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A chiral sulfide/B(CgFs)s/phosphoric acid co-catalyzed highly regio- and enantioselective tandem
electrophilic sulfenylation/semipinacol rearrangement of allenols is developed for the first time. A variety
of chiral organosulfur compounds bearing all-carbon quaternary stereocenters are efficiently synthesized

via this cooperative catalysis. The products enable the facile synthesis of trisubstituted alkenes and
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Accepted 4th December 2025 thioester compounds through a one-step derivatization process. Mechanistic experiments demonstrate
that B(CgFs)s and phosphoric acid cooperate to form a Lewis acid-assisted Brgnsted acid (LBA) system,

DOI: 10.1039/d55c06981e which significantly enhances catalytic reactivity. Density functional theory (DFT) calculations indicate that
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Introduction

Catalytic asymmetric electrophilic addition/functionalization
reactions of unsaturated hydrocarbons represent important
synthetic  strategies for constructing complex chiral
compounds.’”® These transformations enable the efficient
formation of chiral stereocenters while simultaneously intro-
ducing two distinct functional groups. A prominent example is
the catalytic asymmetric electrophilic sulfenofunctionalization
of unsaturated hydrocarbons, which serves as a direct and
effective approach for generating chiral organosulfur
compounds.®” In particular, the catalytic asymmetric sulfeno-
functionalization of alkenes has been extensively studied and
well developed by Denmark,*** Zhao,"*** Chen'**" and other
groups®* (Scheme 1a). In contrast, the catalytic asymmetric
sulfenofunctionalization of allenes, which enables access to
synthetically valuable organosulfur compounds containing
both alkenes and chiral stereocenters simultaneously, remains
undeveloped. Although Zhao's group attempted to explore this
transformation in 2021, they were unable to achieve enantio-
selective control (Scheme 1b).>* We believe that this reaction
presents the following three challenges. First, the sulfenium ion
may form a thiiranium ion intermediate with the allenes in
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-+ and C—H---1 interactions play a crucial role in determining the observed enantioselectivity.

a regioselective manner.”>*® Second, the resulting thiiranium
ion intermediate differs from that formed with alkenes; it tends
to be less stable and more susceptible to racemization, thereby
hindering enantioselectivity.>* Third, different allene substrates
may undergo varying reaction mechanisms. For example, an
allene bearing four distinct substituents might proceed through
a kinetic resolution pathway, which could significantly influ-
ence both reaction efficiency and selectivity.”” Therefore,
achieving highly enantioselective sulfenofunctionalization of
allenes remains a significant challenge in asymmetric catalysis
(Scheme 1b).

Our research group has been engaged in the investigation of
catalytic asymmetric electrophilic sulfenylation addition'*>*°
and electrophilic sulfenylation substitution reactions***>
involving unsaturated hydrocarbons, as well as selenylation
addition and substitution reactions.***® For example, we have
recently achieved the organocatalytic asymmetric selenylation/
semipinacol rearrangement of allenols.*® Building upon these
research interests, we aim to explore the catalytic asymmetric
electrophilic sulfenofunctionalization of allenes. We believe
that the key challenges associated with this reaction can be
effectively addressed through the following three strategies.
First, selecting a suitable allene substrate, such as a terminal
allene can help simultaneously avoid issues related to regio-
selectivity and unclear reaction mechanisms, particularly those
involving kinetic resolution processes. Second, developing
a mild and synergistic catalytic system with high efficiency is
crucial. Such a system would not only prevent substrate
decomposition and undesirable side reactions but also facili-
tate the formation of enantioselective and stable thiiranium ion
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Scheme 1 Design of organocatalytic regio- and enantioselective
sulfenylation/semipinacol rearrangement of allenols.

intermediates. Third, accelerating the nucleophilic capture
process while minimizing racemization is essential for
achieving high enantioselectivity in the desired products. For
example, intramolecular small-ring expansion processes are
known to proceed rapidly under suitable conditions.*”**
Herein, we report a tandem electrophilic sulfenylation/
semipinacol rearrangement of allenols, catalyzed synergisti-
cally by chiral sulfide, B(C¢F5)s, and phosphoric acid. This novel
and mild synergistic catalytic system enables both high
enantioselectivity and reaction efficiency (Scheme 1c).

