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Abstract

Proteins populate dynamic ensembles, yet how temperature and mutations reshape

these ensembles remains poorly understood. We introduce a local entropy metric that

assigns each residue a Shannon entropy based on a graph-derived map of accessible

substates, providing a continuous measure of structural complexity across folded, un-

folded, and intrinsically disordered states. In molecular dynamics simulations of the

fast-folding gpW protein, the average local entropy exhibits a sharp transition near

the melting point. Residue-specific entropy curves cluster into distinct unfolding cat-

egories and reveal that the apparent unfolding transition depends on the spatial scale

used to describe amino-acid environments. We further show that local entropy captures

features that differ markedly from other residue-level measures of structural fluctua-

tions, such as the accessible volume (and the associated packing entropy), which is

correlated with B-factors and primarily reflects the hydrophobic effect. In simulations

1

Page 1 of 45 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:2

5:
39

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SC06411B

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06411b


of α-synuclein, an intrinsically disordered protein, local entropy varies strongly along

the sequence at physiological temperature and resembles that of gpW near its melting

point. Parkinson’s-disease mutations in α-synuclein locally reduce entropy while also

perturbing distant regions including P1, P2 and NAC segments implicated in fibril

formations. These results highlight how temperature and subtle perturbations—such

as single-residue changes—remodel conformational ensembles. Local entropy correlates

with NMR observables and provides a generalizable framework for quantifying disorder,

with broad potential applications beyond protein science.

INTRODUCTION

At physiological temperatures, folded proteins adopt a relatively narrow distribution of ac-

cessible conformations, dominated by those contributing most significantly to their free-

energy minimum.1–3 Typically, a single structural model—determined experimentally by X-

ray diffraction or Nuclear Magnetic Resonance (NMR), or predicted computationally using

deep learning methods4,5—is used to represent this conformational ensemble. The classifi-

cation of folded proteins is facilitated by the identification and characterization of recurrent

local motifs or patterns in these structural models.6–17

In contrast, unfolded proteins, intrinsically disordered proteins (IDPs), or intrinsically

disordered regions (IDRs)18–21 cannot be accurately represented by a single structure, as a

large ensemble of accessible states contribute significantly to their free-energy. The classi-

fication of IDRs and IDPs primarily relies on functional features related to recurring local

sequence properties - such as linear motifs or molecular recognition elements associated with

intermolecular interactions.22 Computational analyses of large conformational ensembles of

IDRs and IDPs focus on clustering full-length conformations based on structural parame-

ters.23,24 Because amino-acid composition strongly influences both protein disorder25,26 and

dynamics,27 global structural features of IDRs are often correlated with their sequence.28 At

the local scale, however, unfolded proteins and IDPs display dynamic structural organization,
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as shown by NMR and single-molecule spectroscopy.29

In reality, the distinction between the structural representations of folded and disordered

proteins is not as clear-cut as often assumed. Even folded proteins exist as ensembles of

conformations fluctuating around a well-defined structural state, whereas disordered pro-

teins populate a much broader and more heterogeneous ensemble. A single representation

of a folded protein structure does not adequately reflect the dynamic landscape of its local

conformational substates.30 A unifying characteristic of protein conformations is the pres-

ence of short-range structural order around each amino acid, which varies continuously with

thermodynamic parameters such as temperature and pH. This continuum is evident during

thermal denaturation, where the local structural changes occur progressively with temper-

ature. Below 240 K,31 local structural fluctuations are harmonic and can be represented

by stationary motifs at short and long distances, enabling the identification and definition

of recurrent patterns6–17 such as secondary structural elements.6–8 At physiological tem-

peratures, proteins behave as surface-molten solids: surface-exposed (hydrophilic) residues

undergo thermal fluctuations, while core (hydrophobic) regions retain relatively stable struc-

tures.32 Above the melting temperature—or in intrinsically disordered states—all residues

fluctuate within dynamic micro-environments resembling molecular liquids, as demonstrated

by NMR and single-molecule studies.30

In this work, we show that analyzing ensembles of short-range structures around each

amino acid under varying conditions enables the quantification of local disorder along the

protein sequence. This is achieved by computing a local entropy derived from a protein

graph (PG). Replacing molecular geometries with graph representations—where amino acids

are nodes and edges denote geometric relationships— have long been employed in protein

science33–35 to facilitate the detection of recurrent local patterns in databases of single-

structure folded proteins. Since then, graph-based models have become powerful tools for

analyzing protein structure, dynamics and function.36–52

Accurately computing the entropic contribution to the free energy of protein conforma-
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tions remains a long-standing challenge.53–67 Since the early days of protein science,53–56

various methods have been developed to approximate this contribution by decomposing en-

tropy into local components,65,68–70 based on local structural properties — for example, the

