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AlphaFold3 (AF3) has revolutionized the paradigm for protein–ligand complex structure prediction, yet its

potential for structure-based virtual screening (VS) remains largely underexplored. Herein, we present

a systematic assessment of AF3-like approaches for VS applications, using AF3, Protenix and Boltz-2 as

representative models. Initial benchmarks on the well-established DEKOIS2.0 datasets demonstrate AF3's

exceptional screening capability, driven solely by its intrinsic confidence metrics for compound ranking.

While third-party scoring schemes do not improve efficacy, both AF3 and Protenix prove robust as pose

generators. Further analysis reveals performance declines in three more challenging cases: progressive

exclusion of chemically similar active ligands from test sets, evaluation on a novel GPCR dataset with

limited structural representation in model training, and assessment on a subset of LIT-PCBA dataset

whose inactive compounds were experimentally verified. Despite these limitations, these models

consistently surpass conventional docking tools in accuracy in most cases. Pose analysis further indicates

that most predictions adopt physically plausible conformations, albeit with minor structural artifacts. This

study highlights the promise and current constraints of AF3-like methods in VS, offering practical insights

for their deployment in modern drug discovery.
Introduction

The eld of structural biology has undergone a transformative
revolution with the advent of AlphaFold,1 an articial intelli-
gence (AI) solution developed by DeepMind for protein struc-
ture prediction. Compared to AlphaFold2 (AF2) primarily
limited to predicting isolated protein structures, the latest
iteration, AlphaFold3 (AF3),2 has marked a substantial leap
forward by extending its applicability beyond proteins alone,
covering a broader range of biomolecular systems, particularly
in modeling protein–ligand complexes. This enhanced capa-
bility could potentially deepen our understanding of molecular
recognition processes and even profoundly benet the early
drug discovery workows, since deciphering protein–ligand
interactions is continually a fundamental challenge in the
context of structure-based drug design (SBDD).
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As a cornerstone technique in SBDD, structure-based virtual
screening (SBVS) plays a pivotal role in modern drug discovery for
identifying novel hit compounds.3 A typical SBVS campaign begins
with a three-dimensional (3D) protein structure and a large
compound library, employing computationalmolecular docking to
prioritize compounds with optimal binding scores for subsequent
experimental validation. In contrast to ligand-based approaches
that rely on the principle of structural similarity implying bioac-
tivity, SBVS can provide detailed insights into bindingmechanisms
from a 3D structure perspective, making it a more suitable strategy
for scaffold hopping and identifying structurally diverse
compounds. Nevertheless, while docking-based VS has demon-
strated remarkable success over the past decades,4,5 inherent
limitations in docking algorithms persist as critical bottlenecks for
improving screening efficacy. These challenges primarily stem
from inadequate coverage of pose sampling,6 inherent inaccuracies
in scoring functions,7,8 and insufficient accounting for protein
exibility during simulations.9,10

The ability to directly predict protein–ligand complex struc-
tures positions emerging co-folding approaches like AF3 as
compelling alternatives to conventional docking methods. By
leveraging generative diffusion models, AF3 bypasses the
exhaustive conformational sampling characteristic of traditional
search algorithms, while its built-in condence metrics provide
reliable scoring for pose prioritization. Moreover, unlike
conventional docking methods that typically treat protein
Chem. Sci.
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structures as rigid entities, AF3's sequence-based prediction
paradigm inherently mitigates the challenges posed by protein
exibility, offering a more robust solution for biomolecular
interaction modeling. However, while these advancements have
facilitated AF3's remarkably superior accuracy over specialized
docking tools on some established datasets,2 the generalizability
of this performance toward broader chemical space warrants
further systematic investigation.

Since the rst release of AF3 in 2024 and the subsequent
emergence of open-source derivatives such as Chai-1,11 Boltz-
1,12 Protenix,13 and Boltz-2,14 extensive efforts have been devoted
to exploring their applicability across diverse biomolecular
systems.15–23 These investigations have encompassed protein–
Fig. 1 Performance comparison of multiple screening approaches on
BEDROC (a = 80.5) and (C) enrichment factors at thresholds of 0.5%, 1.0
metric. The results for approaches except AF3, Protenix, Boltz-2 and
indicators for SurfDock were calculated based on all 81 targets due to th

Chem. Sci.
ligand complexes,15–17 protein–protein interactions,18,19 protein–
peptide systems,20,21 and even more challenging ternary systems
such as those involving proteolysis-targeting chimeras (PRO-
TACs)22 or molecular glues.23 While the assessment results
consistently suggest that current models depend more on
memorization from training data than on genuine physical
understanding of molecular interactions, most analyses to date
have focused primarily on direct pose reconstruction of crys-
talized entities. Crucially, the potential utility of these predicted
complex structures for downstream applications such as
binding affinity prediction and VS remains largely unexplored.
A notable exception comes from a recent study demonstrating
AF3's near-perfect enrichment performance in distinguishing
the DEKOIS2.0 benchmark set (N = 79), indicated by (A) AUROC, (B)
%, and 5.0%. White squares in box plots indicate mean values for each
Gnina were directly retrieved from previous studies,34–36,38,39 and the
e unavailability of the label for each target.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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covalent active ligands from property-matched decoys.24

Nevertheless, given that the datasets used there are predomi-
nantly composed of kinases due to the requirement for covalent
binding, the observed results may be biased, as the crystal
structures of kinases have been extensively resolved and are
thus overrepresented in training data. Hence, further evalua-
tions across more diverse scenarios are still necessary.

In this study, to gure out whether AF3-like approaches could
be consistently applicable to VS, a comparable assessment was
conducted using Protenix and AF3 as primary examples. The
assessment was further supplemented with the recently devel-
oped Boltz-2, which includes a dedicated binding affinity predic-
tion module, enabling direct affinity estimation alongside
structural prediction. The analysis was rst performed on
DEKOIS2.0 dataset,25 a well-established benchmark that had been
widely employed to evaluate the VS performance of both physics-
based and AI-powered docking tools. In addition to simply esti-
mating screening performance using the intrinsic condence
scores provided by AF3, Protenix and Boltz-2, we further explored
whether integrating AF3-predicted complex structures with high-
precision third-party rescoring methods could enhance enrich-
ment. Notably, given that the proteins and ligands in DEKOIS
might overlap with the training data of these models, which may
introduce potential biases, we additionally curated the GPCRrecent
Table 1 Comparison of AF3's built-in confidence scores with several sta

Method

AUROC
BEDROC
(a = 80.5)

Mean Med Mean Med

AF3 (ranking score) 0.893 0.934 0.628 0.655
AF3 (pTM) 0.832 0.874 0.417 0.396
AF3 (ipTM) 0.892 0.933 0.635 0.659
AF3 (min-iPAE) 0.913 0.952 0.755 0.828
Boltz-2 (ranking score) 0.831 0.857 0.385 0.347
Boltz-2 (pTM) 0.720 0.735 0.194 0.137
Boltz-2 (ipTM) 0.860 0.894 0.560 0.618
Boltz-2 (min-iPAE) 0.896 0.939 0.709 0.780
Boltz-2 (Affinity)a 0.854 0.918 0.705 0.780
Boltz-2 (Probability)a 0.911 0.964 0.820 0.925
Protenix (ranking score) 0.782 0.813 0.456 0.477
Protenix (pTM) 0.597 0.602 0.089 0.016
Protenix (ipTM) 0.795 0.837 0.507 0.553
Glide_SPb 0.745 0.752 0.374 0.313
GOLD_CHEMPLPc 0.647 0.631 0.172 0.148
LeDockc 0.656 0.680 0.187 0.142
Surex-Dockb 0.671 0.673 0.219 0.180
Gnina (Vina) 0.653 0.659 0.164 0.105
Gnina (CNNscore) 0.715 0.734 0.354 0.342
Gnina (CNNaffinity) 0.710 0.739 0.257 0.231
TankBindd 0.602 0.606 0.109 0.053
KarmaDock (Aligned)d 0.743 0.786 0.458 0.453
CarsiDocke 0.797 0.838 0.561 0.638
SurfDockf 0.758 0.803 0.488 0.482

a As Boltz-2 directly fetched affinity data from public databases (e.g., Pub
DEKOIS 2.0, its reported performance metrics are likely signicantly ov
here should be treated as a reference only and may not reect its true p
results were retrieved from ref. 39. d The results were retrieved from ref. 3
from ref. 36 and the indicators were calculated based on all 81 targets du