Results and discussion
Reaction condition optimization

Under standard reaction conditions, allenyl cyclobutanol 2a
was selected as the model substrate, and saccharin-derived 2-
(trifluoromethyl)phenylthio compound 3a served as the sulfe-
nylating reagent. The chiral BINAM-derived sulfide (S)-1a was
employed as the Lewis base catalyst, while tri-
s(pentafluorophenyl)borane B(C¢Fs); and diphenyl phosphate
(DPP) were used as acid catalysts. Additionally, 5 A molecular
sieves (MS) were incorporated as an additive, and chloroben-
zene (PhCl) was utilized as the solvent. The reaction was
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conducted at 0 °C for 12 hours under an argon atmosphere,
affording the desired product 4a in 99% yield with 96% enan-
tiomeric excess (ee) (Table 1, entry 1).

A control experiment revealed that the reaction did not
proceed in the absence of B(C¢Fs)3, confirming its essential role
in promoting the transformation (entry 2). When alternative
Lewis acids were employed in place of B(CeFs)s, a substantial
decrease in the yield of 4a was observed (entries 3 and 4).
Similarly, the omission of DPP also led to a significant reduc-
tion in product yield (entry 5). Subsequently, chiral phosphoric
acids (R)-CPA and (S)-CPA were tested as substitutes for DPP,
resulting in a slight improvement in the enantioselectivity of 4a
(entries 6 and 7). However, the use of p-toluenesulfonic acid
(pTSA) instead of DPP caused a marked decrease in the yield of
4a (entry 8). Optimization of the Lewis acid and Brensted acid
components demonstrated that the combination of B(CeFs);
and DPP significantly enhances reactivity, albeit with a minor
impact on enantioselectivity. Based on previous studies,*>*
propose that this reaction proceeds via a Lewis acid-assisted
Bronsted acid (LBA) catalytic mechanism, wherein the acidity

we

Table 1 Reaction optimization®

I o o (S)-1a (10 mol%) Q
0 WA B(CqF )3 (10 mol%)
o A DPP (10 mol%) FiC s—/ 0
. N—s CFy %
5AMS (15 mg)
o PhCIL Ar,0°C, 12h

O T OO
NG ’4/ o, I/
N Ny

(S-1b (S-1c

(9-1a
/O/sow ©\ \ ,o OO oy, 20

07 o
pTSA (R-CPA

z: >é\

(S)-CPA

Entry Variation of standard conditions Yield (%) ee (%)
1 Standard conditions 99 96
2 No B(C6Fs); N.R. —
3 BF;-Et,0 instead of B(CgFs)3 37 95
4 Sc(OTf), instead of B(CeFs)3 24 93
5 No DPP 18 89
6 (R)-CPA instead of DPP 97 97
7 (S)-CPA instead of DPP 84 97
8 PTSA instead of DPP 45 95
9 No (S)-1a N.R. —
10 (S)-1b instead of (S)-1a N.R. —
11 (8)-1c instead of (S)-1a 34 20
12 (S)-1d instead of (S)-1a N.R. —
13 DCM instead of PhCl 17 88
14 CH;CN instead of PhCl N.R. —
15 No 5 A MS 49 95

“ Standard conditions: the reaction was performed with 2a (0.05 mmol),
3a (0.06 mmol), (S)-1a (0.005 mmol) B(CeFs5); (0.005 mmol), DPP (0.005
mmol), and 5 A MS (15 mg) in PhCl (1 mL) at 0 °C for 12 h under Ar.
Isolated yields are shown. The ee values were determined by
Supercritical Fluid Chromatography (SFC).