NMR order parameter S2,71–73atomic coordinate fluctuations within the (quasi)-harmonic

approximation,53,55,56 backbone and side-chain torsion angles,70 or the amino acid packing

fraction.65 In the present work, we do not aim to calculate this thermodynamic quantity di-

rectly. Instead, we employ Shannon entropy to quantify the degree of intrinsic disorder in the

protein backbone, beyond local conformational descriptors such as Ramachandran angles or

residue accessible volume. In this framework, local entropy serves as a measure of structural

diversity within the interaction network surrounding each residue. Our approach differs from

previous site-resolved entropy estimations by explicitly incorporating residue–environment

interactions, thereby providing a more integrative and context-sensitive description of local

conformational variability during protein folding and unfolding. Finally, by comparing our

definition of local entropy with the packing entropy65 — which is known to correlate strongly

with site-resolved entropies derived from quasi-harmonic approximations and B factors65 —

we demonstrate both the differences and the complementarity between these two measures

of structural entropy.

The present approach is applicable to both folded and unfolded proteins, including in-

trinsically disordered proteins and intrinsically disordered regions.Entropy plays a central

role in IDP function, binding and aggregation.63,66 We first examined how local entropy

evolves during thermal unfolding using all-atom molecular dynamics (MD) simulations of

the W protein of bacteriophage lambda (gpW, PDB ID: 2L6Q).74 This 62-residue polypep-

tide adopts a folded structure comprising two α-helices (residues 4–19 and 40–54) stacked

above a β-hairpin (residues 23–28 and 31–36),74 and folds via a downhill mechanism.74,75

Experimental local unfolding curves for gpW were inferred from temperature-dependent

chemical shifts of atomic probes.76 These NMR measurements revealed abrupt chemical

shift changes near the melting temperature, supporting their interpretation as local heat-

4

Page 4 of 45Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:2

5:
39

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SC06411B

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06411b


induced denaturation curves.76 This behavior, along with the weak cooperativity of gpW’s

folding/unfolding transition, was successfully reproduced by all-atom MD simulations.76 In

earlier work, we showed that these local denaturation curves could be captured using a

coarse-grained two-state (folded/unfolded) model based on Cα–Cα pseudobond angles.77,78

Here, we demonstrate that local entropy varies along the sequence in the folded state, includ-

ing within secondary structural elements, and acts as an order parameter for the unfolding

phase transition, correlating well with experimental Cα chemical shifts.

Second, using coarse-grained MD simulations,79 we show that local entropy is heteroge-

neously distributed along the sequence of α-synuclein, a prototypical IDP. To enable compar-

ison between the simulation results for S and experimental data for wild-type α-synuclein,

we selected two residue-level disorder descriptors derived from chemical shifts: the 13Cα sec-

ondary chemical shift80,81 and the Chemical Shift Z-score used to assess order/disorder.82

A detailed analysis of the three descriptors reveals both common features—when averaged

over the three regions of the protein—and key differences in their local behavior. Finally,

we show that S is sensitive enough to detect subtle changes in the conformational ensem-

ble induced by single-point mutations (A30P, E46K, and A53T) in α-synuclein, including

long-range effects potentially linked to aggregation.83–85

METHODS

Definition of the local entropy

Local entropy is a combinatorial property derived from protein graphs. In a PG, each vertex

represents a Cα atom of an amino acid within the protein, while an edge connects two vertices

if their corresponding atoms are separated by a distance smaller than a predefined cutoff

value, R. This cutoff is carefully selected to include at least the second-nearest neighbor

Cα atoms, consistent with coarse-grained elastic network models of proteins.37 Typically,

R ranges from 6 to 10 Å to ensure that the relevant dynamic interactions are adequately

5
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captured. For the results presented in the main text, we adopt R = 8 Å. Similar conclusions

hold for other values of R, as illustrated in the Supporting Information using α-synuclein

as an example (Figure S1). Increasing the cutoff distance R primarily shifts the S profile

toward higher values.

