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Data-driven approach to elucidate the correlation between
photocatalytic activity and rate constants from excited states

This work presents a data-driven framework that uncovers how
excited-state kinetics govern the catalytic activity of organic
photosensitizers by integrating machine learning with quantum
chemical calculations. Theoretically simulated rate constants from
excited states were shown to outperform experimentally measured
excited-state lifetimes as descriptors. SHAP-based visual analyses
revealed that transitions from the T; state, together with the
non-radiative decay process between the S;and So states, play key
roles in determining photocatalytic activity. This computational
approach provides insights that are not readily accessible through
conventional experimental methods.
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Even though excited-state properties play a crucial role in photocatalysis, directly correlating these with
photocatalytic activity remains challenging. Herein, we propose a method to elucidate the correlations
between the catalytic activity of organic photosensitizers and the rate constants of various excited-state
processes through integrating machine learning (ML), quantum chemical calculations, and chemical
experiments. This approach was applied to interpolative predictions of the yield of the nickel/
photocatalytic formation of C-O bonds and radical additions to alkenes using various organic
photosensitizers with satisfactory accuracy (R> = 0.83 and 0.77 on the test set, respectively). The
calculated rate constants obtained through quantum chemical calculations proved to be comparable or
even superior to the experimentally measured excited-state lifetimes as descriptors. SHAP-based visual

analysis revealed that the rate constants corresponding to transitions from the T, state provide significant
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Accepted 24th November 2025 contributions to the interpolative prediction of photocatalytic activity. Additionally, the non-radiative
decay process between the S; and Sp states helps describe the low catalytic activity of poorly emissive

DOI: 10.1035/d55c06465a photosensitizers. These findings highlight the potential of the proposed method to provide insights into
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Introduction

The excitation of organic molecules induces intriguing
phenomena, including photocatalysis.’”> However, elucidating
the relationship between excited-state properties and the
resulting photochemical behavior is highly challenging using
conventional experimental approaches.

The excited-state lifetimes of photosensitizers are consid-
ered to play a crucial role in facilitating energy-transfer and
electron-transfer processes with substrates, although a long
excited-state lifetime does not necessarily correlate with
a higher product yield.* Therefore, clarifying the relationship
between photocatalytic activity and excited-state lifetimes, or
related properties such as decay rate constants, is essential to
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photocatalytic properties that are difficult to obtain using conventional approaches.

understand the behavior of organic photosensitizers (OPSs),
which exhibit diverse excited-state properties. Recent advances
in quantum chemical calculations have made the prediction of
excited-state characteristics, e.g., first-principles prediction of
rate constants for various processes in the excited state, more
accessible."*' However, to elucidate how the complex excited-
state properties influence photocatalytic activity using
quantum chemical calculations, further integration with robust
tools to decipher these relationships is required.

Machine learning (ML) is increasingly being applied across
diverse chemical fields, including organic synthesis.”>*” A
common application of ML in this field is the prediction of the
product yield and selectivity in order to identify the optimal
catalyst and reaction conditions.”®?* In addition to its predictive
capabilities, ML is valuable for uncovering correlations between
inputs, e.g., the properties of substrates and catalysts, and
outputs, e.g., the product yield and selectivity of reactions.**”
Shapley additive explanations (SHAP), a tool based on game
theory that has been developed to enhance the interpretability
of ML models, is highly useful in this context.**** SHAP enables
the quantitative assessment of how individual descriptors
contribute to the trends in the overall predicted outputs and to
the predictions for individual samples. However, despite its
utility, the application of ML to the characterization of

© 2026 The Author(s). Published by the Royal Society of Chemistry
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photocatalytic properties remains an area with considerable
room for further development.***>-** In particular, approaches
that can correlate essential yet elusive excited-state properties,
such as rate constants from excited states, with photocatalytic
activity are still underdeveloped.

Here, we propose a data-driven approach to estimate the
catalytic activity of OPSs using theoretically simulated rate
constants from excited states (Fig. 1), whose effectiveness in ML
for photocatalysis remains underexplored. Specifically, rate
constants for the radiative (k,(S; — So)) and non-radiative (k;c(Sy
— Sp)) processes from the S; to the S, state, the intersystem
crossing (ISC; kisc(S1 — T1)) and reverse ISC (kysc(T: — Si))
processes between the S; and T; states, and the ISC process
from the T; state to the S, state (kisc(T:1 — So)) were simulated
using a combination of time-dependent density functional
theory (TD-DFT) and excited-state-dynamics theory based on the
thermal vibration correlation function (TVCF). Descriptor sets
incorporating these DFT-based properties were used for the ML-
based interpolative prediction of the photocatalytic activity in
energy-transfer and photoredox reactions, i.e., nickel-catalyzed
C-O bond formation and radical addition. Our protocol
demonstrates that the integration of advanced quantum
chemical calculations into ML represents a pertinent tool to
elucidate how complex excited-state characteristics influence
photocatalytic activity, thereby highlighting a potential avenue
through which data science can contribute to chemical
research.

