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Herein, we reveal the correlation between structure and spin-states for C;-symmetric four-coordinate
cobalt complexes. A series of C;-symmetric four-coordinate cobalt complexes with various steric,
electronic, anions and chelation modes were synthesized and characterized. X-ray diffraction studies
revealed a structural distortion from square-planar to distorted tetrahedral pyramidal geometry.

Combining paramagnetic nuclear magnetic resonance (pNMR), magnetic measurement (SQUID), X-ray
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Accepted 27th October 2025 photoelectron spectroscopy (XPS) and density functional theory (DFT), the electronic structure with

a cobalt(i) (Sco = 1/2 to 3/2) ion antiferromagnetically coupled to a radical anion ligand (Siigang = 1/2)
was established. A new structural parameter, D4, was introduced as an improved parameter for
quantitatively assessing the spin state in four-coordinate complexes.
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Introduction

Transition metal catalysis serves as a powerful tool in organic
synthesis.”” Understanding structure-activity relationships
remains key to developing efficient catalytic systems.>* Over the
past two decades, 3d transition metal catalysts have gained
prominence owing to their earth abundance, favorable
biocompatibility, and reduced environmental impact.> Never-
theless, the relationship between structure and catalytic reac-
tivity remain elusive for these systems. This knowledge gap
stems from the intrinsic challenges in characterizing 3d metal
active species - their propensity for single-electron transfer
processes and spin-state interconversions complicates precise
determination of both oxidation and spin states during
catalysis.®®

Four-coordinate complexes exhibiting high reactivity have
been identified as catalytically active species.®™ It is crucial to
understand the relationship between structure and reactivity for
four-coordinate complexes. For 3d metals, the fundamental
insight lies in elucidating the correlation between structure and
spin states. Pioneering studies by Lippard and co-workers
established the relationship between the tetrahedral twist
angles (@) and spin states in D,gq-symmetric M(u)-tropocor-
onand complexes (M = Co, Ni)."”® Smith reported the
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relationship between the Tolman cone angle () and spin states
in Cs-symmetric complexes with tris(carbene) ligands.'® Peters
described that the metal-ligand distances are strongly corre-
lated with the spin state in Cz,-symmetric complexes with tri-
s(phosphino)borate [BP;] ligands.””*®* Chirik reported the
relationship between distorted planarity and spin states in C,,-
symmetric (PDI)Fe'** or (PDI)Co** complexes (PDI = pyr-
idinediimine). Moreover, Chirik and co-workers have also made
pioneering contributions to the catalysis of C;-symmetric four-
coordinate cobalt complexes.'*> However, the structure-spin
relationship of C;-symmetric four-coordinate complexes has
not yet been systematically investigated (Fig. 1A).

There are several challenges that need to be addressed: (1)
four-coordinate complexes with fewer d-electrons are more
reactive and less stable, making them more difficult to isolate
and characterize. (2) The C;-symmetric skeleton significantly
increases the difficulty of obtaining X-ray diffraction structures
through recrystallization. (3) The rational design of spin cross-
over complexes with a narrow energy window remains an
elusive task.”

In our previous work, C;-symmetric four-coordinate cobalt
alkyl species were considered as key intermediates in various
reactions including hydrogenation,**” hydrosilylation,
hydroboration,** and isomerization.**>*” However, the oxida-
tion states, spin states, and coordination modes of these species
remain elusive. Herein, we describe a series of chiral four-
coordinate cobalt complexes with spin multiplicity, which
display singlet to triplet transitions (Fig. 1B). Combining X-ray
single-crystal diffraction, paramagnetic nuclear magnetic reso-
nance (pNMR), and magnetic measurement (SQUID), X-ray
photoelectron spectroscopy (XPS) and density functional
theory (DFT), the electronic structure with a cobalt(u) ion
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Fig. 1 (A) The relationship between structure and spin states in
symmetric four-coordinate complexes. (B) The Cl-symmetric four-
coordinate complexes and structure-spin parameter, Dg.

antiferromagnetically coupled to a radical anion ligand was
established. The 5,6-chelating mode plays a crucial role in
modulating the spin state of the four-coordinate cobalt
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complexes. Furthermore, a novel structural parameter, D4, was
introduced as a metric for the spin states in four-coordinate
cobalt complexes.