For each conformation in the protein ensemble, we construct a corresponding PG. In each

PG, we define a protein subgraph (sPG) centered on a selected node by including all nodes

within a graph distance D from it. For D = 1, the sPG comprises the immediate neighbors of

the central node, along with all edges connecting them. For D = 2, second-nearest neighbors

in the PG are also included, thereby extending the structural context. In this study, we

analyze sPGs with D = 1 and D = 2, which represent the local micro-environment of a

residue, encompassing its first and second neighbors on the graph, respectively. Throughout

the text, each graph node is identified by its sequence position and the corresponding amino

acid name.

The local entropy Sk is then calculated for each residue at position k along the sequence,

based on the ensemble of its sPGs, using the Shannon entropy definition:

Sk = −
nk∑
i=1

piln(pi) (1)

where nk is the number of different sPG for residue k in the structural ensemble and pi is

the probability to observe the ith sPG with i = 1 to nk.

As predicted by the Boltzmann formula, the maximum value of Sk is constrained by the

number of its accessible micro-environments in the ensemble, and equals:

Sk,max = ln(nk) (2)

The maximum value of nk is the number N of protein conformations in the ensemble.

In the main text, we report normalized entropy values of Sk/Smax where Smax = ln(N).

The local entropy Sk defined by Eq. (1), is dimensionless. In information theory, entropy is

6
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typically expressed in natural units (nats). When interpreted as a thermodynamical quantity

with kB = 1, a value of S = 1 corresponds to an entropy of 1.987 cal/mol/K, equivalent to

a free-energy contribution of −0.616 kcal/mol at T = 310K, for example.

In a sPG, permuting the node labels alters the amino acid sequence of the protein;

thus, graph homomorphisms are not treated as equivalences. The probabilities pi used in

the entropy calculation are obtained by identifying automorphic sPGs—that is, structurally

identical subgraphs across conformations. The local entropy values of Sk are computed using

the NetworkX Python library.86 For simplicity, we denote local entropy as S instead of Sk

in the remainder of the text.

Conformational ensembles

The protein graph ensembles analyzed in this study were derived from structural configura-

tions obtained from previous all-atom MD simulations of gpW77,78 and from coarse-grained

MD simulations of α-synuclein,79 as well as from reference ensembles of random conforma-

tions generated solely from steric constraints, i.e., self-avoiding random walks (SAWs) in

three-dimensional space, as described in the Supporting Information.

In the main text, local entropy values were computed from 100,000 randomly selected

snapshots from each MD trajectory and from SAW ensembles of the same size. As illustrated

in the Supporting Information using wild-type α-synuclein as an example (Figure S2), this

sampling strategy provides sufficient statistical accuracy while substantially reducing com-

putational cost compared to full-ensemble analyses.

RESULTS AND DISCUSSION

The local entropy is a local order parameter of protein unfolding

How does local entropy vary during protein unfolding ? We address this question by analyzing

the heat-induced denaturation of the 62-residue polypeptide gpW. Figure 1 presents the local

7
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entropy computed along the amino acid sequence of gpW at different temperatures, based

on all-atom MD simulations in explicit solvent.77,78

We begin by examining the variation of local entropy S as a function of amino acid

position at graph depth D = 1. In the native state (280 K), S is highly heterogeneous along

the sequence, including within well-defined secondary structures represented in Figure S3.

The lowest entropy values are observed in the central region of the sequence, corresponding

to residues involved in β-sheets. A clear trend emerges: S increases from the center toward

the termini of the chain. The highest local entropy is observed for residue T54, located

at the interface between the two helices within the three-dimensional structure of gpW,

as shown in Figure S3. Notably, if the folded protein was represented by a single static

structure, S would be exactly zero for all residues. The results in Figure 1 underscore the

necessity of representing even folded proteins as conformational ensembles, rather than single

snapshots.30

The spatial variations of S in the folded state provide complementary insight into pro-

tein dynamics, focusing on the network of intramolecular interactions rather than on local

positional fluctuations (as captured by B-factors), bond vector order parameters (such as

the NMR-derived S2)71–73 or local accessible volume (such as the packing fraction65). For

comparison, we computed the packing entropy SP , which has been demonstrated to correlate

strongly with entropies derived from the quasi-harmonic approximation or from B factors,65

at all temperatures along the amino acid sequence of gpW using structures extracted every

nanosecond from all trajectories. The packing entropy of each amino acid, SP (k), is com-

puted for every protein structure from its packing fraction (see Ref.65 and the Supporting

Information). The results shown in Figure S4 reveal that SP represents a distinct quantity.