© 2025 The Author(s). Published by the Royal Society of Chemistry
dataset (Fig. S1, S2 and Table S1), comprising protein targets
whose rst-determined crystal structures were released exclusively
aer 2022. To mitigate bias introduced by articially-generated
decoys in above two datasets, we also retrieved a subset of
widely-recognized LIT-PCBA dataset,26 where both the actives and
inactives were experimentally veried. Using these two extra
datasets, we further benchmarked the performance of such
approaches with Protenix and Boltz-2 as representative methods.
Our rigorous evaluation across multiple datasets demonstrates
the considerable promise of AF3-like approaches in VS tasks,
while also revealing opportunities for further optimization to
enhance their utility in practical VS projects.
Results and discussion
Evaluation of AF3's built-in condence scores on DEKOIS2.0
dataset

Using the well-established DEKOIS2.0 dataset, we rst investi-
gated the performance of Protenix, AF3 and Boltz-2 when
directly coupled with their intrinsic condence metrics. For
comprehensive benchmarking, we compared these approaches
with ve popular traditional docking programs (Glide SP,27

AutoDock Vina,28 GOLD CHEMPLP,29 Surex-Dock,30 and
LeDock31) and ve emerging AI-powered docking tools (Gnina,32
te-of-the-art-docking tools on the DEKOIS2.0 dataset

EF0.5% EF1% EF5%

Mean Med Mean Med Mean Med

20.57 22.14 19.23 21.46 12.42 13.50
13.68 13.29 12.59 11.92 9.34 9.50
20.46 22.14 19.32 21.46 12.64 13.50
22.98 26.57 23.15 26.23 14.50 16.00
12.89 13.29 11.77 9.54 7.89 7.50
6.22 4.43 5.61 4.76 4.32 3.00

19.17 22.14 17.96 19.08 10.30 11.00
23.32 26.57 22.73 26.23 13.15 14.00
25.17 31.00 23.54 28.59 11.66 12.50
26.68 31.00 25.84 28.62 14.32 16.00
16.42 17.71 14.97 14.31 8.12 8.50
2.41 0.00 2.29 0.00 2.20 0.50

18.44 22.14 16.81 16.69 8.84 9.50
14.20 13.23 12.01 9.53 6.18 5.95
5.78 4.43 5.38 4.75 3.36 3.00
6.78 4.43 5.88 4.77 3.65 3.50
8.30 4.43 7.27 4.77 3.97 3.50
6.17 4.43 5.16 2.38 3.12 2.50

13.73 13.29 11.92 9.54 6.17 6.00
9.36 8.86 8.21 7.15 4.87 4.50
2.90 0.00 2.94 0.00 2.42 1.51

16.55 17.45 15.16 15.16 7.33 7.01
20.23 22.14 18.65 23.85 9.29 9.00
21.00 25.73 18.17 18.07 8.34 8.12

Chem, ChEMBL, and BindingDB), which also serve as the sources for
er-estimated due to this data overlap. Therefore, the results presented
redictive performance. b The results were retrieved from ref. 38. c The
4. e The results were retrieved from ref. 35. f The results were retrieved
e to the unavailability of the label for each target.
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TankBind,33 KarmaDock,34 CarsiDock35 and SurfDock36). The
comparative performance, indicated through AUROC, BED-
ROC, and enrichment factors (EFs), is detailed in Table 1 and
Fig. 1.

Among the three condence scores output from Protenix,
ipTM exhibits the strongest discriminatory power, followed by
Ranking score, while pTM performs signicantly worse. This
aligns with expectations, as ipTM specically characterizes
protein–ligand interfaces, whereas pTM primarily reects
global structural features. Ranking score, a composite metric
integrating both pTM and ipTM, logically occupies an inter-
mediate position. Notably, Protenix performs substantially
inferior to Boltz-2 and AF3 across all condence metrics and
evaluation criteria in our assessment. While Protenix and Boltz-
Fig. 2 Performance distribution of several representative screening a
evaluated by (A) AUROC, (B) BEDROC (a= 80.5) and (C) EF1%. Targets are
for each individual metric.

Chem. Sci.
2 were developed as open-source implementations inspired by
AF3, they likely differ in critical aspects such as training data
scale, quality, and undisclosed methodological details from the
original AF3 model. Furthermore, the development focus of
Protenix may have prioritized overall structural accuracy over
rening their built-in condence metrics for VS. These ndings
suggest that further renement may be still necessary for Pro-
tenix to match AF3's predictive capabilities for VS.

Despite so, Protenix (ipTM) still achieves competitive results,
with a mean AUROC of 0.795, BEDROC of 0.507, EF0.5% of 18.44,
EF1% of 16.81 and EF5% of 8.84, which not only markedly
outperform those of the widely-employed traditional docking
programs (the corresponding indicators of the best-performing
Glide SP are 0.745, 0.374, 14.20, 12.01 and 6.18), but rival state-
pproaches across all targets in DEKOIS2.0 benchmark set (N = 79),
sorted in ascending order based on the performance of AF3 (min-iPAE)

© 2025 The Author(s). Published by the Royal Society of Chemistry
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of-the-art AI-based approaches like CarsiDock (0.797, 0.561,
20.23, 18.65 and 9.29) and SurfDock (0.758, 0.488, 21.00, 18.17
and 8.34). The performance gap narrows considerably with AF3
(ipTM), which delivers metrics comparable to or even exceeding
those of leading AI tools. Another interesting nding is that
min-iPAE, a metric rst proposed by Omidi et al.37 in AF-
Multimer to capture interactions in intrinsically disordered
protein regions, demonstrates even better performance than
ipTM across all evaluated metrics for both AF3 (e.g., mean
BEDROC: 0.755 vs. 0.635; EF1%: 23.15 vs. 19.32) and Boltz-2 (e.g.,
mean BEDROC: 0.709 vs. 0.560; EF1%: 22.73 vs. 17.96). This
nding corroborates previous observations by Shamir et al.,24

highlighting its exceptional potential as an enrichment
discriminator. As for the underlying mechanisms, we hypothe-
size both ipTM and min-iPAE may resemble that of knowledge-
based scoring functions to distinguish actives from decoys.
Unlike physics-based or empirical scoring functions that
explicitly incorporate binding affinity data, these approaches
leverage the structural reliability of predicted complexes for
compound ranking, which may offer a promising avenue for
further enhancing VS performance.

Regarding the marginal superiority of AF3 over Boltz-2 when
evaluated using their native condence metrics, one may attri-
bute it to the difference in recommended number of predic-
tions, i.e., the former outputs ve models while the latter
provides only one. To examine whether this discrepancy surely
inuenced the comparison, we conducted a simple experiment
Table 2 Performance comparison of scoring approaches for complex st
results are based on the top-ranked poses selected by Ranking score

Method

AUROC
BEDROC
(a = 80.5)

Mean Med Mean Med

Protenix
ipTM 0.795 0.837 0.507 0.553
Glide_SP 0.785 0.811 0.390 0.366
Glide_XP 0.792 0.817 0.394 0.371
Gnina (AD4) 0.624 0.607 0.151 0.108
Gnina (Vina) 0.682 0.678 0.186 0.167
Gnina (Vinardo) 0.751 0.767 0.259 0.225
Gnina (CNNscore) 0.846 0.890 0.515 0.597
Gnina (CNNaffinity) 0.748 0.774 0.310 0.303
RTMScore 0.852 0.909 0.640 0.759
PLANET 0.703 0.742 0.140 0.105
PIGNet2 0.731 0.763 0.292 0.199
IGModel (pkd) 0.786 0.815 0.348 0.342
IGModel (rmsd) 0.787 0.838 0.287 0.279