Results and discussion

Experimentally measured and theoretically simulated rate
constants of representative OPSs

Recently, Inai and Yanai have reported a photochemical study
in which a first-principles method based on TD-DFT and TVCF
calculations was used to predict the decay rate constants of
organic dyes.”> We applied this method to simulate the rate
constants of various excited-state processes for OPSs. We first
selected four compounds (OPS1, OPS5, OPS7, and OPS47) from
among the 60 OPSs used in this study and compared their

© 2026 The Author(s). Published by the Royal Society of Chemistry
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experimentally measured rate constants with the theoretically
simulated ones. A complete list of all OPSs is provided in the SI
(Fig. S2).

OPS1, commonly known as 4CzIPN, is an organic compound
that exhibits thermally activated delayed fluorescence (TADF).*®
OPS5 and OPS7 are derivatives of OPS1 featuring 3,6-di-
methoxycarbazolyl and diphenylamino groups, respectively,
instead of the carbazolyl groups of OPS1. OPS47 also contains
diphenylamino groups as electron-donor moieties but differs in
having a nitrophenyl group as an electron acceptor. The pho-
tophysical properties of OPS1 in toluene, including fluorescence
lifetimes (tr) and quantum yield (&), have already been
reported.>** Methoxy-substituted OPS5 exhibits shorter t
values and a much lower @ than OPS1, while OPS7 has a lower @
value together with a significantly extended 1. OPS47 has a very
low @ with very short t values and does not exhibit TADF
properties. All these 7 and @ values are summarized in Table 1.

The rate constants of these OPSs were experimentally
determined (Table 1). Detailed procedures for estimating the
rate constants are described in the SI (Experimentally deter-
mined rate constants section). The experimentally measured
rate constants of OPS1 have also been reported previously.””
OPS5 and OPS7 exhibit higher kis.(S; — T;) values than OPS1,
whereas their k;is.(T; — S;) values are lower. OPS47 shows lower
k(S; — So) and higher k;s(S; — T;) values than OPS1, which
might explain its poor luminescence properties.

The theoretically simulated rate constants for these OPSs are
also summarized in Table 1. The calculations were conducted
using the TD-DFT and TVCF methods described in the previous
study.”® The underlying DFT and TD-DFT calculations were
carried out at the PCM(toluene)-CAM-B3LYP/6-31G(d) level, and
the theoretically simulated k.(S; — S,) values show good
agreement with the experimentally determined values for all
four OPSs.

To calculate kis(S1 — Ty) and kiiso(T1 — S;), the adiabatic
singlet-triplet splitting (AEgy) values of the OPSs are required.
Specifically, the TVCF method sums over vibronic levels under
the harmonic approximation and employs AEgr as the detuning
parameter in the phase factor rather than a standalone proxy for
the activation. Considering that accurately computing AEgr
values via DFT-based methods remains challenging,®*
compared the effects of using the computational (DFT-based) or
experimental (measurement-based) AEgy values on the result-
ing kisc(S1 — T1) and kyis(Ty — S;) values. The AEgy values of
OPS1, OPS5, OPS7, and OPS47 obtained via quantum chemical
calculations (OPS1: 0.37 eV; OPS5: 0.39 eV; OPS7: 0.70 eV;
OPS47: 0.42 eV) and experiments (OPS1: 0.08 eV; OPS5: 0.03 eV;
OPS7: 0.12 eV; OPS47: 0.15 eV) are provided in Table 1. In
addition, theoretically simulated k;s.(S; — T;) and kysc(T1 — S1)
values that were refined using the experimental AEgy are also
listed in Table 1.

The relative effectiveness of using the computational or
experimental AEgy value for the calculation of the kis.(S; — Ty)
value varied on a case-by-case basis. Both methods provided
similar k;s.(S; — Ty) values for OPS1 (computational AEgy: 2.6 X
107 s~'; experimental AEgr: 1.1 x 10” s~ ). The computational
AEgr resulted in Dbetter agreement with the

we

values
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Table 1 Excited-state properties of OPS1, OPS5, OPS7, and OPS47 ¢
v s NPh, NO
R b R MeO OMe ! 2 2
NC CN i i 11 NC CN .i 'i i NC CN  PhN NPh,