Results and discussion
Synthesis and characterization of cobalt complexes

In our previous work, the chiral cobalt(u) chloride complex with
a 5,5-chelating oxazoline iminopyridine ligand was synthesized
and characterized.** Inspired by the previous work, this work
focuses on the synthesis of chiral cobalt methyl complex (S)-
L1-CoCHj;, 8-oxazoline imine quinoline cobalt methyl complex
(S)-L2-CoCH;, 8-oxazoline iminoquinoline cobalt chloride
complex (S)-L2-CoCl and 8-imidazoline iminoquinoline cobalt
chloride complex (S)-L3-CoCl, following established literature
procedures.>*® The solid-state structures of these complexes
were determined using X-ray diffraction, and a representative
molecular structure is illustrated in Fig. 2. Notably, although
chiral oxazoline iminopyridine cobalt methyl complex (S)-
L1-CoCHj; has been synthesized previously,* to the best of our
knowledge, its single-crystal structure has not been reported
until now.

The representative bond distances and angles of these
complexes are summarized in Table 1. The imine bonds C(2)-
N(1) are measured to be 1.334(4) A,1.317(3) A, 1.325(5) A and
1.336(3) A, respectively. Compared with their precursor
complexes (S)-L-CoCl,, the imine bonds are elongated (Table
S1). Meanwhile, the C(2)-C(3) bonds are contracted to ~1.434 A.
The variation in bond lengths within the ligands is consistent
with a one-electron reduction.®**° That is to say, the changes in
the bond distance indicate that the C;-symmetric ligands play
a non-innocent role with a radical anion chelated Co(u) metal
center. Notably, the C=N double bonds of the imine are longer

= =
X, . \N
el N N el
PCEN, L, 0
pr Cl \—/ Progr
iPr iPr
X=0, (S)-L2+CoCl

X = NPh, (S)-L3+CoCl

(S)-L2-CoCl (S)-L3CoCl

(a) Synthesis of cobalt methyl complexes and cobalt chloride complexes. (b) The molecular structures of cobalt complexes depicted with

50% probability ellipsoids. All H atoms are omitted for clarity except those attached to methyl. In the unsymmetric unit cell of (S)-L2-CoCl, two
distinct coordination modes coexist, trans- and cis- (Fig. S18). The trans- coordination mode is depicted.
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Table 1 Comparison selected bond lengths (A) and angles (deg) for L-CoCHz and L-CoCl

(S)-L1-CoCl* (S)-L1-CoCHj, (S)-L2-CoCH;, (S)-L2-CoCl? ($)-L3-CoCl
C(2)-N(1) 1.329(2) 1.334(4) 1.317(3) 1.325(5) 1.336(3)
C(2)-C(3) 1.434(2) 1.432(4) 1.432(3) 1.436(5) 1.433(4)
C(5)/C(6)-N(3)° 1.300(2) 1.305(4) 1.288(3) 1.301(5) 1.314(3)
Co-N(1) 1.906(2) 1.887(2) 1.898(2) 1.976(3) 1.979(2)
Co-N(2) 1.811(2) 1.838(2) 1.918(2) 1.954(3) 1.957(2)
Co-N(3) 1.934(2) 1.907(2) 1.897(2) 1.984(3) 1.988(2)
Co-X 2.193(5) 1.958(3) 1.970(3) 2.259(2) 2.253(1)
N(1)-Co-N(3) 162.6(1) 162.2(1) 166.9(1) 134.8(2) 146.5(1)
N(2)-Co-X 176.3(1) 173.2(2) 164.2(1) 122.9(1) 133.6(1)
Ty 0.15 0.18 0.20 0.73 0.57
D, 0.037 0.057 0.206 0.744 0.568

“ From ref. 34. ” The bond lengths and angles were averaged over four independent molecules in the unsymmetric unit. ¢ The Coxazoline atom on the

oxazoline is labeled as C(5) in (S)-L1-CoCH; and as C(6) in (S)-L2-CoCHj.

than those of oxazoline or imidazoline in four-coordinate
complexes, suggesting that the imine modules play a more
significant non-innocent role upon one-electron reduction of
the chiral ligand.