AF3
ipTM 0.892 0.933 0.635 0.659
Min-iPAE 0.913 0.952 0.755 0.828
Glide_SP 0.798 0.816 0.398 0.352
Glide_XP 0.796 0.827 0.391 0.394
Gnina (AD4) 0.636 0.647 0.157 0.103
Gnina (Vina) 0.704 0.705 0.194 0.160
Gnina (Vinardo) 0.757 0.766 0.270 0.239
Gnina (CNNscore) 0.855 0.896 0.509 0.549
Gnina (CNNaffinity) 0.757 0.779 0.323 0.269
RTMScore 0.865 0.906 0.674 0.787

© 2025 The Author(s). Published by the Royal Society of Chemistry
in which only the rst generated sample from AF3 and Protenix
was used as the nal prediction, thereby simulating a single-
sample scenario comparable to Boltz-2. As shown in Fig. S3,
limiting the number of samples to one has only a minor impact
on most evaluation metrics. In certain cases, models using only
one prediction even slightly outperform those using multiple
samples. These results suggest that it is methodologically
acceptable to directly compare AF3 and Boltz-2 despite differ-
ences in their default sample numbers. Furthermore, they
indicate that generating a single structural sample may be
sufficient for large-scale VS, which has positive implications for
computational efficiency in practical applications.

As expected, the affinity scores generated by the specialized
binding affinity module in Boltz-2, from both its regression
(Affinity) and classication (Probability) models, demonstrate
exceptional enrichment performance (Table 1). However, it is
important to note that Boltz-2 was trained on extensive affinity
data sourced from public databases (e.g., PubChem,40

ChEMBL,41 and BindingDB42), which also serve as the primary
sources for the active ligands in DEKOIS2.0 benchmark. As the
Boltz-2 team has not released their specic training set, the
actual degree of data overlap remains unquantiable. There-
fore, these results are presented for reference only and will not
be incorporated into the following analyses in this study.

Further analysis of individual target performance (Fig. 2 and
S4) reveals that while the four condence scores embedded in
AF3 exhibit nearly identical performance distributions in terms
ructures predicted by Protenix and AF3 on the DEKOIS2.0 dataset. The

EF0.5% EF1% EF5%

Mean Med Mean Med Mean Med

18.44 22.14 16.81 16.69 8.84 9.50
14.46 13.29 12.65 11.92 7.23 6.50
14.74 13.29 12.68 11.92 7.38 7.00
5.38 4.43 4.77 2.38 3.08 2.50
6.84 4.43 5.80 4.77 3.58 3.50
8.80 4.43 8.15 7.15 5.08 4.50

18.11 22.14 16.69 19.08 9.34 10.00
11.44 8.86 10.26 9.54 5.72 5.50
21.02 26.57 20.37 23.85 11.62 13.00
4.15 0.00 3.92 2.38 3.27 3.00
9.70 8.86 9.09 7.15 5.68 4.00

12.11 8.86 11.41 9.54 6.68 6.50
8.30 4.43 8.54 7.15 6.11 6.00

20.46 22.14 19.32 21.46 12.64 13.50
22.98 26.57 23.15 26.23 14.50 16.00
14.41 13.29 12.65 11.92 7.32 7.00
13.73 17.71 12.53 11.92 7.43 7.00
5.10 4.43 4.92 2.38 3.14 2.50
7.06 4.43 5.92 4.77 3.92 3.50
9.19 8.86 8.45 7.15 5.21 4.50

18.11 22.14 16.51 19.08 9.25 10.00
11.94 8.86 10.50 9.54 5.98 5.50
22.42 26.57 21.34 26.23 12.34 13.00

Chem. Sci.
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of AUROC, only Ranking score and ipTM show similar trends
for other metrics. Interestingly, despite sharing similar predic-
tion principles, Protenix, AF3 and Boltz-2 show divergent
optimal targets under identical condence metrics. This
discrepancy becomes even more pronounced when comparing
methods with fundamentally distinct screening protocols.
Together, these observations emphasize the importance of
target-specic evaluation when selecting or optimizing
computational methods for a given protein system.

Impact of external scoring functions on screening
performance

While AF3 combined with its intrinsic condence scores has
demonstrated encouraging VS performance on DEKOIS2.0 data-
set, these scores may lack explicit physical interpretations of
protein–ligand interactions. In practice, researchers might still
prefer classical scoring schemes for compound prioritization.
Therefore, leveraging the binding complexes predicted by Prote-
nix and AF3, we further evaluated whether high-precision
rescoring methods could potentially enhance enrichment. For
comprehensive assessment, we examined scoring functions from
Fig. 3 Performance comparison of multiple scoring approaches appli
DEKOIS2.0 benchmark set (N = 79). Performance metrics include (A an
squares in box plots indicate mean values for each metric.

Chem. Sci.
two representative docking programs (Glide and Gnina) alongside
several recently-developed deep learning approaches (PLANET,43

PIGNet2,44RTMScore,38 and IGModel45) with varyingmechanisms.
As summarized in Table 2, Fig. 3 and S5, while Protenix alone

could not match the performance of AF3 under identical condi-
tions, the performance gap narrows when alternative scoring
methods are applied, suggesting that Protenix indeed achieves
comparable performance to AF3 in binding pose prediction. But
among all rescoring protocols, only CNNscore and RTMScore
could approach the high performance of ipTM and min-iPAE,
whereas other methods lag signicantly. This discrepancy likely
stems from the shared design philosophy of CNNscore and
RTMScore, both of which prioritize structural reliability for pose
ranking, mirroring the mechanism of AF3's condence metrics.

To mitigate the inuence of pose quantity on rescoring
outcomes, we also compared scenarios involving all 5 candidate
poses generated by the recommended settings of AF3/Protenix
versus only the top-ranked pose selected by Ranking score.
Fig. S6 and S7 depict the results for Protenix- and AF3-preidcted
structures, respectively. Notably, CNNscore exhibits signicant
improvements, achieving metrics closely aligned with ipTM.
ed to structures predicted by (A–C) Protenix and (D–F) AF3 on the
d D) AUROC, (B and E) BEDROC (a = 80.5) and (C and F) EF1%. White

© 2025 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06481c


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/9
/2

02
6 

10
:4

7:
23

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
Given that this model was trained on diverse cross-docked
poses, its pronounced sensitivity to binding pose variations is
unsurprising. In contrast, other methods show marginal gains
or even performance degradation, suggesting that simply
incorporating additional poses does not universally enhance
outcomes.

We further investigated whether using AF3 or Protenix as
alternative pose generators against traditional sampling algo-
rithms (Glide/Gnina) could enhance VS performance, as
detailed in Fig. 4A–C and S8. The results demonstrate
Fig. 4 Evaluation of pose generationmethods in screening performance.
(a = 80.5) and (C) EF1% values across different pose generation methods.
values between different approaches: (D and G) Glide/Gnina vs. AF3, (E an
engine employed for RTMScore rescoring is Glide SP. White squares in b

© 2025 The Author(s). Published by the Royal Society of Chemistry
consistent superiority of both AI-based generators over
conventional methods in all tested scoring schemes, with AF3
showing a slight but negligible edge over Protenix. Notably, the
performance enhancement is particularly signicant for deep
learning-based scoring functions (CNNscore, CNNaffinity, and
RTMScore), with more modest improvements observed for
classical methods (Glide SP and Vina). We also analyzed the
pairwise correlation of each metric across the 79 targets using
different pose generators with the same scoring scheme
(Fig. 4D–I and S9). Intriguingly, the outcomes from AF3 and
(A–C) Boxplots comparing the distributions of (A) AUROC, (B) BEDROC
(D–I) Pairwise correlation analysis of (D–F) AUROC and (G–I) BEDROC
dH) Glide/Gnina vs. Protenix, and (F and I) AF3 vs. Protenix. The docking
ox plots indicate mean values for each metric.
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Protenix exhibit strong agreement, with Pearson's correlation
coefficients (Rp) for BEDROC values ranging from 0.753 to
0.953. In contrast, comparisons between AF3/Protenix and
classical search-based methods were signicantly weaker (Rp

values for AF3 and Protenix are 0.251–0.696 and 0.345–0.666,
respectively). Additionally, AI-based scoring functions generally
display higher correlations than classical ones, further sup-
porting their reduced sensitivity to pose variations.