'R r R= QN‘ iR rR R= N ! PhoN NPh,

5 R o ; R e : NPh, NPh;

: oPs1 : OPS5 : oPS7 oPs47

OopPs T (Q)b AEST/ev kr(sl - SO)/571 kisc(sl - Tl)/571 krisc(Tl - Sl)/silc

OPS1  14.2 ns, 1.8 ps® (0.94) 0.08%° (0.37) 1.7 x 107%° (2.0 x 107Y" 5.1 x 107%° (2.6 x 1074, 1.1 x 10"") 2.7 x 10°° (5.3 x 10%, 2.7 x 10°%)

OPS5 4.8 1s, 0.6 us (0.06)  0.03°(0.39)" 1.1 x 107 (7.8 x 10°Y 2.0 x 10% (4.1 x 10%, 2.5 x 10*) 2.9 x 10°° (2.6 x 107, 1.6 x 107"
OPS7 1.7 ms, 34.4 ps (0.20)  0.12° (0.70) 4.8 x 107° (2.4 x 107 5.5 x 10% (3.3 x 10%, 5.4 x 10*") 4.7 x 10* (6.8 x 10", 3.7 x 10"
OPS47 3.51s,9.9ns (0.02)  0.15° (0.42)° 5.7 x 10 (1.9 x 10°Y 2.1 x 10 (1.7 x 10%, 3.8 x 10°") 6.2 x 10° (6.0 x 10%, 6.9 x 10°")

“ For details of how these properties were obtained, see the SI.  Luminescence lifetimes (7) and quantum yields (@) were measured in toluene under
an argon atmosphere. ¢ The excited-state lifetimes and rate constants of OPS1 were obtained from ref. 57. ¢ The ® and AEgy values of OPS1 were
obtained from ref. 56 and 58-60. ¢ Experimentally determined values are presented./ Theoretically simulated values are presented. ¢ Theoretically
simulated k(S — Ti) and kyso(Ty — Si) values, which were calculated using computational (DFT-based) AEgy values, are presented.
h Theoretically simulated kis.(S; — Ti) and kys(T1 — S1) values, which were calculated using experimental (measurement-based) AEgy values,

are presented.

experimentally determined k;s.(S; — T,) for OPS47 (computa-
tional AEgy: 1.7 x 10® s'; experimental AEgy: 3.8 x 10° s71),
whereas the opposite effect was observed for OPS5 (computa-
tional AEgr: 4.1 x 10° s7'; experimental AEgr: 2.5 x 108 s7') and
OPS7 (computational AEgr: 3.3 x 10° s™'; experimental AEgy:
5.4 x 108 s71).

In contrast, the experimental AEgr values were clearly more
effective for simulating k;isc(Ty — Si). The fully computation-
based approach significantly underestimated the ks(Ty —
S1) values (OPS1: 5.3 x 10 s~ *; OPS5: 2.6 x 10 ' s~ '; OPS7: 6.8 x
107" s7'; OPS47: 6.0 x 10” s~ ') compared to the cases where the
experimental AEgr values were used (OPS1: 2.7 x 10° s™'; OPS5:
1.6 x 107 s7'; OPS7: 3.7 x 10° s '; OPS47: 6.9 x 10° s ).
However, despite this underestimation, the former method
captured more accurately the relative magnitudes of OPS1 and
OPS5 than the latter, indicating that the use of fully computa-
tional values in ML is not always inferior.

For processes involving ISC, using the experimental AEgy
value for the TVCF calculations tended to provide values closer
to the experimentally determined rate constants, due to the
difficulty of accurately estimating AEsr via DFT-based
approaches. Meanwhile, for compounds with poor emission
properties, experimentally determining the AEgy value is diffi-
cult. In addition, a fully computational approach is more
promising in terms of ensuring the future applicability of this
framework to compounds that have not yet been synthesized.
Alternatively, the prediction accuracy of AEgr can be signifi-
cantly improved wusing higher-level wavefunction-based
methods such as SCS-CC2.°*** However, the computational
cost of such methods still remains prohibitively high for the
relatively large molecular datasets used for ML. Therefore, we
chose to use the AEgr values obtained from DFT-level calcula-
tions, i.e., the computational AEgy values, in the subsequent ML
investigations.