In order to precisely quantify the geometric deviation of the
cobalt center from the coordination plane, we introduce a new
structural parameter, D,, defined as the vertical distance from
the metal center to the N(1)-N(2)-N(3) coordination plane
(Fig. 3). The parameter can be easily calculated using Olex 2
software or other software programs.** The cobalt center in (S)-
L1-CoCHj; is nearly coplanar with the N(1)-N(2)-N(3) coordi-
nation plane, approaching an ideal square planar geometry (D,
= 0.057 A). This square planar configuration is consistent with
the diamagnetic behavior of (S)-L1-CoCHj, as observed by
nuclear magnetic resonance, and indicates a strong ligand
field.***"** For (S)-L2-CoCH3, the geometry index (t, = 0.20) is
slightly larger than that of (S)-L1-CoCHj; (4 = 0.18),* while the
structural parameter D, significantly increases to 0.206 A.
Consequently, the molecular geometry of (S)-L2-CoCHj is best
described as a distorted planar structure.

Both (S)-L2-CoCl and (S)-L1-CoCI** are stabilized by the
same coordinating atom but differ in their chelating modes.
However, the subtle variation triggers dramatic differences in
the coordination modes. Firstly, the X-ray analysis of (S)-
L2-CoCl revealed that both cis- and trans- conformations coexist
within the unsymmetric unit cell (Fig. S18). Secondly, the N(2)-
Co-Cl angle is measured to be 122.9(1)° and the 7, index is 0.73

Fig. 3 Illustration of the geometric meaning of the D4 parameter.
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in (S)-L2-CoCl. The central metal atom is significantly lifted
from the N(1)-N(2)-N(3) coordination plane and the D, value is
measured to be 0.744 A. Therefore, the molecular geometry of
(S)-L2-CoCl is best described as a distorted tetrahedral struc-
ture. As for (S)-L3-CoCl, the oxazoline moiety on the ligand was
replaced with a more electron-rich imidazoline group. Accord-
ingly, the coordination structures undergo distinct modifica-
tions. In contrast to (S)-L2-CoCl, (S)-L3-CoCl presents a single
trans-conformation. The N(2)-Co-Cl angle and 1, index are
measured to be 133.6(1)° and 0.57, respectively. The D, value is
measured to be 0.568 A and is smaller than that of (§)-L2-CoCl.
Correspondingly, the molecular geometry of (S)-L3-CoCl is best
described as a distorted sawhorse structure.**

The 'H NMR spectrum of the (S)-L2-CoCH; complex exhibits
an interesting feature, displaying characteristics of both para-
magnetic broadening (typical of paramagnetic compounds) and
fine coupling splitting (typical of diamagnetic compounds)
simultaneously (Fig. 4). The unique phenomenon has not been
previously reported in paramagnetic cobalt complexes,®***
providing intriguing insights into the electronic structure of the
complex. A solution magnetic moment of 0.77(1) up was
measured in benzene-ds at room temperature by Evans'
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Fig. 4 H NMR spectrum of (S)-L2-CoCHz in benzene-dg at 300 K.
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method.*® Based on the correlation between the p.s and spin
state, the spin population distribution of ($)-L2-CoCH; can be
described as a mixture of 93% low-spin (LS) and 7% high-spin
(HS) states.*” This indicates that (S)-L2-CoCH; exhibits mixed
spin multiplicities, with contributions from both singlet and
triplet states. The Gibbs energy change (AG) between the singlet
and triplet states was calculated to be —1.4 kcal mol ™ *.%* The
solution magnetic moment of (S)-L2-CoCl was measured to be
2.94(6) up in benzene-dy at 291 K, suggesting an absolute high-
spin state at this temperature. The "H NMR spectrum of the (S)-
L3-CoCl complex also exhibits both paramagnetic and
diamagnetic characteristics (see the SI). The solution magnetic
moment of (§)-L3-CoCl was measured to be 2.59(1) up in
benzene-d; at 288 K, indicating a spin state composition of 0.16
LS + 0.84 HS. Combined analysis of X-ray diffraction and
magnetic measurement reveals a clear positive correlation
between an increasing population of the high-spin triplet state
and a rising value of the structural parameter D,.

The unsaturated magnetic moment of (S)-L2-CoCH; was
further investigated wusing variable-temperature super-
conducting quantum interference device (SQUID) magnetom-
etry in the solid state (Fig. 5). At approximately 2 K, the xT value
of (S)-L2-CoCH; approaches zero, indicating a diamagnetic
ground state with S = 0. Above 150 K, x7T increases with
temperature and does not saturate even at 350 K. The SQUID
data suggest that the complex undergoes a temperature-
induced spin transition from the S = 0 singlet state to the S =
1 triplet state, consistent with spin crossover behavior. The
effective magnetic moment reaches 0.98 ug at 290 K, a value
essentially consistent with that calculated by Evans' method.

