive interlayer expansion (4.35 Å at 

2 N=585) (Fig. S13), pore filling emerges as the dominant contributor to sodium storage 

3 capacity (60.1%), surpassing intercalation (33.9%) and adsorption (6.1%) (red line in 

4 Figs 5 and S12c). Our analysis explicitly resolves three distinct regimes: adsorption 

5 only (steep slope), intercalation and adsorption (moderate slope), pore-filling 

6 dominated (plateau), reproducing the experimentally reported "adsorption-

7 intercalation-filling" mechanism.34 At full sodiation (N = 585), the specific capacity 

8 reached 261.3 mAh/g at 0 V, with intercalation contributing the largest fraction (46.2%), 

9 exceeding the contributions from pore filling (31.4%) and adsorption (22.4%), 

10 indicative of a relatively high degree of graphitization in the HC model. Unlike most 

11 experimentally synthesized HCs, which are prepared via targeted design strategies such 

12 as activation to generate abundant micropores, heteroatom doping, or controlling the 

13 degree of graphitization to balance interlayer spacing and defect density, our model 

14 utilizes a pristine, impurity-free carbon framework with relatively ordered layer 

15 stacking. This structural characteristic facilitates sodium intercalation but limits 

16 contributions from surface adsorption and pore filling, resulting in a lower total capacity 

17 compared to structurally engineered, high-capacity HCs. The capacity may be further 

18 enhanced by future tuning the HC microstructure. Through such microstructural 

19 optimization, a deeper understanding of alternative sodium storage mechanisms might 

20 be achieved, enabling the elucidation of correlations between HC structural features 

21 and performance such as sodium diffusion and cycling stability.

22 It should be noted that a stage in which a particular type of site is dominant merely 

23 indicates that the proportion of that site type is the highest among the three site 

24 categories within that specific stage (Table S3); it does not imply that the proportion of 

25 this site type reaches its overall maximum in that stage across the entire sodiation 

26 process. For instance, among adsorption sites, only 8.5% are present in the adsorption 

27 only stage, 79.2% in the intercalation and adsorption stage, and 12.3% in the pore-

28 filling dominated stage.; for intercalation sites, 67.4% are in the intercalation and 

29 adsorption stage, while 32.6% are in the filling-dominated stage.
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1

2 Fig. 5 The voltage profile during the gradual sodiation of our HC model. The fitted 

3 curves for the adsorption only, intercalation and adsorption and pore-filling dominated 

4 stages are colored in blue, green and red, respectively.

5 Finally, the overcharging process was explicitly considered. Upon voltage descent 

6 to 0 V (N > 588), overcharging behavior occurs on the HC anode. During this stage 

7 (grey line in Fig. 5), inserted sodium ions predominantly populate pore-filling (51.0%) 

8 and intercalation (47.8%) sites (Figs S12d, S13). XRD simulations reveal a further 

9 increased average interlayer spacing (4.56 Å), confirming partial sodium retention in 

10 intercalated configurations (Fig. S13). At overcharging stage, the HC structure does not 

11 induce slippage or delamination of the graphitic layers, and the nanopore structure is 

12 largely preserved (Figs. S14a, b), with pore sizes predominantly ranging from 0.3 to 

13 1.5 nm (Fig. S14c). Notably, the mean shortest Na-Na distance is 3.65 Å, markedly 

14 smaller than that observed during the charging stage (4.59 Å) and even shorter than the 

15 Na-Na bond length in bulk sodium (Fig. S14d). This observation suggests that, on one 

16 hand, the intercalation process intensifies the electrostatic repulsion among inserted 

17 sodium ions, thereby introducing an energy penalty that manifests as negative voltage;89 

18 on the other hand, Na aggregation occurs under overcharging, forming sodium clusters 

19 coordinated with 5.67 sodium atoms, indicative of the initial nucleation of sodium 
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1 dendrites. Further investigation by tuning the structural features of HC could provide 

2 deeper insight into overcharge behavior, offering theoretical guidance for the rational 

3 design of safer HC anodes.

4 Conclusion
5 This study provides an in-depth investigation of the sodium storage mechanism in HC 

6 for SIBs by synergistically integrating MLP with RF-based site identification 

7 methodologies. Leveraging the well-trained MLP, we have successfully constructed an 

8 atomistically accurate HC model that faithfully reproduces the structural features 

9 observed experimentally. Utilizing our site identification approach, we simulated the 

10 atom-by-atom voltage profile during sodiation and deconvoluted the respective 

11 contributions of adsorption, intercalation, and pore-filling sites to sodium storage. 

12 Furthermore, overcharging simulations reveal that the formation of sodium clusters 

13 constitutes a critical factor driving dendrite growth and associated safety concerns. Our 

14 works verifies that MLP is a powerful and versatile tool for building HC structures and 

15 studying the surface/interface evolution and the sodium storage mechanism not only in 

16 HC but also extendable to other SIB electrode materials, opening new avenues for the 

17 rational design of high-performance SIB components.
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The authors confirm that the data supporting the findings of this study are available 

within the article and its SI. The code and input parameters of this simulation work 

are available on request from the authors.

Supplementary information: The dataset composition, training and validation of 

the MLP; the formation process and the local features of the HC model; The PCA, 

ROC, Feature importance evaluation of the features; the site identification accuracy of 

the RF, SVM, Clustering model; The visualization of the site identification and the 

interlayer spacing evolution and atomic distance during the sodiation; the structural 

evolution of HC before and after the overcharging stage; the distribution of each 

insertion site at different stage.
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