178 | Chem. Sci., 2026, 17, 176-186

Comparison of the model performance in C-O bond-forming
reactions

Although the focus of the present study was on quantifying the
relative contributions of the model inputs (OPS properties) to
the model output (predicted yield) rather than achieving
maximum model accuracy, a certain level of model performance
is crucial for meaningful feature interpretation. In our case, the
challenge lies in attaining reasonable model performance while
using only descriptors that are meaningful from a photochem-
ical perspective. Therefore, we first investigated the impact of
the employed descriptors on the accuracy of interpolative
predictions for C-O bond-forming reactions using various aryl
halides,***® which are considered to be promoted mainly by
energy transfer (Fig. 2).°*%"* Our dataset included reactions
using four different aryl halides, i.e., 4-bromobenzonitrile (CO-
a, CO-b), 4-bromobiphenyl (CO-c), methyl 4-bromo-3-
methylbenzoate (CO-d), and 4-chlorobenzonitrile (CO-e). For
4-bromobenzonitrile, data for two distinct reaction times (1.5 h:
CO-a; 7.5 h: CO-b) were considered. In our previous study, 60
OPSs were tested for each C-O bond-forming reaction,>
resulting in a dataset consisting of 300 data points. The differ-
ences among the OPSs were represented by their DFT-derived
properties, and the reaction types (i.e., CO-a-CO-e) were enco-
ded using one-hot encoding. In all the ML investigations, the
target variable was the product yield. Since the yield was
determined using the employed OPS and the reaction type, the
developed models can be regarded as ML models for the esti-
mation of the photocatalytic activity in similar reactions. Other
details of the ML setup are summarized in Table 2.

In addition to the three theoretically simulated rate
constants mentioned earlier, i.e., k(S; — So), kisc(S1 — T41), and
krise(T1 — S1), we also incorporated ki.(S; — So) and kis(T; —
So)- The adiabatic singlet-triplet splitting between the S, and Ty
states was required to calculate kio(T;y — So) instead of that

© 2026 The Author(s). Published by the Royal Society of Chemistry
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CO-a:1.5h,CO-b:75h
Br 2 mol% NiBr»DME

0.5 mol% OPS

OH
/@/ 1.5 equiv. DABCO /@/
+ Hy,O
NMP, rt, N5, hv (450 nm
NC 1:8 2 v ) e
CO-c 0.5 mol% OPS
Br 2 mol% NiBr,*DME
1.5 equw DABCO
+ H,O
. DMI rt, N2, 12h
Ph 1:8 hv (450 nm)
co-d Me 0.5 mol% OPS

2 mol% NiBry*DME
Br 1.5 equiv. DABCO OH
+HO ——MMMM >
18 DMI, rt, No, 24 h
MeO,C ' hv (450 nm) MeO,C
0.5 mol% OPS
Cl
NC 1:8

2 mol% NiBry*DME
1. 5equw DABCO
Fig. 2 C-0O bond-forming reactions tested in this study.

DMI, Ny 60
hv (450 nm)

between the S; and T, states, which was used for the estimation
of kiso(S; — T1) and kyisc(Ty — S;). In contrast, the rate constant
for the radiative process from the T, state to the S, state was not
included because phosphorescence is intrinsically weak in OPSs
and its contribution to the overall excited-state kinetics is
negligible. These five rate constants were used directly to
generate a descriptor set comprising five descriptors (referred to
as RC). Alternatively, scaled descriptors expressed as ratios
among the five rate constants were used to generate another
five-descriptor set (denoted as s_RC). The method used to
prepare the s _RC descriptor set is summarized in the SI
(Computational details for the design of descriptors section). A
preliminary investigation identified histogram-based gradient
boosting (HGB) as an effective ML model (Table S13). Among

Table 2 Model performance for the interpolative prediction of the
photocatalytic activity in C-O bond-forming reactions®

ML setup

Evaluation metrics:

Data split:
R? and RMSE on the test set

Training : Test =80 : 20
Validation protocol:
10 random train-test splits for performance comparison

Entry Descriptor set R? RMSE

1 RC 0.79 (0.05)  13.1(1.2)
2 s_RC 0.78 (0.04)  13.5 (1.1)
3 s_RC + ‘Eyomo fs1y AEsr, ADM’ 0.83 (0.04) 11.8 (1.3)
4 ‘Eriomos fs1, AEst, ADM 0.79 (0.06) 13.0 (1.4)
5 LT_t 0.66 (0.06)  16.9 (1.9)
6 LT_d 0.64 (0.08)  17.2 (1.4)
7 LT_t + ‘Eromo, for, ABst, ADM’ 0.80 (0.05)  12.8 (1.5)
8 LT_d + ‘Eyomo, fsr, AEst, ADM’ 0.79 (0.05) 13.1 (1.2)

?R? and RMSE scores on the test set were averaged over 10 runs
(standard deviations in parentheses).

© 2026 The Author(s). Published by the Royal Society of Chemistry
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the rate constants calculated at different levels of theory, those
derived from the PCM(toluene)-CAM-B3LYP/6-31G(d) level
provided the best model performance for both RC and s_RC,
although the differences were not significant (Table S15).
Therefore, descriptors calculated at this level were used in
subsequent investigations. The mean R* scores on the test set
were 0.79 for RC and 0.78 for s_RC (Table 2, entries 1 and 2),
indicating that reasonable interpolative predictions can be
achieved using only the rate-constant information.