As expected for its small size, glycine residues contribute the most, and the packing entropy

values of G20, G30, G55, and G62 are of the same order of magnitude. Importantly, in

contrast, the local entropy S depends more strongly on the position of the residue within the

sequence than on the chemical nature of the amino acid itself. For instance, residues G30

8
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and G55 display markedly different entropy values in the folded state at T = 280 K (0.11

and 6.27, respectively as shown in Figure 1). Local entropy is a property of the interaction

network and depends on the identity of the interacting residues, whereas packing entropy

measures the locally accessible volume around a residue and is less sensitive to the chemical

nature of the amino acids forming the surface of this volume. Both quantities contribute to

the overall entropy of the protein.

For the majority of residues, local entropy S increases progressively with temperature up

to 320 K, i.e. below Tm as shown in Figure 1. Beyond this point, a notable shift occurs:

the curves of S at 325 K, the melting temperature Tm = 330K, and 335 K form a clearly

distinct cluster, separated from those at 320 K and 340K. This abrupt change is hallmark of

the unfolding phase transition.By contrast, the packing entropy SP does not vary much with

the temperature and no global unfolding phase transition is observed in Figure S4. This

can be understood as according to the Gaussian model of an ideal polymer and molecular

dynamics simulations, the unfolded state is a compact structure and for most of the residues

the accessible volume will not be very different in folded and unfolded states.

At Tm and above (i.e., in the unfolded state), local entropy becomes approximately uni-

form along the sequence, except at the N-terminus (residues 1–3) and C-terminus (residues

60–62), where S remains lower (Figures 1 and S3). Interestingly, this pattern closely re-

sembles the entropy profile derived from ensembles of self-avoiding random walks of the

same chain length. In particular, the SAW ensemble also exhibits reduced entropy at the

chain ends, suggesting a common geometrical origin linked to reduced connectivity or spatial

constraint near termini.

9
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Figure 1: Local entropy S at a graph distance D = 1 (upper panel) and D = 2 (lower
panel) is shown as a function of the amino acid sequence of gpW at various tempera-
tures, calculated from all-atom MD simulations for R = 8 Å. Normalized values of the
local entropy S/Smax are presented with Smax = ln(100000) = 11.513 (Eq. 2). Lines
are provided as guide for the eye. The thick black solid line corresponds to results at
T = 280 K (native, folded state). Symbols indicate residue properties: red for positively
charged amino acid, blue for negatively charged ones, black for glycine, triangles for residues
in β-sheets, and empty black circles for all other cases. Gray shading highlights regions
corresponding to α-helices. Results at the experimental melting temperature Tm = 330 K
are shown as a thick red line. Thin red dotted lines represent results at T = 325 K and
335K. Gray dotted lines show results at increasing temperatures, from bottom to top:
T = 280, 285, 290, 295, 305, 310, 315, 320, 325, 335, 340, 355, 380K. The black dashed line rep-
resents the local entropy computed from a SAW ensemble representing for a chain of 62
atoms.

The low values of local entropy S observed at the N- and C-termini can be interpreted

through combinatorial considerations. In the absence of specific interactions—such as in

SAW models where only steric constraints are present—or at high temperatures in MD sim-

ulations where the potential energy landscape exerts minimal influence, the conformational

ensemble is governed primarily by geometrical and entropic factors. In such regimes, the

local entropy reflects the combinatorial diversity of local environments. According to the

Gaussian polymer model, the probability of forming a contact between two residues i and j
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decreases sharply with their sequence separation dseq = |i−j|.87 As a result, residues located

at the chain termini have fewer opportunities to establish contacts, since they can interact

with residues only on one side of the sequence. This asymmetry limits the number of distinct

subgraph configurations that can form around terminal residues, reducing the diversity of

micro-environments and therefore leading to lower local entropy values compared to residues

in the interior of the chain.

Second, we examined the variation of local entropy at D = 2 in Figure 1. The profile of

S along the sequence exhibits features similar to those observed at D = 1, with the main

difference being a marked increase in entropy values across all residues and a more uniform

local entropy in the C-terminal region beyond residue L50. This increase arises from the fact

that, by construction, the subgraphs at D = 2 contain more nodes and edges, and are thus

more sensitive to conformational fluctuations over time.