Taken together, while none of the tested rescoring methods
surpass AF3 (min-iPAE), RTMScore (mean AUROC: 0.865;
BEDROC: 0.674; EF1%: 21.34) and CNNscore with 5 poses (mean
AUROC: 0.877; BEDROC: 0.672; EF1%: 19.18) emerge as
competitive alternatives. These ndings also suggest the
potential of AF3/Protenix as robust pose generators, particularly
when paired with deep learning-based scoring approaches.
Impact of ligand similarity on screening performance

Although AF3 was not specically optimized for binding affinity
ranking, its training set presumably incorporated a substantial
portion of protein–ligand complex structures available in the
RCSB PDB.46 Therefore, it is highly likely that AF3 would assign
Fig. 5 Impact of ligand similarity on the screening performance of multip
and D) BEDROC (a = 80.5). For each active compound in the DEKOIS2.
entire molecule or (B and D) the Murcko scaffold. The minimum Tanimo
point represents the mean value across targets for each metric. Targets
were excluded from metric calculations.

Chem. Sci.
high condence scores for protein–ligand pairs that structurally
resemble those encountered during training. While the protein
structures in DEKOIS2.0 dataset may be overrepresented in AF3's
training set, the vast chemical diversity of ligands makes
comprehensive coverage improbable. We therefore systemati-
cally evaluated how ligand similarity affects screening perfor-
mance on the DEKOIS2.0 dataset, irrespective of potential
protein similarities. Our analysis began by retrieving all PDB
ligands used in Protenix training and calculating their ECFP4
ngerprints,47 examining both entire molecules and more robust
Murcko scaffolds.48 We then performed identical ngerprint
calculations for each active compound in DEKOIS2.0 and thus
determined their minimum Tanimoto similarity to any PDB
ligand. For varying similarity thresholds, we re-calculated the
performance metrics for each screening tool. Here we focused
primarily on AUROC and BEDROC metrics because enrichment
factors are particularly sensitive to the number of active
compounds remaining aer thresholding. As expected, when the
retained active compounds exhibit strong enrichment, the overall
performance in turn gains a signicant improvement (Fig. S10).

Fig. 5 reveals subtle yet discernible differences in perfor-
mance trends between mean AUROC and BEDROC metrics. As
le docking tools. Performance metrics include (A and B) AUROC and (C
0 dataset, ECFP4 fingerprints were computed either for (A and C) the
to similarity to all ligands in the RCSB PDB was then determined. Data
for which no active compounds met the specified similarity threshold

© 2025 The Author(s). Published by the Royal Society of Chemistry
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ligand similarity decreases, AF3-like approaches combined with
either ipTM or min-iPAE exhibit a noticeable progressive
decline in AUROC scores, while other methods show only
marginal variations until the similarity threshold drops below
0.4. Beyond this point, the exclusion of targets with insufficient
qualifying active compounds introduces greater variability in
the metrics. In contrast, the BEDROC metric presents a more
consistent pattern, with all approaches following a similar
downward trend. Notably, performance variations based on
scaffold similarity are more pronounced than those observed
for molecular similarity. These observations indicate that
ligand similarity does inuence the performance of AF3's
intrinsic condence scores to some degree. Importantly, despite
these variations, the relative ranking among screening tools
remains stable, with AF3 (min-iPAE) maintaining its superior
performance even under low-similarity conditions. These
trends were further accentuated in the median AUROC and
BEDROC analyses (Fig. S11 and S12).

Similar patterns emerge when examining rescoring
approaches (Fig. 6 and S13), with one key distinction: almost all
methods exhibit a gradual decline in both mean AUROC and
Fig. 6 Impact of ligand similarity on the screening performance of multip
and (B and D) Protenix. Performance metrics include (A and B) AUROC
DEKOIS2.0 dataset, ECFP4 fingerprints were computed for the Murcko sc
was then determined. Data point represents the mean value across targ
specified similarity threshold were excluded from metric calculations.

© 2025 The Author(s). Published by the Royal Society of Chemistry
BEDROC as similarity decreases. Given that these rescoring
schemes rely on structures predicted by either Protenix or AF3,
this consistent trend suggests deteriorating pose generation
accuracy for complexes featuring novel ligand scaffolds.
Nevertheless, as clearly illustrated in Fig. 7, AF3- and Protenix-
based pose generators consistently maintain superior perfor-
mance compared to conventional search-based engines. This
advantage is more substantial for deep learning-based
CNNscore, whereas classical methods like Glide SP and Vina
show progressively smaller performance gaps as similarity
thresholds become more stringent.
Performance on GPCRrecent dataset

To mitigate potential biases from overrepresented protein
structures in model training, we further curated the GPCRrecent

dataset, comprising only entries whose rst crystal complex
structures were released aer 2022. We then evaluated the VS
performance of AF3-like approaches, using Protenix and Boltz-2
as representative examples due to their signicantly lower
computational memory requirements compared to AF3.
le scoring schemes based on the structures predicted by (A and C) AF3
and (C and D) BEDROC (a = 80.5). For each active compound in the
affold. Theminimum Tanimoto similarity to all ligands in the RCSB PDB
ets for each metric. Targets for which no active compounds met the
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Fig. 7 Impact of ligand similarity on screening performance across different rescoring schemes and pose generators. Performance metrics
include (A and B) AUROC and (C and D) BEDROC (a = 80.5). For each active compound in the DEKOIS2.0 dataset, ECFP4 fingerprints were
computed for (A and C) the entire molecule or (B and D) the Murcko scaffold. The minimum Tanimoto similarity to all ligands in the RCSB PDB
was then determined. Data point represents the mean value across targets for each metric. Targets for which no active compounds met the
specified similarity threshold were excluded from metric calculations.

Chem. Sci. © 2025 The Author(s). Published by the Royal Society of Chemistry
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However, since Boltz-2 employed a temporal cutoff of 2023-6 in
its training, we have to extract a corresponding subset containing
only six targets for further analysis. Notably, the results yielded by
its binding affinity prediction module were excluded from this
particular analysis due to unavoidable data overlap between its
training sources (e.g., BindingDB) and the composition of this
benchmark. Consequently, while this temporally-constrained
dataset may provide a complementary test for the methods
primarily relying on crystal structures, it cannot adequately
reect the true generalization capability of those affinity predic-
tion models like that in Boltz-2, which may have incorporated
almost all available binding data into model training.

The substantial differences in dataset composition and
decoy generation mechanisms prevent direct generalization of
DEKOIS2.0 benchmark results, as evidenced by Table 3 and
Fig. 8. However, both Boltz-2 (min-iPAE) and Boltz-2 (ipTM)
maintain strong performance, with mean BEDROC values of
0.236 and 0.277, and mean EF1% values of 12.03 and 13.96,
respectively. These results remain consistent even when evalu-
ated on a subset containing only six newer targets (0.230, 0.287,
12.62 and 14.30, respectively), though the limited number of
targets precludes robust statistical conclusions. The metrics for
Protenix (ipTM) lag signicantly, but still demonstrates
competitive early enrichment performance (mean BEDROC:
0.135, mean EF1%: 6.97) in comparison to the other approaches.
Incorporating additional rescoring schemes does not yield
signicant improvements, with only CNNscore performing
comparably (mean BEDROC: 0.118, mean EF1%: 5.80). Notably,
as a pose generator, Protenix enhances performance only for
CNNscore, likely due to its pronounced performance decline
when using Gnina's built-in search engine, while results for
Glide and Vina even deteriorate substantially. In contrast,
conventional docking programs like Glide SP and Gnina (Vina)
show reduced performance compared to their results on the
Table 3 Performance comparison of several screening approaches on t

Method

AUROC
BEDROC
(a = 80.5)

Mean Med Mean Med

Boltz-2 (ipTM) 0.738 0.730 0.236 0.198
Boltz-2 (min-iPAE) 0.770 0.795 0.277 0.213
Boltz-2 (ipTM) subseta 0.717 0.699 0.230 0.201
Boltz-2 (min-iPAE) subseta 0.764 0.740 0.287 0.245
Protenix (ipTM) 0.623 0.632 0.135 0.105
Protenix (Glide_SP) 0.636 0.634 0.082 0.066
Protenix (Glide_XP) 0.591 0.579 0.081 0.050
Protenix (AD4) 0.601 0.594 0.041 0.038
Protenix (Vina) 0.653 0.644 0.078 0.070
Protenix (CNNscore) 0.652 0.663 0.118 0.099
Protenix (CNNaffinity) 0.583 0.594 0.031 0.032
Protenix (RTMScore) 0.644 0.654 0.080 0.071
Glide_SP 0.653 0.668 0.106 0.085
Gnina (Vina) 0.635 0.612 0.083 0.067
Gnina (CNNscore) 0.564 0.554 0.062 0.048
Gnina (CNNaffinity) 0.557 0.555 0.024 0.018

a The results were obtained based on a subset of the whole dataset, which
2023-6 (i.e., O15552, P0DMS8, P13945, P35348, P46098, Q96RJ0).