Subsequently, we examined whether incorporating other
physical properties relevant to the photoreactions could lead to
more robust models. The additional descriptors include the
HOMO (Eyomo) and LUMO (Epumo) energy levels, the vertical-
excitation (absorption) energy of the lowest singlet (Es;) and
triplet (E1) excited states, the corresponding vertical AEgr, the
oscillator strength of the lowest singlet excitation (fs;), and the
differences between the ground- and excited-state dipole
moments (ADM). These descriptors were calculated at the same
PCM(toluene)-CAM-B3LYP/6-31G(d) level. Details of the prepa-
ration for these descriptors are provided in the SI (Computa-
tional details for the design of descriptors section). We
compared the model performance of all 127 combinations of
these descriptors in conjunction with RC or s_RC, and identi-
fied s_RC, Exomos fs1, AEst, and ADM as the best descriptor set
(entry 3; R* = 0.83, RMSE = 11.8). When the rate constants were
excluded from the descriptor set, the model performance was
lower than the best case (entry 4; R> = 0.79, RMSE = 13.0),
indicating that combining s_RC with other descriptors leads to
improved accuracy.

Furthermore, the effectiveness of using experimentally
measured excited-state lifetimes as descriptors was examined.
The excited-state lifetimes were measured using transient
absorption spectroscopy in toluene or DMSO (referred to as
LT_t and LT_d, respectively). When either LT_t or LT _d was
used as a standalone descriptor, the model performance
significantly decreased (entries 5 and 6; LT_t: R> = 0.66, RMSE
= 16.9; LT_d: R*> = 0.64, RMSE = 17.2). Additionally, when
either LT_t or LT _d was combined with Eyomo, fs1, AEst, and
ADM, the resulting scores (entries 7 and 8; R*> = 0.79-0.80,
RMSE = 13.1-12.8) did not surpass those obtained using the
calculated rate constants.

One major issue with constructing a database of experi-
mentally measured excited-state properties is the difficulty of
performing all measurements under identical conditions. For
example, while most of the excited-state lifetimes in this study
were measured using toluene or DMSO as the solvent, some
data points were obtained in other solvents, such as acetonitrile
(OPS59, OPS60) or DMF (OPS44, OPS56, OPS59, OPS60), due to
solubility and related issues (Table S12). Additionally, unlike
theoretically simulated rate constants, experimentally
measured excited-state lifetimes represent a combined value
that encompasses various excited-state processes. These
inconsistencies in measurement conditions and the limited
ability to distinguish individual excited-state processes may
have contributed to the decreased accuracy observed when
using LT_t or LT_d. Furthermore, clarifying each individual
kinetic parameter requires considerable experimental effort.

Chem. Sci., 2026, 17,176-186 | 179
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Therefore, the theoretically simulated rate constants, which can
provide more details regarding the molecular excited states,
have superior utility as descriptors as well as greater interpret-
ability (vide infra).

SHAP-based analysis for C-O bond-forming reactions

We next used SHAP to quantify the contributions of descriptors
to the interpolative predictions in the case where the best model
performance was achieved (all data: R*> = 0.96; test set: R> =
0.88). In this analysis, we generated a SHAP summary plot
(Fig. 3a) to capture the overall trends, and SHAP scatter plots
(Fig. 3b) to clarify the contribution of each descriptor. In addi-
tion, SHAP waterfall plots were used to visually display the
feature contributions of individual OPSs for CO-a (Fig. 2). In this
reaction, the experimental yields for OPS1, OPS7, and OPS47
were 62%, 88%, and 0%, respectively. Briefly, a higher absolute
SHAP value indicates a greater contribution of the corre-
sponding descriptor, and its signum shows whether the
contribution affects the prediction positively or negatively.
Additional explanations on how to interpret these plots are
provided in the SI (Description of SHAP plots section).
Descriptors prefixed with ‘reaction_’ represent the one-hot
encoding used to identify reaction types. Additionally, the
term ‘feature’ is used synonymously with ‘descriptor’.

The SHAP summary plot revealed that AEgr and Egomo are
the two most impactful descriptors excluding the one-hot
encoding descriptors (Fig. 3a). Highly negative SHAP values
for AEsy were observed for high AEgy values, whereas lower AEgy
values lead to positive SHAP values (Fig. 3b). A range of
moderate Eyomo values resulted in highly positive SHAP values,
while those outside this range yielded negative SHAP values
(Fig. 3b). In the C-O bond-forming reactions, OPSs that meet
these conditions to afford positive SHAP values, such as OPS1
and OPS7 (Fig. 3c), generally exhibit better catalytic activity. In
contrast, OPSs with high AEgr values, e.g., OPS56 and OPS58,
those with strong reducing capacity, e.g., OPS38, OPS40, and
OPS49, and those with strong oxidizing capacity, e.g., OPS59
and OPS60, tend to furnish low product yields (Table S17). This
SHAP-based analysis demonstrates the ability to effectively
capture the correlations between physical properties and pho-
tocatalytic activity.