At the melting temperature Tm, the local entropy reaches values close to the maximum

possible entropy Smax for nearly all residues, except at positions 19 and 30, where the entropy

remains low—consistent with their strong structural constraints in the native state at D = 1.

At 380 K, the local entropy remains uniform across the central region of the sequence,

similarly to the behavior observed at D = 1. Notably, the gap between the curve at Tm and

those at 5 K above or below is smaller at D = 2, indicating that the temperature dependence

of S is smoother at this scale.

Each sPG can be interpreted as a microstate of the local environment of a residue,

defined by its network of connections. At equilibrium and sufficiently high temperatures, the

local entropy for each residue is expected to approach a maximum given by the Boltzmann

formula (Eq. 2). In this regime, the variations of Sk and of the number nk of accessible

microenvironments (i.e., distinct sPGs) along the sequence should be highly correlated.

To quantify this, we computed the Pearson correlation coefficient r between the vectors

Sk and nk as functions of the residue index k, at various temperatures, for gpW at D = 1

(Figure S5). The correlation remains high across all temperatures, with a modest disconti-

11

Page 11 of 45 Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:2

5:
39

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SC06411B

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06411b


nuity at Tm. Specifically, at D = 1, the average value of r is 0.915 for T < Tm and 0.954

for T > Tm. At D = 2 (Figure S6), the correlation is even stronger, increasing from 0.970

at 280 K to 0.992 at 380 K. These results show that, to a very good approximation, local

entropy reflects the number of accessible structural states around each residue in the graph

representation.

In addition, the Pearson correlation between the average size of each sPG (measured

by the number of peptide bonds it includes) and S at D = 1 displays an abrupt shift at

the melting temperature and converges at high temperatures to values comparable to the

correlation between Sk and nk (see Figure S5). In the unfolded state, the number of accessible

sPGs nk becomes nearly uniform across the sequence, except at the terminal residues. As

also observed for the global entropy curve S, the transition is less pronounced at D = 2, as

illustrated in Figure S6.

The curves S(T ) extracted from Figure 1 at D = 1 are shown for selected residues

in Figure 2 a, and for all residues in the Supporting Information (Figure S7). For most

residues, S(T ) exhibits a sharp change near the melting temperature (Tm = 330 K), which

supports the interpretation of local entropy as a local order parameter of the unfolding phase

transition.

For each residue, the curve S(T ) is compared to the average over all residues, denoted

⟨S(T )⟩. Although the local entropies are not strictly independent—since residues are con-

nected—the average serves as a useful global entropic descriptor. The S(T ) curves can be

qualitatively classified into four categories based on their deviation from ⟨S(T )⟩, as illus-

trated in Figure 2 a. The similarity between the local entropy curve and the average curve

is quantified using both the Pearson correlation coefficient (r) and the Jensen–Shannon dis-

tance (JS) computed using SciPy library.88 The correlation coefficient measures the linear

relationship between two curves and reaches its maximum value, i.e., 1, when the two curves

are identical up to a multiplicative constant, whereas the JS distance quantifies the dissim-

ilarity between the distributions of values along the two curves and reaches its minimum
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value, i.e., 0, for identical distributions.

The first category includes 41 out of 62 residues whose local entropy curves S(T ) are

highly correlated with the average entropy ⟨S(T )⟩ (r ≥ 0.96). For this category, the unfolding

transition is clearly cooperative. The local entropy curves can be further divided into two

classes. In the first class (JS ≤ 0.06), 20 residues display local entropy profiles that closely

follow the average curve, such as A13, K21, and K28 (Figure 2 a). This class also includes E5,

L7, A9, A10, L14, M18, R22, A24, T25, V26, Q27, F35–A37, S39, V40, and L43 (Figure S7).

The second class (0.09 ≤ JS ≤ 0.28) comprises 21 residues whose S(T ) curves undergo

sharper transitions than the global curve due to their very low entropy in the folded state.

Examples include H15 and G30 (Figure 2 a), as well as R11, A12, D16, T19, G20, V23,

R31, R32–E34, T38, S41, D42, and K44–E49 (Figure S7). Notably, G30 exhibits a multistep

transition with three distinct plateaus, indicating complex unfolding behavior. Except for

K21, R22, A37, and T38, residues in the first category are located within secondary structure

elements.