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Scope of the reaction.? ? Reaction conditions: the reaction was performed with 2 (0.1 mmol), 3 (0.12 mmol), (5)-1a (0.01 mmol),
B(CeFs)s (0.01 mmol), DPP (0.01 mmol), and 5 A MS (15 mg) in PhCl (1 mL) at 0 °C for 12-96 h under Ar. Isolated yields are shown. The ee values
were determined by SFC or High-Performance Liquid Chromatography (HPLC). The cis : trans ratios of substrates 2r—2y were determined by 'H
NMR analysis of the isolated compounds. The diastereomeric ratios of products 4r—4y were determined based on the isolated yields of isomers.
PThe reaction was performed at —30 °C. “2r, cis : trans = 2.9 : 1. 92s, cis : trans = 1.7 : 1. °2t, cis, single isomer. "2u, cis : trans = 4.4 : 1.92v, cis : trans
=2.9:1."2w, cis: trans = 12.5:1.2x, cis : trans = 12.5: 172y, cis : trans = 5.0 : 1. “A disulfenylated by-product 4ad’ was obtained in this reaction.
Further details are provided in Sl. {(R)-CPA (0.01 mmol) was used to instead of DPP.

of the Bronsted acid is enhanced, thereby promoting reactivity.
Furthermore, the absence of the chiral Lewis base catalyst (S)-1a
completely suppressed the reaction, confirming its indispens-
able role and the absence of background reactivity (entry 9).
When alternative Lewis base catalysts were employed in place of
(S)-1a, both the yield and enantioselectivity of 4a were

© 2025 The Author(s). Published by the Royal Society of Chemistry

significantly diminished, or the reaction failed to proceed
altogether (entries 10, 11, and 12), underscoring the critical
importance of (S)-1a for both reactivity and enantiocontrol.
Substitution of PhCl with other solvents similarly resulted in
a notable reduction in yield and enantioselectivity or complete
reaction failure (entries 13 and 14), highlighting the necessity of
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Scheme 3 Gram-scale reaction and synthetic applications. Unless otherwise noted, isolated yields are shown, and the ee values were deter-
mined by SFC. For detailed conditions, please refer to Sl. “Reaction conditions: the reaction was performed with 2a (5.4 mmol), 3a (6.5 mmol), (S)-
1a (0.54 mmol), B(CgFs)s (0.54 mmol), DPP (0.54 mmol), and 5 A MS (810 mg) in PhCl (54 mL) at O °C for 23 h under Ar. PEurther transformations of
4a. Reaction conditions: (i) 4a (0.1 mmol), 3e (0.12 mmol), B(CgFs)3 (0.1 mmol) and DPP (0.1 mmol) in DCM at rt for 1 h; (ii) 4a (0.1 mmol), 3i (0.12
mmol) and B(CgFs)s (0.1 mmol) in DCM at rt for 1 h; (iii) 4a (0.1 mmol), NBS (0.105 mmol), B(CgFs)z (0.1 mmol) and 5 A MS (810 mg) in toluene at rt
for 0.5 h; (iv) 4a (0.1 mmol) in DCM was bubbled with ozone at —78 °C for 1 minute.

chlorobenzene as the optimal solvent. Moreover, the exclusion
of 5 A molecular sieves led to a considerable decrease in yield,
indicating that the additive plays a beneficial role in enhancing
reactivity (entry 15). Based on these findings, the optimized
reaction conditions were established for further substrate scope
investigations (For additional condition screening, please refer
to SL.

Substrate scope

With the optimized reaction conditions established, we pro-
ceeded to investigate the scope of allenols and sulfenylating
reagents. Most of the corresponding products were obtained in
excellent yields and enantioselectivities (Scheme 2). Our
observations indicated that electron-withdrawing groups and
weakly electron-donating groups at the para-position of the
aromatic moiety exerted only minor effects on enantioselectivity
(4a-4i). However, strongly electron-donating groups, such as the
methoxy group, significantly diminished the enantioselectivity
(4j). It was observed that electron-rich substrate 2j undergoes
racemic background reaction, which may constitute the
primary factor contributing to the decrease in enantioselectivity
(For the details, please refer to SI). Notably, the absolute
configuration of product 4d was determined to be (R) by X-ray
crystallography.” Subsequently, we found that substituents
such as -F, ~OCFj3, and -OMe located at the meta-position of the
aromatic ring afforded products with good yields and enantio-
selectivities (4k-4m). Additionally, multi-substituted aromatic
groups, including 2-naphthyl allenols, also provided favorable