X-ray photoelectron spectroscopy

XPS was performed to reveal the electronic structure and
oxidation states of Co sites in the cobalt complexes. (S)-
L1-CoCl,, (S)-L2-CoCl, and (S)-L3-CoCl, were analyzed by XPS,
affording binding energies of 781.0 eV, 780.8 eV and 780.6 eV
(Fig. S15-517). Next, (S)-L1-CoCHj, (S)-L2-CoCHg, (S)-L2-CoCl
and (S)-L3-CoCl were carefully analyzed by XPS, affording Co
2ps binding energies of 780.8 eV, 780.4 eV, 780.9 eV and 780.9
eV, respectively (Fig. 6). Their binding energies are slightly
higher than that of CoO (780.0 eV),* supporting the +2

0.20 4 ¢ exp
sim e

0.154

0.10 4

2 x T /emu*T

0.05 4

I
0.00 4

Fig. 5 Temperature dependence of magnetic susceptibility under an
external magnetic field of 1 T and simulations with the domain model
(solid lines) for (S)-L2-CoCHs.
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Fig. 6 XPS spectrum of Co 2p for cobalt complexes. (a) (S)-L1-CoCHz;
(b) (S)-L2-CoCHz; (c) (S)-L2-CoCl; (d) (S)-L3-CoCl.

oxidation state of the Co species in L-CoCl,. The binding
energies of L-CoCH; and L-CoCl are similar to those of their
precursor, L-CoCl,, before reduction. The slight binding energy
change further supports the ligand's redox activity, suggesting
that single-electron reduction occurs on the ligand, while the
oxidation state of the central metal remains constant.
Combining the XRD structure, magnetic measurements, XPS
analysis and DFT calculations, (S)-L-CoCHj; and (S)-L-CoCl are
best described as radical anions antiferromagnetically coupled
to a Co(u) metal center (Fig. 8 and 9).

In order to obtain a more systematic understanding of the
correlation between structure and spin states, a series of four-
coordinated cobalt complexes was further synthesized and
characterized (Fig. 7). The effects of steric, electronic, and
anions on spin states were systematically investigated.
The representative structural parameters are summarized in
Table 2.

It should be noted that the geometry index 7, of (S)-
L4-CoCHj; (14 = 0.25) is larger than that of (S)-L2-CoCH; (1, =
0.20); however, (S)-L4-CoCHj; exhibits diamagnetic behaviour
with low-spin states. Correspondingly, the D, value of (S)-
L4-CoCH; is measured to be 0.095 A, which is smaller than that
of (§)-L2-CoCHj; (D, = 0.206 A). Considering that the 7, index
was initially proposed to quantify the deviation from ideal
planar geometry for symmetric four-coordinate complexes, like
D,q4 and C,,, the 7, index may not be suitable for assessing C;-
symmetric four-coordinate compounds.*

Comparatively, the parameter D, is defined geometrically as
d;sin 0;, where d; is the M-L bond length (reflecting ligand
coordinated strength), and 6; is the angle between the M-L bond
and the coordination plane, reflecting the d,»_,» orbital overlap
(Fig. 3). In other words, a smaller D, value is likely associated
with a stronger ligand field and a larger splitting energy.
Interestingly, in the UV-vis spectra, the maximum absorption
wavelength of four-coordinate cobalt complexes exhibits a red
shift with an increase in the D, value.

Chem. Sci., 2026, 17, 492-499 | 495
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Fig. 7 Synthesis and characterization of C;-symmetric cobalt chloride complexes and cobalt methyl complexes. The molecular structures of
complexes depicted with 50% probability ellipsoids. All H atoms are emitted for clarity excepted methyl.