The second category includes residues located in secondary structure elements whose

S(T ) curves are highly correlated with the average entropy curve (r ≥ 0.9), but that increase

approximately linearly with temperature up to the unfolded state (0.07 ≤ JS ≤ 0.11), as

illustrated by D29 in Figure 2 a. Additional examples include E6, L50, E51, M56, and T57

(Figure S7).

The third category includes residues exhibiting more complex S(T ) profiles that remain

significantly correlated with the average entropy curve (0.83 ≤ r ≤ 0.96 and 0.07 ≤ JS ≤

0.16). Examples include A8, R11, V52, Q53, and G55, which are located within secondary

structure elements, and Q58–G62 in the C-terminal region (Figure S7). These patterns may

reflect the presence of intermediate states during unfolding.

Finally, the fourth category consists of five residues showing little to no variation in S(T )

across the temperature range (0.11 ≤ JS ≤ 0.16), with low correlation (r ≤ 0.83) between

the local and average entropy curves. Representative examples are V2 and T54 (Figure 2
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a, the latter located at the interface between the two helices (Figure S3). Other members

include M1, R3, and Q4 (Figure S7). These residues, mostly located at the termini, appear

structurally disordered or only weakly affected by unfolding.

For all residues, the number of links in their sPGs decreases significantly above the melting

temperature, and the probability distribution of the sPGs becomes flatter at T > Tm, as

shown at 280 K (folded), 330 K (Tm), and 380 K (unfolded) in Figure S8 for selected residues.

The first category of S(T ), which accounts for more than two-thirds of the amino acids,

corresponds to distinct behaviors of the sPG probability distribution pi in the folded state. In

the first class of this category, where S(T ) agrees closely with the average S(T ) (JS ≤ 0.06),

the most probable sPG has a probability of about 0.3–0.4, and only around ten sPGs have

significant probabilities. In the second class of this category (0.09 ≤ JS ≤ 0.28), the most

probable sPG has a probability close to 1, and only about three sPGs occur with non-

negligible probabilities. This indicates that the links of these residues—such as H15 and

G30—are very stable, even at the melting temperature.

The local entropy clearly reveals distinct behaviors among residues, depending on the

stability of their local environments. This indicates that the unfolding transition is not a

strict all-or-none, two-state process. In particular, extremely low values of S in the native

state—such as those observed for residues H15 and G30—highlight key residues that con-

tribute significantly to the stability of the folded structure. Both of these residues with low

local entropy are located within secondary structural elements.

The S(T ) curves extracted from Figure 1 at D = 2 are shown in the Supporting Infor-

mation (Figure S9). As previously observed in Figure 1, the unfolding transition is much

less pronounced at D = 2, except for a few residues—mainly those located in secondary

structure elements, notably residues M18–V23, T36–T38, and S41. As a result, the average

curve of S does not exhibit a clear phase transition at D = 2 but instead shows a gradual

increase with temperature up to Tm, beyond which S becomes nearly constant.

14

Page 14 of 45Chemical Science

C
he

m
ic

al
S

ci
en

ce
A

cc
ep

te
d

M
an

us
cr

ip
t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

6 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/1
4/

20
26

 9
:2

5:
39

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5SC06411B

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc06411b


a

b

c

d

e

Figure 2: Local heat denaturation curves from MD of gpW and those extracted from NMR
chemical shifts data δ (in ppm) from reference76 for selected residues of gpW. The curves
S(T )/Smax extracted from Figure 1 at D = 1 are showed in panel a. The local entropy
differences, represented at D = 1 (panel b) and D = 2 (panel e), are ∆S = S(T )−Smin where
Smin is the minimum value of S between 280 K and 380 K. The chemical shifts data are shown
∆δ = δ(T ) − δmin if δ increases with T , and ∆δ = δmax − δ(T ) if δ decreases with T (panel
c). The local packing entropy differences, represented (panel d), are ∆SP = SP (T ) − SP,min

where SP,min is the minimum value of SP between 280 K and 380 K. Solid lines are provided
as guide for the eye. A red dashed curve represents the average of the curves over all residues
for each quantity. The values of the Pearson correlation coefficient r and the Jensen-Shannon
distance JS computed between each local packing entropy curve and the average curve are
shown.