© 2025 The Author(s). Published by the Royal Society of Chemistry
DEKOIS2.0 dataset, yet their relative competence improves
here. These observations imply that protein similarity indeed
exerts a remarkable inuence on those AI-driven tools, affecting
both Protenix's complex structure prediction capability and the
screening power of deep learning-based scoring functions.

When taking ligand similarity into account (Fig. 8D and E),
downward trends persist in the BEDROC metrics across all
methods, but the overall decline does not substantially alter
their relative rankings. AF3-like approaches, when used with
their inherent condence metrics, continue to substantially
outperform other approaches in mean BEDROC, reinforcing
their robustness in early enrichment despite dataset variations.

Performance on a subset of LIT-PCBA dataset

One reviewer noted that the negative samples in both the
DEKOIS2.0 and GPCRrecent datasets are articially-generated
decoys, which might introduce potential bias. In contrast, LIT-
PCBA, another widely-accepted benchmark for VS, contains
active and inactive compounds derived from real-world screening
campaigns. We therefore evaluated Protenix and Boltz-2 on this
dataset, with Glide and Gnina as baselines. Of note, due to the
signicant computational cost associated with co-folding
approaches, our evaluation was limited to a subset of ve
targets, each containing fewer than 100 000 compounds.
Furthermore, given the substantial variation in the ratio of
actives to inactives across different targets in this benchmark
(Table S2), we employed not only the conventional EF1% but also
the normalized enrichment factor (NEF).49 The NEF accounts for
disparities in the active-inactive ratio, thereby allowing a more
direct and fair comparison of model performance across targets.

As shown in Table 4, performance varies considerably across
targets: Boltz-2 (ipTM) and Boltz-2 (min-iPAE) each achieve top
performance on two targets, while Protenix (ipTM) and Gnina
(CNNaffinity) each lead on one. When taking the average NEF1%
he GPCRrecent dataset

EF0.5% EF1% EF5%

Mean Med Mean Med Mean Med

14.56 12.91 12.03 9.30 5.70 5.03
17.06 12.91 13.96 10.83 6.78 5.93
15.77 13.58 12.62 10.91 5.17 4.84
19.03 17.55 14.30 12.50 6.83 5.87
7.99 5.30 6.97 5.67 3.59 2.88
4.47 4.64 3.58 2.83 2.59 1.93
4.79 2.64 3.89 2.47 2.32 1.67
1.75 1.32 1.59 1.41 1.72 1.72
3.59 3.64 3.21 3.33 2.88 2.90
7.37 6.62 5.80 4.92 3.38 2.86
1.11 1.32 1.26 1.33 1.29 1.40
4.17 3.63 3.66 3.20 2.69 2.17
5.90 4.30 5.02 3.83 3.22 2.80
3.80 3.31 3.65 3.33 2.73 2.10
3.18 1.99 2.74 1.97 2.06 1.73
0.86 0.66 0.94 0.71 1.13 1.13

involves only the six targets whose rst crystal structures released aer
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Fig. 8 Evaluation of screening performance on the GPCRrecent dataset (N = 16). (A–C) Boxplots comparing the distributions of (A) AUROC, (B)
BEDROC (a = 80.5) and (C) enrichment factors at thresholds of 0.5%, 1.0%, and 5.0%, across different screening methods. (D and E) Impact of
ligand similarity on the screening performance indicated by BEDROC scores. For each active compound in the GPCRrecent dataset, ECFP4
fingerprints were computed for (D) the entire molecule or (E) the Murcko scaffold. The minimum Tanimoto similarity to all ligands in the RCSB
PDB was then determined. Data point represents the mean value across targets for eachmetric. Targets for which no active compounds met the
specified similarity threshold were excluded from metric calculations.

Chem. Sci. © 2025 The Author(s). Published by the Royal Society of Chemistry
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into account, Boltz-2 (min-iPAE) performs the best, followed by
Boltz-2 (ipTM) and Protenix (ipTM), all of which still demonstrate
overall superiority over the approaches implemented in Glide
and Gnina. We further analyzed the inuence of ligand similarity
on screening performance (Fig. S14). But unfortunately, this
analysis did not yield clear trends as both EF and NEF are highly
susceptible to the number of active compounds, and the limited
number of targets also prevents drawing statistically consistent
conclusions. Despite so, AF3-like approaches show encouraging
performance in this straightforward evaluation, further corrob-
orating the ndings from the previous datasets.
Structural analysis of top-ranking hit compounds

Although AF3-like approaches show certain advantages in
enrichment metrics, it remains unclear whether they could
identify structurally distinct active compounds compared to
conventional methods. Taking the GPCRrecent dataset as an
example, we rst investigated whether different approaches
exhibit distinct ranking preferences. Fig. S15 presents the pair-
wise Spearman's rank correlation coefficients between screening
tools for active compounds (Fig. S15A) and all compounds
(Fig. S15B). As expected, ipTM and min-iPAE combined with
Boltz-2 predictions demonstrate high correlations (most values
exceeding 0.8) across all the targets, which can be attributed to
their highly similar ranking mechanisms. Classical scoring
functions, whether used with their original docking engines or
Protenix-predicted structures, exhibit moderate correlations for
most targets. In contrast, correlations for other groups, even
including Boltz-2 (ipTM) and Protenix (ipTM), are generally
lower, indicating divergent ranking behaviors.

We further analyzed the active compounds enriched in top-
100 and top-500 rankings. As shown in Fig. 9, the overlap
rates between methods are largely consistent with the ranking
correlations. The distinct ranking preferences directly explain
the generally low overlap rates observed between most method
pairs. Notably, some active compounds in certain targets (e.g.,
O15552, P13945, Q5NUL3 and Q8TDV5) seem to be easily
enriched by almost all the approaches, thus leading to relatively
high overlaps across pairs. But for others, the overlaps are more
Table 4 Performance comparison of several screening approaches on a
100 000 compounds each

Method

ESR_ago ESR_antago PPARG

EF1% NEF1%
a EF1% NEF1% EF1%

Boltz-2 (ipTM) 7.69 0.077 3.88 0.078 25.62
Boltz-2 (min-iPAE) 15.37 0.154 2.91 0.059 25.62
Protenix (ipTM) 7.69 0.077 1.94 0.039 21.96
Glide_SP 7.69 0.077 1.94 0.039 18.30
Gnina (Vina) 7.69 0.077 3.88 0.078 0.00
Gnina (CNNscore) 7.69 0.077 2.91 0.059 18.30
Gnina (CNNaffinity) 7.69 0.077 4.85 0.098 0.00

a The normalized enrichment factor (NEFx%) is calculated by dividing the o
normalization connes NEF to a [0, 1] range, which corrects for disparities
results directly comparable.

© 2025 The Author(s). Published by the Royal Society of Chemistry
moderate, particularly in the top-100 range. Among all pairs, the
actives identied by Boltz-2 (ipTM) and Boltz-2 (min-iPAE)
consistently show high overlap, but when paired with other
approaches, the metric remarkably decreases. These trends
could also be observed in analyses based on average molecular
similarities (Fig. S16) and scaffold similarities (Fig. S17).