Chem. Sci.

results (4n-4p). Due to the electron-donating nature of the 1,3-
benzodioxole group, the corresponding product 40 was only
obtained with 89% ee. Notably, the reaction conditions were
compatible with heterocyclic systems such as 2-thiophene,
affording product 4q in 99% yield and 84% ee. The observed
sluggish reactivity in substrates 2g, 2k, and 2n can be attributed
to the presence of electron-withdrawing groups, which
diminish the electron density on the allene moiety. This
reduction hinders the formation of the thiiranium ion inter-
mediate, consequently leading to a decrease in the overall
reaction rate. Furthermore, substrates bearing substituents on
the cyclobutanol moieties were also evaluated. Since these
substrates exist as mixtures of diastereoisomers, the corre-
sponding products also exhibited diastereomeric ratios.
Nevertheless, the major diastereomers were obtained in
moderate to good yields and with high enantioselectivity (4r-
4y). The absolute configuration of product 4t was determined to
be (R, S) by X-ray crystallography.*® However, the cyclopropanol
substrate was found to be less suitable, resulting in the
formation of product 4z in 78% yield and 47% ee. Notably,
sulfenylating reagents bearing meta- and para-trifluoromethyl
substituents showed a marked decrease in enantioselectivity,
highlighting the importance of steric effects in influencing the
stereochemical outcome (4aa-4ab). Therefore, we examined
a sulfenylating reagent containing 2,6-biisopropyl groups and
obtained product 4ac in 85% yield and 98% ee. In contrast,
using the most common sulfenylating reagent without any
substituent on the phenyl ring resulted in product 4ad with only

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Scheme 4 Mechanistic experiments.

43% yield and 67% ee, further supporting the role of steric
hindrance in enhancing enantioselectivity. The relatively low
yield can be attributed to the formation of a disulfenylated by-
product 4ad’ within the system (For the details, please refer to
SI). However, when alkyl substrate 2aa was employed with an
ortho-trifluoromethyl-substituted sulfenylating reagent, the
reaction failed to proceed, likely due to steric hindrance from
the trifluoromethyl group. Through systematic optimization
studies on alkyl substrates (For the details, please refer to SI,
Table S2), we identified the 3,5-difluorosubstituted sulfenylat-
ing reagent as an effective sulfur source, affording a range of the
corresponding alkyl-substituted products with moderate to
good yields and high enantioselectivity (4ae-4ai).

Gram-scale reaction and synthetic applications

To demonstrate the synthetic applicability of this catalytic
system, a gram-scale reaction employing substrate 2a was con-
ducted under standard conditions, affording product 4a in 93%
yield and 96% ee (Scheme 3a). Subsequently, structural modi-
fications were carried out on the terminal alkenes moiety of 4a

© 2025 The Author(s). Published by the Royal Society of Chemistry

(Scheme 3b). Electrophilic sulfenylation, selenylation, and
bromination reactions of the alkenes were successfully per-
formed, yielding the corresponding trisubstituted alkene
derivatives in moderate yields (compounds 5a-7a). However,
a slight decrease in enantioselectivity was observed for
compound 5a. We hypothesize that this reduction may be
attributed to the preferential conversion of the (S)-configured
enantiomer of 4a into a disulfenylated side product. The
configuration of the trisubstituted alkene in the products was
determined to be of the (E)-configuration, based on single-
crystal X-ray structural analysis of the racemic compound 7a
(For the details, please refer to SI).® Furthermore, ozonolysis of
the olefin efficiently afforded the 1,3-dicarbonyl thioester
compound 8a in 95% yield with 96% ee.

Mechanistic studies

Based on previous studies of the Lewis acid-assisted Brgnsted
acid (LBA) system® and electrophilic sulfenylation reactions,®
a plausible intermediate cp-1 is proposed in Scheme 4. To verify
the formation of cp-1, >'P NMR and '"°F NMR analyses (Scheme

Chem. Sci.
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line: T—m interaction. Blue dashed line: hydrogen-bonding interaction. Green dashed line: C—H---1 interaction.