Previous NMR studies have revealed a variety of denaturation behaviors in the chemical

shifts of gpW during unfolding, as measured by 13Cα nuclei.76 Given that the local entropy

is a combinatorial property derived from the short-range environment of each Cα atom,

we investigate here the relationship between this theoretical local order parameter and the

variations in 13Cα chemical shifts observed during protein unfolding.
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It is well established that 13Cα chemical shifts are sensitive indicators of secondary struc-

ture.89 More specifically, their values are known to vary with the Ramachandran angles89

or with the local backbone curvature θ and torsion γ.78 More generally, chemical shifts are

highly sensitive to local structural segments or motifs.90 As temperature increases, the con-

formational space explored by atoms in the (θ, γ) map expands.78 However, the connection

between a theoretical local order parameter and an experimental observable depends on

both the nature of the probe and its resolution.91 As previously shown, changes in the shape

and size of the (θ, γ) region explored by an atom during unfolding may lead to chemical

shift variations too subtle to be detected experimentally.78 Nevertheless, since the number

of microstates visited by an atom correlates with the accessible surface in this map, a link

between local entropy and chemical shifts is expected.

To compare δ(T ) and S(T )—two fundamentally different physical observables—we define

normalized variations based on their temperature-dependent changes. For the local entropy

computed from MD, we define ∆S(T ) ≡ S(T ) − Smin, where Smin is the minimum value

observed between 280 and 380 K. For the chemical shift, we define ∆δ(T ) as either δ(T ) −

δmin or δ(T ) − δmax, depending on the monotonicity of δ(T ) across the temperature range.

Specifically, we use the first expression if δ(T ) increases with T , and the second if it decreases.

The ∆S(T ) curves computed at D = 1 (Figure 2 b) and D = 2 (Figure 2 e) are compared

to the ∆δ(T ) profiles (Figure 2 c) for the selected residues shown in Figure 2. Results for

all residues are provided in the Supporting Information (Figures S10 and S11 for ∆S(T ) at

D = 1 and ∆δ(T ), respectively).

In Figure 2, we observe a remarkable similarity between ∆S(T ) and ∆δ(T ) at D = 1,

with the exception of residues K21 and D29. Notably, the multi-step transition observed in

S(T ) for residue G30 is also reflected in the δ(T ) data. Similar correlations are found across

the full set of residues, as shown in the Supporting Information. These observations confirm

that, at D = 1, the different classes of S(T ) curves closely reproduce the δ(T ) behaviors

previously reported by Sborgi et al.76
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In contrast, ∆S(T ) computed at D = 2 does not exhibit a clear phase transition (see

Figure S12), and diverges significantly from the corresponding ∆δ(T ) measurements. This

discrepancy is evident when comparing panels c and e in Figure 2, as well as Figures S11

and S12 in the Supporting Information. This result is expected, as the chemical shift of

a nucleus is primarily influenced by its immediate local environment. The comparison of

experimental δ(T ) data with entropy calculations at two different graph distances suggests

that the cooperative features of protein unfolding resemble a phase transition only within a

limited interaction range. This conclusion holds for the complete set of residues, as illustrated

in Figures S10, S11, and S12.

It is relevant to compare the local packing entropy ∆SP (T ) curves extracted from the

Figure S4 with the local packing entropy curves ∆S(T ) at D = 1 (Figures 2 b and S12) and

NMR chemical shifts variations (Figures 2 c and S11). The curves ∆SP (T ) are shown in

Figure 2 d for selected residues and in Figure S13 for all residues. As it can be anticipated

from Figure S4, most of the local curves ∆SP (T ) do not show a significant variation and

consequently the average entropy curve ⟨∆SP (T )⟩ does not show clearly a phase transition,

in contrast with the local entropy ∆S(T ) (Figures 2 b and S10) and NMR chemical shifts

∆δ (Figures 2 c and S11).

Nevertherless, a zoom on the average curve is shown in Figure S14 where we observed a

small increase of the ⟨∆SP (T )⟩ with T between 280 K and 380 K and a small jump between

325 K and 335 K which can be interpreted as due to the unfolding process. This small jump

is due to only a few residues for which the local entropy does indeed show a transition as

observed for residue A13 in Figure 2 d. Other residues in this category are L7, A9, A10,

L14, L17, A24, V26, L43, Y46, L50. Their local packing entropy curve is correlated to

average one with Pearson correlation coefficient r > 0.7 but also deviates significantly as the

Jensen-Shannon distance is high 0.16 ≤ JS ≤ 0.46. All these residues are hydrophobic.