Next, we analyzed the contributions of the rate constants
from the summary plot (Fig. 3a). As mentioned earlier, these
descriptors are expressed as ratios of the five processes and are
prefixed with ‘s_’. Among the five descriptors derived from rate
constants, the descriptors for two processes, ie., S_kys.(T1 —
S;) and s_kis.(Ty — So), showed greater contributions than the
other three. Given that the triplet state of OPSs is highly likely to
be involved in photosensitization,**’*”* it is reasonable to
assume that descriptors representing transitions from the T,
state to other states are important. Although the s_k;isc(T1 — S1)
values tended to be underestimated in the employed descriptor
set, the SHAP scatter plots revealed that s_k;is.(T; — S;) values
within a certain range tend to result in positive SHAP values,
whereas those outside this range produce negative SHAP values
(Fig. 3b). Similarly, s_kisc(Tx — So) values that fell within
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a specific range also tend to exhibit positive SHAP values
(Fig. 3b). The SHAP waterfall plots for OPS1 and OPS7 (Fig. 3c)
indicate that while Eyomo, fs1, AEst, and ADM exhibit relatively
similar positive SHAP values, s_kysc(Ty — S1) and s_kis(T; —
So) are the primary contributors to distinguishing the catalytic
activity of OPS1 and OPS7. The predicted yields were 53.85% for
OPS1 and 85.15% for OPS7, demonstrating relatively high
accuracy. The SHAP values for s_k;;s.(T; — S;) were —1.17 for
OPS1 and +6.17 for OPS7, while those for s_kis.(T; — So) were
—2.69 for OPS1 and +8.13 for OPS7. Thus, based on SHAP,
18.16% of the 31.30% difference in predicted yields between
OPS1 and OPS7 can be attributed to these two descriptors
derived from rate constants.

Meanwhile, OPS47 is structurally distinct from OPS7 in terms
of its acceptor moiety, resulting in a significantly lower quantum
yield (OPS1: @ = 0.94; OPS7: ¢ = 0.20; OPS47: ¢ = 0.02) and
catalytic activity compared to OPS1 and OPS7. The SHAP waterfall
plots revealed that AEsy, Eriomo, fs1, and ADM, which provided
highly positive SHAP values for OPS1 and OPS7, do not
contribute positively to the model output for OPS47 (Fig. 3c).
Additionally, the negative SHAP value derived from s_k;iso(Ty —
S1) (—4.36) for OPS47 contributes to distinguishing the catalytic
activity of OPS7 and OPS47. The s_k,(S; — S,) of OPS47 was 2.7 X
10" and its s_k;(S; — So) was 0.768, indicating that the former
is significantly lower and the latter significantly higher compared
to those of OPS1 (s_k(S; — So): 0.431; s_k;(S; — So): 9.6 x 10™%)
and OPS7 (s_k(S; — So): 0.573; s_kie(S; — So): 2.4 x 107%).
Unlike in the case of OPS1 and OPS7, these descriptors have
negative SHAP values of —6.04 and —4.10 for OPS47. The low
S_k(S1 — So) and high s_k;.(S; — So) observed for OPS47 reflect
its poor luminescence properties. The low catalytic activity of the
OPSs, for which non-radiative decay pathways unrelated to the
transition to the triplet state are favored, is consistent with
chemical intuition. The ML-derived outcome, in which the
S_k(S1 — So) and s_ki(S; — So) values of OPS47 negatively
impact its output, support this notion.

Application to radical-addition reactions to alkenes

We then extended the scope of our ML strategy to photoredox
reactions. As target reactions, we selected the addition of tri-
fluoromethyl, 2,2,2-trifluoroethyl, monofluoromethyl, cyclo-
hexyl, and trifluoromethylthio radicals to 1,1-di(p-tolyl)
ethylene.”””® In this study, these reactions to synthesize
trisubstituted alkenes are referred to as CF;, CF;CH,, CH,F, Cy,
and SCFj, respectively (Table 3). By testing the same database of
60 OPSs for these five photoredox reactions, we constructed
a dataset consisting of 300 data points. The HGB-based ML
models were constructed using the same setup as that used for
the C-O bond-forming reactions (Table 2).

Since the model performance did not differ significantly
among the descriptor sets based on rate constants (Table S16),
we continued to use the s_RC descriptor set calculated at the
PCM(toluene)-CAM-B3LYP/6-31G(d) level in order to maintain
consistency with the results of the C-O bond-forming reactions.
Although the model performance using s_RC alone was rela-
tively poor (Table 3, entry 1; R*> = 0.67), combining s_RC with

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 SHAP (a) summary, (b) scatter, and (c) waterfall plots (for CO-a) for the quantification of feature contributions. (d) OPSs discussed in the
SHAP-based analysis. Plots including more detailed information are displayed in Fig. S7. The original plots are included in the GitHub repository

(https://github.com/Naoki-Noto/P6-20240509-RK).