In summary, while high overlap or structural similarity
among actives enriched by different tools does occur for some
targets, this appears to stem from the inherent properties of
those targets or datasets, rather than from methodological bi-
ases. Overall, this analysis conrms that screening methods
with distinct ranking mechanisms are capable of enriching
structurally diverse compounds. These ndings also underscore
the value of employing multiple screening strategies in practical
VS projects to identify the compounds with novel scaffolds.
Assessment of computational efficiency

The substantial computational cost of AF3-like methods may
pose a signicant constraint on their practical application. To
investigate this further, we simply benchmarked the three co-
folding methods involved in this study on ve representative
targets from the DEKOIS2.0 dataset, each with 400 randomly
selected decoys. All experiments were performed on a single
NVIDIA H100 GPU with 80 GB of memory. For each target, pre-
computed MSAs and ligand structures in SMILES format were
fed as input, and computational efficiency was measured by
averaging the total time per compound.

As summarized in Table 5, AF3 takes approximately 18.42 s
to obtain 5 predictions for a given protein–ligand pair, while
Protenix requires 34.58 s. When the number of samples is
reduced to 1, the corresponding times decrease to 12.99 and
12.38 s, respectively. The latest Boltz-2 appears to be the fastest,
taking about 17.77 or 7.79 s per run depending on whether the
affinity module is enabled. It should be noted that runtimes
vary substantially across different targets, inuenced by factors
such as token length, number of atoms and MSA depth. Addi-
tionally, modeling complexes involving entities beyond a single
protein chain and ligand (e.g., additional protein chains or
ligands) may introduce extra computational overhead.
subset of the LIT-PCBA dataset comprising five targets with fewer than

TP53 MAPK1 Average

NEF1% EF1% NEF1% EF1% NEF1% EF1% NEF1%

0.259 0.00 0.000 3.24 0.032 8.09 0.089
0.259 0.00 0.000 2.59 0.026 9.30 0.100
0.222 5.00 0.093 1.30 0.013 7.58 0.089
0.185 3.75 0.070 2.27 0.023 6.79 0.079
0.000 1.25 0.023 1.30 0.013 2.82 0.038
0.185 0.00 0.000 1.62 0.016 6.10 0.067
0.000 1.25 0.023 1.95 0.019 3.15 0.044

bserved EFx% by its theoretical maximum (EFmax) at a threshold x%. This
in the ratio of actives to inactives among different targets and makes the

Chem. Sci.
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Fig. 9 Overlap rates of active compounds among (A) top 100 and (B) top 500 compounds identified by different screening tools across targets in
GPCRrecent dataset. An active compound identified by both tools in a comparison is considered an overlap. The overlap rate for a row method is
calculated as the percentage of its active compounds that are also found by each columnmethod. A value below 0 indicates that the rowmethod
did not identify any active compounds at the specified cutoff.
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Beyond inference time, two other computational factors also
warrant consideration. First, although MSA generation could be
performed once per protein target in a typical VS campaign, the
Chem. Sci.
time required differs markedly among tools: AF3, using the rec-
ommended HMMER-based workow, takes 20–30 minutes,
whereas the MMseqs2-based implementation in Protenix and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 5 Computational speed (seconds per compound) for different methods on five representative targets from the DEKOIS2.0 dataset. All
assessments were conducted on a single NVIDIA H100 with 80 GB of memory. For each target, the pre-computed MSAs and ligand structures in
SMILES format were fed as input, and then the overall computational efficiency was calculated by averaging the total time per compound

Method Number of samples a2a ar cdk2 ctsk hdac2 Average

AF3 5 26.34 15.36 17.48 10.28 22.63 18.42
1 19.14 10.64 12.82 6.70 15.66 12.99

Protenix 5 45.83 29.70 31.80 30.01 35.56 34.58
1 20.09 9.46 10.47 8.49 13.41 12.38

Boltz-2 1 21.48 15.43 16.83 16.17 18.93 17.77
Boltz-2 (without affinity module) 1 10.83 6.14 7.11 6.05 8.79 7.79

Table 6 Pose Analysis on DEKOIS2.0 dataset

Pose generator Number of poses Metric
Poses failing to be processed
by Protein Preparation Wizard (actives/decoys/total)

Poses considered as ‘PB-invalid’
using PoseBusters toolkit (actives/decoys/total)

AF3 Five Number 11/1325/1336 155/12218/12373
Ratio 0.070%/0.280%/0.273% 0.982%/2.586%/2.534%

Top-ranked Number 0/200/200 30/2400/2430
Ratio 0%/0.204%/0.211% 0.950%/2.538%/2.487%

Protenix Five Number 9/2106/2115 124/8537/8661
Ratio 0.057%/0.445%/0.432% 0.787%/1.811%/1.778%

Top-ranked Number 3/467/470 25/1710/1735
Ratio 0.095%/0.493%/0.480% 0.793%/1.815%/1.782%

Boltz-2 One Number 5/315/320 26/1994/2020
Ratio 0.158%/0.333%/0.327% 0.825%/2.112%/2.070%
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Boltz-2 completes in under 1minute. Second, AF3 is substantially
more memory-intensive than the other two methods. During
inference in our tests, AF3 consistently occupies about 60 GB of
GPU memory and could fail on hardware with limited resources.
In contrast, both Protenix and Boltz-2maintain low GPUmemory
usage (∼5 GB), representing a signicant improvement over the
original AF3 framework in this regard.

Therefore, compared to traditional docking tools27,29,31 that
typically require seconds to tens of seconds per compound on
a single CPU core, and early AI-based docking tools like Kar-
maDock34 that operate at the millisecond level, current AF3-like
approaches do not hold an advantage in terms of computational
efficiency, particularly given the scarcity of high-performance
GPUs. However, they may still serve as valuable components
in large-scale VS pipelines, acting as renement tools for further
enriching screening libraries.
Pose examination

The reliability of predicted binding modes is also a critical
consideration in structure-based approaches. Buttenschoen et al.50

introduced the “PB-validity” metric to assess the physical plausi-
bility of binding poses, revealing that early AI-based docking
methods struggled to generate physically valid conformations.
While AF3 maintains robust performance in pose reconstruction
when taking “PB-validity” into consideration,2 its generalizability to
chemical space beyond crystalized entities remains unexplored.

To assess this further, we examined the binding poses
generated by three co-folding approaches on DEKOIS2.0 data-
set. As outlined in Table 6, despite multiple strategies imple-
mented in AF3 to minimize structural clashes, certain failure
© 2025 The Author(s). Published by the Royal Society of Chemistry
modes persist. Across all predicted poses (ve per protein–
ligand pair), 0.273% (AF3), 0.432% (Protenix), and 0.327%
(Boltz-2) of cases exhibit severe structural anomalies, rendering
them incompatible with automated processing via the Protein
Preparation Wizard51 module of Schrödinger. Notably, these
issues were more frequent in decoys than in active compounds
(0.280% vs. 0.070% for AF3, 0.445% vs. 0.057% for Protenix, and
0.333% vs. 0.158% for Boltz-2), suggesting their reduced appli-
cability to diverse chemical space.

Fig. 10 illustrates some representative structural defects,
which primarily arises from the unrealistic predicted atomic
distances in certain regions. These include distorted aromatic
rings (Fig. 10A–D), spurious macrocycles resulting from
unnaturally close halogen interactions in distal rings (Fig. 10E
and F), and incorrect placement of uncommon functional
groups such as adamantane (Fig. 10G), triuoromethyl (Fig.
10H) and phosphinimine moieties (Fig. 10I). While some errors
could be easily corrected through manual intervention, many
remain intractable due to severe structural distortions.