4a) as well as "H NMR titration experiments (Scheme 4b) were
conducted. When DPP and B(C¢Fs); were mixed in a 1:1 molar
ratio in deuterated chloroform (CDCl;), new resonances
appeared in both the *'P and '’F NMR spectra, indicating
interactions between B(C¢Fs); and DPP and suggesting the
possible formation of an LBA system. Upon addition of equi-
molar amounts of DPP, B(C4F;)s, and 3a in CDCl;, only minor
chemical shifts were observed for the phosphorus atom of DPP
and for the fluorine atoms at the ortho and para positions of
B(CeFs)3, implying interactions among the three components.
Building upon our previous findings,*®*** we hypothesize the
presence of hydrogen bonding between 3a and the LBA system.
To investigate this interaction, "H NMR titration experiments
were performed. With the concentration of B(C¢F5); and DPP
held constant at a 1: 1 ratio, incremental addition of 3a resulted
in a consistent downfield shift of the resonance signal corre-
sponding to the proton of DPP (indicated by the red arrow),
which indicates the presence of hydrogen bonding. Collectively,
these results support the likely presence of ¢p-1 in the catalytic
system.

To elucidate the origin of the high enantioselectivity
observed in the reaction, DFT calculations were performed on
the reaction pathways at the wB97X-D/def2-TZVPP-SMD//
wB97X-D/6-31G(d)-IEFPCM level of theory,*** using 3a as the
model sulfenylating reagent (the computational details are
provided in SI). As shown in Scheme 5, the chiral catalyst (S)-1a
initially engages cp-1 through a chalcogen bond, forming the
activated intermediate Int-1. Electrophilic sulfenylation

Chem. Sci.

subsequently occurs at the Re-face of substrate 2a, proceeding
via transition state TS-1-major to yield the thiiranium ion
intermediate Int-2, which exhibits high regioselectivity and
enantioselectivity. It is followed by a rapid intramolecular ring-
expansion rearrangement that affords the desired product 4a
and concurrently regenerates the LBA system. The computed
transition state structure TS-1-major, which leads to the major
enantiomer of product 4a, is more stable than TS-1-minor by
5.5 kcal mol™'; this is consistent with the experimentally
observed enantioselectivity. Independent Gradient Model based
on Hirshfeld partition (IGMH) weak interaction analysis®*
revealed the presence of a -7 interaction® between the aryl
ring of the sulfenylating reagent and that of substrate 2a in TS-1-
major, along with C-H:--m interactions between the aryl ring of
LBA and the naphthalene ring of (S)-1a. In contrast, in TS-1-
minor, this -7 interaction is disrupted due to steric repulsion
between the ortho-trifluoromethyl substituent and (S)-1a.
Additionally, the C-H---7 interactions are absent owing to the
unfavorable orientation of the hydroxy group in 2a relative to
the naphthalene ring of (S)-1a.

Conclusion

In conclusion, we have successfully developed a highly regio-
and enantioselective electrophilic sulfenylation/semipinacol
rearrangement of allenols, which is enabled for the first time
through cooperative catalysis involving a chiral Lewis base, an
achiral Lewis acid, and an achiral Brensted acid. This method

© 2025 The Author(s). Published by the Royal Society of Chemistry
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allows for the synthesis of a wide range of chiral organosulfur
compounds containing all-carbon quaternary stereocenters,
with high yields and excellent enantioselectivity. The sulfur-
substituted terminal alkene moiety present in the products
can be readily converted into trisubstituted alkenes and thio-
ester derivatives. DFT studies indicate that steric repulsion
between the ortho-trifluoromethyl substituent of the sulfeny-
lating reagent and the catalyst plays a crucial role in achieving
high enantioselectivity. Additionally, studies on other sulfeny-
lation and selenylation reactions based on this cooperative
catalytic system are currently underway in our laboratory.
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