Erumo, fs1, and Epy improved the interpolative predictions,
yielding a mean R* score of 0.77 and a mean RMSE of 16.1 on
the test set (entry 2). While a long excited-state lifetime is known
to contribute to efficient electron transfer, it is not always the
sole factor determining the product yield, as reported for
similar photoredox reactions.'®”®®* Thus, it is reasonable that
the model based solely on s_RC exhibits relatively poor perfor-
mance, and combining s_RC with other descriptors such as

© 2026 The Author(s). Published by the Royal Society of Chemistry

Erumo improves the model accuracy. When the experimentally
obtained LT_t or LT_d descriptor set was used instead of s_RC,
the resulting R> scores were 0.73 and 0.75, respectively (Table 3,
entries 3 and 4), confirming the satisfactory performance of an
entirely DFT-derived descriptor set.

A SHAP-based analysis was subsequently conducted for the
best-performing model (all data: R> = 0.94; test set: R> = 0.82).
The SHAP bar plot depicting the mean SHAP values of the
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Table 3 Model performance for the interpolative prediction of the
photocatalytic activity in the radical—addition reactions to 1,1-di(p-
tolyl)ethylene”

Me Me
xR
SO O
R= ‘}éCFs %CHZCFB ZCHzF 5{@ }{SCFQ

Radical | OPS

source

rt, hv (425 nm)

(CF3)  (CF3CHy)  (CHyF) (Cy) (SCF3)
Entry Descriptor set R? RMSE
1 s_RC 0.67 (0.05) 19.3 (1.9)
2 S_RC + ‘Epumos fs1, Ert’ 0.77 (0.03) 16.1 (1.5)
3 LT_t + ‘Erymo fo1, Ext’ 0.73 (0.05) 17.5 (1.6)
4 LT_d + ‘Erumos fs1, Brt’ 0.75 (0.03) 16.6 (0.9)

“ For details of reaction conditions, see the ESI. R and RMSE scores on
the test set were averaged over 10 runs (standard deviations in
parentheses).

descriptors indicated that Eyymo, which exhibits a high corre-
lation coefficient with Exowmo (0.86) and is associated with the
redox capacity of the OPSs, shows the largest contribution
excluding the one-hot encoding descriptors (Fig. 4a). The SHAP
scatter plot (Fig. 4b) revealed that a high E;yyo contributes to

View Article Online
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positive SHAP values, but when the Ey yp\0 is too high, the SHAP
values shift negatively. Both oxidizing and reducing properties
are important in photoredox reactions, and an excessively high
Erumo values implies a weak oxidizing capacity for an OPS.
Therefore, the SHAP-derived result that an excessively high
E;umo negatively influences the product yield appears reason-
able. Furthermore, it is known that while the product yield in
photoredox reactions is strongly affected by the lifetime of
radicals generated in situ, an excessively high Ejymo can nega-
tively influence the lifetime of radicals derived from OPSs and
consequently reduce the product yield.*"** This insight is also
consistent with the result obtained from SHAP.

The trends in the feature contribution of rate constants in
the ML model for the radical-addition reactions are similar to
those observed in the ML model for the C-O bond-forming
reactions (Fig. 3a and 4a). Notably, s_k.s(T: — S;) and
S_kisc(T1 — So), which are key descriptors for the C-O bond-
forming reactions, also play an important role in the ML
model for the radical-addition reactions. Next, SHAP waterfall
plots were generated for OPS1 and OPS5 in Cy (Fig. 4c). In this
reaction, OPS1 and OPS5 afforded experimental yields of 45%
and 0%, respectively. OPS1 and OPS5 differ in the absence or
presence of methoxy groups on their skeletons. The predicted
yields for OPS1 and OPS5 were 44.11% and 2.52%, respectively,
indicating that the ML model can distinguish the difference in
product yields based on their physical properties. The SHAP
waterfall plots (Fig. 4c) revealed that, while Epyyo exhibits
a highly negative SHAP value in both cases (OPS1: —12.87; OPS5:
—15.01), E1 exhibits significantly different SHAP values (OPS1:
+3.17; OPS5: —4.24). The s_ki(S;1 — So) and s_kyisc(T1 — Si1)
parameters exhibit significantly more negative SHAP values for
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Fig. 4 SHAP (a) bar and (b) scatter plots as well as (c) waterfall plots (for Cy) for the quantification of feature contributions. Waterfall plots
including the more detailed information are displayed in Fig. S8. The original plots are included in the GitHub repository (https://github.com/