The incorporation of a clash penalty term in AF3's Ranking
score substantially mitigates such failures (e.g., error ratio
decreases from 0.273% to 0.211% when using top-ranked poses),
whereas Protenix even shows a slight increase (0.432% vs. 0.480%),
potentially due to insufficient weighting of steric clashes in its
inherent condence scoring. Following dedicated pose prepara-
tion, 2.534% (AF3), 1.778% (Protenix) and 2.070% (Boltz-2) of
poses still fail the PoseBusters test, indicating residual minor
implausibility. Despite so, these failures are predominantly
supercial, exerting minimal impact on subsequent protein–
ligand interaction analysis. In a real-world VS scenario, should
Chem. Sci.
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Fig. 10 Some representative poses that fail to produce physically valid structures by AF3, including (A–D) distorted aromatic rings, (E and F)
spurious macrocycles resulting from unnaturally close halogen interactions in distal rings, and (G–I) incorrect placement of uncommon
functional groups. The substructures that have significant structural distortions are colored in magenta.
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such failures occur among top-ranked hits, they could likely be
addressed through manual correction or simply discarded.
Conclusions

In this study, we conducted a systematic assessment of how AF3-
like approaches could be applicable to structure-based VS, using
Protenix, AF3 and Boltz-2 as representative models. Our assess-
ment commenced with routine investigation on the well-
established DEKOIS2.0 datasets, where AF3 demonstrated excep-
tional screening performance by relying solely on its intrinsic
condence scores such as min-iPAE and ipTM for compound
raking. While the incorporation of third-party scoring schemes
failed to enhance screening efficacy, it did conrm both AF3 and
Protenix as reliable pose generators. Further analysis revealed
performance degradation in three extreme scenarios: (1) when
chemically similar active ligands were gradually excluded from test
sets, (2) when evaluated on our newly curated dataset consisting of
GPCR targets whose structures were rarely represented in model
training, and (3) when assessed on a subset of LIT-PCBA dataset
where true inactives were incorporated as negative samples.
Notably, despite these challenges, these AF3-like approaches
consistently maintained superior performance compared to
conventional docking tools. Beyond enrichment-basedmetrics, we
Chem. Sci.
also investigated the structural novelty among top-ranking actives
identied by different methods, conrming that screening
approaches with distinct ranking mechanisms can enrich struc-
turally diverse compounds. Finally, evaluation of the binding
poses predicted by three AF3-like apporaches showed that the
majority exhibited physically plausible conformations, although
some structural anomalies were still observed.

Despite these promising observations, it is important to
acknowledge that current AF3-like approaches still face signif-
icant computational challenges, as evidenced by a preliminary
efficiency assessment in this study. Substantial optimizations
will be still required to enable their scalable application in high-
throughput VS of ultra-large chemical libraries without
compromising performance. On the other hand, recent devel-
opments like Boltz-2 have sought to unify structure and affinity
prediction within a foundation model, relying primarily on
affinity prediction model trained from massive affinity data for
nal compound ranking. Although this approach has shown
impressive results, its heavy dependence on affinity data may
compromise generalizability to external datasets, an aspect that
could not be thoroughly evaluated in the present study and
warrants further investigation. In contrast, AF3's structure-
based ranking paradigm, relying on condence scores derived
from predicted complex quality, appears to offer a robust and
© 2025 The Author(s). Published by the Royal Society of Chemistry
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generalizable solution for structure-based VS. It should be
noted, however, that our benchmarking, like any retrospective
study, relies on the availability of known active ligands, and
thus does not involve entirely novel targets. The practical utility
of AF3-like approaches ultimately requires validation through
prospective experimental studies.

Notwithstanding these considerations, our study underscores
the signicant potential of AF3-like approaches in structure-
based VS, demonstrating both excellent enrichment capabilities
through their intrinsic condence metrics and reliable pose
generation. We expect this paper may provide valuable insights
for applying AF3-derived methods in this post-AF3 era.

Methods
Datasets

Three complementary datasets, namely DEKOIS2.0,25

GPCRrecent and LIT-PCBA26 were involved in this study for
assessing the VS performance of AF3-like approaches.
DEKOIS2.0, a well-established benchmark dataset widely used
for evaluating both physics-based and AI-powered docking
tools,34–36,38,39,52 served as our primary reference. The dataset
originally consists of a total of 81 structurally diverse targets,
each containing 40 experimentally-validated active compounds
from BindingDB42 and 1200 property-matched decoys selected
from ZINC.53 Notably, two targets (pygl-in and pygl-out) were
excluded in this study since their protein–protein interface
binding characteristics make structural modeling computa-
tionally expensive for current AF3-like methods, thus resulting
in a nal set of 79 targets for evaluation.

The GPCRrecent dataset was additionally curated here due to
the fact that DEKOIS2.0 had been released over ten years and its
template protein structures might exhibit a signicant overlap
with AF3's training data. This complementary set exclusively
contains targets whose rst crystal structures were determined
aer 2022, thereby guaranteeing complete temporal separation
from any AF3 training samples. The dataset construction work-
ow is depicted in Fig. S1. Specically, we rst queried the Uni-
prot54 and BindingDB for targets meeting two criteria: (1) its rst
crystal structure was released aer 2022, and (2) corresponding
ligands were available in BindingDB. This yielded 47 eligible
UniProt entries, predominantly G protein-coupled receptors
(GPCRs). This bias arises because GPCRs exhibit two key char-
acteristics: their crystal structures are historically challenging to
resolve with most determinations only becoming possible
recently through the wide spread of cryo-electron microscopy
(cryo-EM), while their ligand chemical spaces have been exten-
sively explored despite previous structural limitations. Given
these considerations, we specically focused our analysis on
these GPCR targets. Active ligands were collected from Bi-
ndingDB by selecting compounds with their activity (IC50, EC50,
Ki, or Kd) values below 10 mM while excluding peptide-like
inhibitors and natural products with molecular weights
exceeding 600. Notably, unlike conventional practices that
specically excluded the compounds with EC50 annotations, we
retained these entries as they usually provided functional
insights into agonist/antagonist properties. Following
© 2025 The Author(s). Published by the Royal Society of Chemistry
standardization using RDKit toolkit,55 the active compounds
were clustered based on their Murcko scaffolds,48 with only the
most potent representative per cluster retained. For targets with
excessive actives, a maximum of 300 diverse scaffolds were
selected based on ECFP4 ngerprints,47 and targets with fewer
than 200 actives were also removed, ultimately resulting in 16
GPCRs. Decoys were generated using a streamlined imple-
mentation of TocoDecoy56 at a 1 : 50 active-to-decoy ratio.
Compared to DEKOIS2.0 that sources decoys from existing
libraries, TocoDecoy employs a conditional recurrent neural
network (cRNN) to synthesize property-matched decoys, enabling
broader chemical space coverage. The detailed composition of
the dataset could be found in Table S1 and Fig. S1.

LIT-PCBA, another widely-accepted VS benchmark, is charac-
terized by experimentally veried bioactivities for all compounds.
The full set contains a total of 15 targets, 10 030 conrmed actives
and 2 798 737 conrmed inactives. However, due to the high
computational cost of those co-folding approaches, only a subset
of ve targets (Table S2), each with fewer than 100 000
compounds, were involved in this study. Notably, MTORC1 was
excluded despite meeting the size criterion due to ambiguous
binding sites in the recommended PDB structures.

While AF3-like approaches feed only one-dimensional
sequences for both proteins and ligands as inputs, some
structure-based baseline methods employed in this study require
3D structural information. For the DEKOIS2.0 dataset, we used
the providedwell-established protein templates and initial ligand
conformers, but for LITPCBA, only a single structure was selected
from multiple recommended PDB entries (Table S2) to perform
baseline docking calculations. For GPCRrecent dataset, we simply
retrieved the lowest-resolution protein structure for each UniProt
entry from the PDB database and performed comprehensive
structural preparation using Protein Preparation Wizard51

module in Schrödinger (version 2020-4). This preparation
included the removal of redundant chains and water molecules,
assignment of bond orders, addition of hydrogen atoms,
completion of missing side chains, optimization of hydrogen-
bond networks, and system minimization using the OPLS-2005
(ref. 57) force eld until the root-mean-square deviation of
heavy atoms averaged at 0.30 Å. The protonation states of resi-
dues at pH 7.0 were determined using PROPKA 58while those of
co-crystallized ligands using Epik.59 For ligands in both the
GPCRrecent and LIT-PCBA datasets, we used the LigPrep module
with default settings to generate appropriate tautomers, proton-
ation states, stereoisomers, and low-energy 3D conformers.
Complex structure prediction

Three deep learning-based structure prediction tools, i.e., Pro-
tenix (version 0.4.4),13 AF3 (version 3.0.0)2 and Boltz-2 (version
2.0.0),14 were explored in this study. For all these approaches,
truncated protein sequences derived from corresponding PDB
entries were employed to generate multiple sequence align-
ments (MSAs) beforehand. Specically, AF3 employed the
Jackhmmer60 module in HMMER61 suite (version 3.4.0) for MSA
construction, while Protenix and Boltz-2 utilized the MMseqs2
(ref. 62) web service, all following official recommendations
Chem. Sci.