Computational studies methods and the def2-TZVP basis set.>*° For (§)-L1-CoCHz, the
results reveal that the electronic structure adopts a broken-

Full-molecule DFT calculations were performed on (S)- i ) i
symmetry (BS) (1, 1) configuration,”” with an electronic energy

L1-CoCH; and (§)-L2-CoCl using the TPSSh**** functional

A. ’ Ny

-0.07

de -

Fig. 8 (A) Qualitative molecular orbital diagram obtained from the BS(1, 1) solution for (S)-L1-CoCHs from TPSSh DFT calculations (isovalue =
0.05 a.u.). (B) The spin density plot obtained from a Muilliken population analysis of the BS(1, 1) solution for (S)-L1-CoCHs (red = positive spin
density and blue = negative spin density; isovalue = 0.002 a.u.).
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(A) Qualitative molecular orbital diagram obtained from the BS(3, 1) solution for (S)-L2-CoCl from TPSSh DFT calculations (isovalue = 0.05

a.u.). (B) The spin density plot obtained from a Muilliken population analysis of the BS(3, 1) solution for (S)-L2-CoCl (red = positive spin density and

blue = negative spin density; isovalue = 0.002 a.u.).

Table 2 The summary of the geometry UV-vis spectrum and the spin
states of four-coordinate cobalt complexes

Complex Ty D,JA Amax/TM Spin states
(S)-L1-CoCl 0.15 0.037 515 Low spin
(S)-L1-CoCH, 0.18 0.057 558 Low spin
(S)-L2-CoCH; 0.20 0.206 625 0.93 LS + 0.07 HS
(8)-L2-CoCl 0.73 0.744 657 High spin
(8)-L3-CoCl 0.57 0.568 650 0.16 LS + 0.84 HS
(S)-L4-CoCH; 0.25 0.095 545 Low spin
(S)-L5-CoCH; 0.18 0.011 526 Low spin
(5)-L6-CoCHj; 0.16 0.045 552 Low spin
(8)-L6-CoCl 0.16 0.045 529 Low spin
(S)-L7-CoCH, 0.20 0.049 577 Low spin
(S)-L7-CoCl 0.17 0.082 532 Low spin

—1.5 keal mol " lower than that of the BS (3, 1) triplet state. The
corresponding molecular orbital diagram and spin-density plot
are illustrated in Fig. 8.°*°° The qualitative molecular-orbital
diagram is consistent with that expected for a square-planar
complex with two doubly occupied cloverleaf d orbitals (d,,
and d,;) and d,: (the z axis being defined as perpendicular to the
chelate plane). One unpaired electron is located in the d,,
orbital, while the second unpaired electron occupies an oxazo-
line iminopyridine 7* symmetry orbital. An orbital principally
of d,2_,» origin is found among the unoccupied orbitals. The
overall singlet ground state (S = 0) is confirmed by the Mulliken
spin density plot, which shows antiferromagnetic coupling
between a low-spin cobalt(i) ion (Sg, = 1/2) and an oxazoline
iminopyridine radical anion (Sop-— = 1/2).

The (S)-L2- CoCl calculation converged to a BS (3, 1) solution,
which is lower in energy by 3.7 kcal mol™* than the BS (1, 1)
open-shell singlet state. The corresponding molecular orbital
diagram and spin-density plot are shown in Fig. 9. The

© 2026 The Author(s). Published by the Royal Society of Chemistry

qualitative molecular orbital diagram is consistent with a di-
storted tetrahedral complex, in which the cobalt center is
significantly displaced from the coordination plane. The elec-
tronic structure of (S)-L2-CoCl is corroborated by the Mulliken
spin density population analysis, confirming a high-spin
cobalt(u) ion (Sc, = 3/2) antiferromagnetically coupled to an
8-oxazoline iminoquinoline radical anion (Soip— = 1/2),
resulting in an overall S = 1 triplet state.

Conclusions

In summary, we reported a series of C;-symmetric four-
coordination cobalt complexes with various steric effects, elec-
tronic effects, anions and chelation modes with spin multi-
plicities. By modulating the chelation modes and ligand
substituents, the spin states of the metal center can be effec-
tively manipulated. The 5,6-chelating mode provides a spin-
state manipulation window for four-coordination cobalt
complexes. The electronic structure of the radical anion anti-
ferromagnetically coupled Co(i) metal center was established
by multiple spectra and DFT calculations. A novel structural
parameter for four-coordination complexes, D,, is proposed,
which could be better correlated with the spin state of the metal
center. It can be anticipated that the D, index could offer
a predictive framework for manipulating spin and under-
standing the spin states of intermediates and transition states
in spin chemistry.
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