Naoki-Noto/P6-20240509-RK).
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OPS5 than OPS1, with larger differences in SHAP values (17.17
and 11.33) than Ey (7.41). Thus, based on SHAP, 28.50% of the
41.59% difference in predicted yield can be attributed to s_k;.(S;
— Sp) and s_kyjso(T1 — Sq)-

The higher s_ki(S; — S,) value of OPS5 (3.4 x 10 ) than
that of OPS1 (9.6 x 10~*) supports its poor luminescence
properties. The lower s_ks.(T; — S;) of OPS5 (2.1 x 10 %) than
that of OPS1 (1.2 x 10~°) is consistent with the trend in the
experimental values. We have long recognized that the methoxy
group is a substituent that specifically impairs luminescence
properties and catalytic activity,’*”” although explaining the
dramatic effects of “MeO” using more fundamental physical
properties is challenging. It is noteworthy that incorporating
theoretically simulated rate constants into ML enabled us to
capture such small yet specific differences. Moreover, as
mentioned earlier, our study clarified that when rate constants
are generated using the same computational method, their
correlation with photocatalytic activity in energy-transfer and
photoredox reactions is similar.

Conclusions

We have developed a data-driven approach to elucidate the
correlation between the rate constants from excited states and
the catalytic activity of organic photosensitizers (OPSs) by
integrating machine learning (ML), quantum chemical calcu-
lations, and experiments. The theoretically simulated rate
constants provided a model performance that was comparable,
or even superior, to that obtained using the experimental
excited-state lifetimes. A SHAP-based analysis revealed that the
rate constants associated with transitions from the T, state to
other states, as well as those from the S; state to the S, state,
play a crucial role in determining the photocatalytic activity.

Among the effective OPSs reported so far, there have been
cases where S;-state contributions were observed,*>** indicating
complexity and diversity in their excited-state behavior. Never-
theless, part of the SHAP-derived outcomes demonstrates that,
overall, properties associated with transitions from the T, state
play an important role in governing the photocatalytic activity.
Researchers are often influenced by biases derived from
a limited set of experimental observations, particularly from
compounds they are most familiar with. Therefore, incorpo-
rating statistical, data-driven approaches can provide a more
comprehensive and objective perspective for catalyst design and
mechanistic understanding.

Beyond its utility for capturing general trends across the
dataset, SHAP is particularly useful for case-by-case analyses.
Through this framework, we successfully elucidated the corre-
lations between excited-state properties influenced by subtle
structural variations and the corresponding photocatalytic
activity. For example, differences were observed in s_kis.(Ty —
So) and s_kyisc(T1 — S;) for OPS1 and OPS7 (carbazolyl vs. di-
phenylamino groups), in s_k(S; — So) and s_ki.(S; — So) for
OPS7 and OPS47 (nitro vs. cyano groups), and in s_k;.(S; — So)
and s_k;s(Ty — S;) for OPS1 and OPS5 (the presence or
absence of methoxy groups), which are consistent with experi-
mental observations and chemical intuitions. Statistical

© 2026 The Author(s). Published by the Royal Society of Chemistry
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analyses based on our dataset suggest that these factors account
for the observed differences in catalytic activity. In particular,
the developed descriptors, e.g., s_ki(S1 — So), successfully
captured the characteristics of OPSs with poor luminescent
properties. Such case-specific analyses are compatible with the
nature of organic chemistry.

Although the DFT-level computational approach introduces
some numerical uncertainty particularly in kis(S; — T4) and
krise(T1 — S1), the resulting relative relationships are sufficient
for our ML framework to capture the overall trends, as
substantiated by the improved model performance and the
agreement between the SHAP-based analysis and experimental
interpretations. We show that excited-state properties, which
are often difficult to capture experimentally, can be reasonably
related to photocatalytic activity at a feasible computational
cost. This provides a chemically meaningful contribution
beyond purely data-driven aspects. Meanwhile, to further
generalize this strategy, continued experimental and computa-
tional efforts to construct databases that encompass a broader
range of compounds and that incorporate more accurate pho-
tophysical properties are essential. For instance, when incor-
porating complex photosensitizers based on iridium or
ruthenium, which are known to be highly effective, we should
consider, for example, ultrafast excited-state processes® and the
radiative rate constant associated with the T;-S, transition,
which are requirements that differ significantly from those of
OPSs. Developing rational strategies to integrate such differ-
ences will be an important challenge for future research.
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Abbreviations

DFT Density functional theory

HGB Histogram-based gradient boosting

ISC Intersystem crossing

ML Machine learning

OPS Organic photosensitizer

RISC Reverse intersystem crossing

SHAP Shapley additive explanations

TADF Thermally activated delayed fluorescence
TD-DFT Time-dependent density functional theory
TVCF Thermal vibration correlation function
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