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06481c


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/9
/2

02
6 

10
:4

7:
23

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
with default settings. To enhance computational efficiency in
high-throughput VS, we optimized the inference pipelines of
these approaches before conducting individual structure
predictions. For AF3 and Protenix, ve predictions were gener-
ated using a xed random seed (seed = 1), whereas for the
supplemented Boltz-2, the recommended single model under
the same random seed were produced to conduct both structure
prediction and binding affinity prediction. All other parameters
remained at their default or recommended values.
Scoring schemes

These AF3-like approaches could output multiple condence
metrics to estimate the reliability of predicted structures, and
some of these metrics have shown great promise in capturing
crucial interactions between multiple chains. Below are the
scoring schemes explored in this study:

pTM, ipTM, and ranking score. pTM (predicted template
modeling score) is a predictor of TM-Score63 that estimates
global structural accuracy through sequence alignment. ipTM
(interface predicted template modeling score) is an interface
variant of pTM focusing exclusively on inter-chain interactions
in multi-chain complexes.64 Ranking score is a composite
metric used to prioritize predictions within a single run,
calculated as a weighted sum of multiple condence measures
including pTM, ipTM, and additional terms accounting for
structural clashes and disorders.2 All metrics follow a consistent
interpretation where higher values indicate better prediction
quality. These scores were directly parsed from the JSON output
les generated by AF3, Protenix or Boltz-2.

Min-iPAE. PAE (predicted aligned error) is an estimate of the
expected positional error between any two tokens in a predicted
structure, with lower values indicating higher condence in
their relative positions. When calculated between different
chains (e.g., protein–ligand pairs), this metric could be termed
inter-PAE (iPAE). The min-iPAE score, introduced by Omidi
et al.,37 represents the minimum of all pairwise predicted errors
between protein tokens when aligned by ligand tokens. While
min-iPAE values could be directly extracted from the JSON
outputs of both AF3 and Boltz-2, this approach does not account
for systems with multiple protein chains. Therefore, we
computed this metric from the output PAE matrix to ensure
accurate evaluation across all complex scenarios.

Affinity score and probability. These two metrics are gener-
ated by the specialized affinity prediction module in Boltz-2,
derived from either regression or classication outputs to
represent predicted binding affinity or binary binding likelihood.
While both scores are explicitly trained for affinity prediction,
their training data, drawn from public binding databases, may
signicantly overlap with the test samples involved in this study,
raising concerns regarding unavoidable data leakage and gener-
alizability. Therefore, while we report these results for
completeness, they are excluded from our primary comparative
analysis to ensure a fair evaluation of model performance.

In addition to utilizing these built-in scoring metrics for
compound ranking, we further investigated several third-party
rescoring methods, including well-recognized physics-based
Chem. Sci.
approaches (Glide27,65 and AutoDock Vina28), and recently-
emerged AI-based scoring functions (Gnina,32 RTMScore,38

PIGNet2,44 PLANET,43 and IGModel45) with varying mecha-
nisms. The implementation details for each approach was set
default or recommended, unless otherwise described below,
unless otherwise described below.

Glide. The receptor grid was generated centered on the
modeled ligand, with inner and outer box dimensions of 10 Å ×

10 Å × 10 Å and 30 Å × 30 Å × 30 Å, respectively. Then, glide
scoring calculations with standard precision (SP)27 and extra
precision (XP)65 implemented in Schrödinger (version 2020-4)
were successively conducted. For each precision level, the
“rene only” option were employed.

Gnina. Proteins and ligands were prepared using the ADFR66

suite, which involved converting the molecules into PDPQT
format, adding hydrogen atoms, assigning Gasteiger partial
charges, and removing any unwanted structural elements.
Subsequently, scoring calculations were carried out using three
built-in classical scoring functions (AD4,28 Vina and Vinardo67)
and two machine learning-based scoring schemes (CNNscore
and CNNaffinity68) in Gnina (version 1.3). For three classical
scoring functions, the “minimize” option were utilized.

RTMScore, PIGNet2, PLANET and IGModel. For these AI-
powered methods, the binding pockets were dened based on
the predicted ligand poses. The scoring calculations were then
performed using the inference scripts provided in the official
repositories of each tool.

Of note, both AF3 and Protenix output structures in CIF
format, which lacks bond information and may not be
compatible with certain third-party rescoring methods. Hence,
we preprocessed all predicted structures using the Protein
Preparation Wizard module, and for any structure that
remained unrecognizable, we assigned them an extremely low
score. For each protein–ligand pair, ve predictions could be
obtained through structure prediction. These structures could
then be re-ranked using the selected rescoring schemes. Alter-
natively, they could rst be ranked by the built-in condence
scores to select the most reliable structure, followed by appli-
cation of the specic rescoring scheme for VS.

Baseline docking results

For DEKOIS2.0 dataset, we primarily utilized previously pub-
lished docking results34–36,38,39 for baseline comparison, while
for GPCRrecent dataset and LIT-PCBA subset, we performed new
docking calculations using both Glide SP and Gnina. In both
cases, the binding box was dened based on the crystallized
ligands, with remaining parameters maintained at default
settings or as specied earlier. For Glide, the Glide SP score was
employed as the primary metric to rank the compounds, while
for Gnina, three distinct scoring metrics, i.e., Vina score,
CNNscore, and CNNaffinity, were individually investigated.

Evaluation metrics

Consistent with prior studies,38,39,52,69 we assessed VS perfor-
mance primarily based on three well-recognized metrics,
including the area under the receiver operating characteristic
© 2025 The Author(s). Published by the Royal Society of Chemistry
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curve (AUROC),70 Boltzmann enhanced discrimination of
receiver operating characteristic (BEDROC, a = 80.5),71 and
enrichment factors (EFs). The ROC curve, which plots the true
positive rate against the false positive rate, provides a robust
measure of overall model performance. The corresponding
AUROC value ranges from 0 (complete failure) to 0.5 (random
prediction) to 1 (perfect classication). BEDROC incorporates
a weighting parameter a into AUROC to emphasize early
recognition capability. Here, we set a = 80.5, meaning that the
top 2% of ranked molecules contributed to 80% of the BEDROC
score. EFx%, dened as the ratio of true positives found in the
top x% of ranked compounds relative to random selection,
offers a more intuitive measure of early recognition. We evalu-
ated EF at 0.5%, 1%, and 5% thresholds to capture performance
across different screening depths. For LIT-PCBA where the ratio
of actives to inactives across different targets varies substan-
tially across targets, we supplemented EF1% with the normal-
ized enrichment factor (NEF).49 The NEF is calculated by
dividing the observed EFx% by its theoretical maximum,
enabling a direct and fair cross-target performance comparison.

The metrics for evaluating hit similarity were adapted from
a previous study72 that systematically analyzed molecular and
scaffold similarities among actives identied by different
screening methods within the top-100 and top-500 ranked
compounds. Murcko scaffolds48 were generated using the
GetScaffoldForMol method from the MurckoScaffold module in
RDKit,55 and structural similarities were quantied using
Tanimoto coefficients derived from ECFP4 ngerprints.47

The physical plausibility of binding poses was evaluated
using the PoseBusters50 toolkit. Since ground-truth reference
poses were unavailable for direct comparison, our assessment
relied on 14 out of 18 checks that operated independently of
known ligand structures.
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