Two residues show a transition anti-correlated with ⟨∆SP (T )⟩, i.e., the entropy of these

residues decreases with T , as shown in Figure 2 d for G30 and in Figure S13 for G20.
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Glycine residues tend to cluster with polar amino acids regarding change in contacts related

to entropy variations.64 The decrease in SP for G20 and G30 with increasing T may be related

to the hydrophobic effect, similarly to the increase in entropy observed for the hydrophobic

residues mentioned above.65 Packing entropy is indeed correlated with the accessible surface

area of residues.65 In the early days of protein science, Janin proposed a hydrophobicity

scale by computing a free energy ∆Gt = RT ln f , which can be interpreted as the free

energy of transferring a residue from the protein interior to the surface, where f is the ratio

of the buried to accessible molar fractions of that residue across a set of proteins.93 The

values of ∆Gt, computed using the ProtScale server,92 are compared with the variation of

∆SP = SP (380 K) − SP (280 K) in Figure S15. Residue G30 is predicted to be more stable

at the protein surface, and one can see that the change in packing entropy contributes to

this stability. In contrast, residue L43—which exhibits a marked increase in entropy at

high temperature (Figure S13)—has a positive value of ∆SP ≡ SP (380 K) − SP (280 K) in

Figure S15. Representative snapshots of gpW at 280 K and 380 K, shown in Figure S16,

confirm the relocation of G30 toward the protein interior and the movement of L43 toward

the surface at high temperature. Packing entropy is therefore a powerful tool for quantifying

the hydrophobic effect from static structures.

Clearly, packing entropy quantifies a contribution to the total entropy that is distinct from

local entropy, as it is directly related to accessible surface area and thus to the hydrophobic

effect. This explains why it does not correlate with local entropy or with NMR chemical-shift

variations, as shown by comparing panels b, c, and d of Figure 2 and Figures S9, S13, and S12.

The two entropies do not probe the same microstates. For packing entropy (which correlates

with B-factors65), the microstates correspond to local configurations of the accessible volume

around a residue, without distinguishing the chemical nature of the surrounding amino acids.

Local entropy, in contrast, accounts for the interaction network, which varies even for the

same accessible volume depending on the identity and arrangement of neighboring residues.

The number of microstates—and its variation with temperature—is therefore larger for local
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entropy, which also correlates with NMR chemical shifts that depend on nuclear interactions

and structural organization. Both entropies contribute to the total entropy of the protein.

Local entropy in a disordered protein ensemble

Figure 3: Local entropy S at a graph distance D = 1 (lower curves) and D = 2 (upper
curves) is shown as a function of the amino acid sequence of α-synuclein at physiological
temperatures, calculated from coarse-grained MD trajectories at R = 8 Å. Normalized values
of the local entropy, S/Smax, are presented with Smax = ln(100000) = 11.513 (Eq. 2). Lines
are provided as guide for the eye. Solid and dashed lines represent local entropies computed
from MD and SAW structural ensembles, respectively. Solid red symbols indicate positively
charged amino acids, while blue symbols indicate negatively charged ones. Diamond symbols
mark the positions of missense mutations at A30, E46 and A53. Light gray shading indicates
the P1 (residues 36–42) and P2 (residues 45–57) segments, while dark gray shading indicates
the NAC region (residues 61–95).

Large entropy changes are expected during IDP binding and aggregation.63,66 Quantifying

entropy in IDPs is clearly needed, but it is even more challenging than for globular pro-

teins because of the broad conformational ensembles sampled by these macromolecules. In

this context, local entropy S may serve as a computational ruler, as illustrated here for

α-synuclein. As shown in our previous work, the conformational ensembles of wild-type
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and mutant α-synuclein monomers79 and dimers85 studied here are in good agreement with

available experimental data.

The monomeric form of α-synuclein is well known to be intrinsically disordered in solu-

tion. Figure 3 displays the local entropy S at T = 310 K computed at distances D = 1 and

D = 2 from coarse-grained MD simulations for the wild-type α-synuclein monomer, along

with values obtained for a SAW ensemble of the same chain length. On average, the local

entropy of α-synuclein is close to that of the SAW ensemble: the ratios ⟨S⟩ / ⟨Ssaw⟩ are 0.856

and 0.979 at D = 1 and D = 2, respectively.

It is informative to compare these values to the ones calculated between the local en-

tropy of the unfolded state of gpW and those of SAW of the same chain length. We found:

⟨S⟩ / ⟨Ssaw⟩ = 1.139 at D = 1 and 1.046 at D = 2. These ratios greater than one reflect

the presence of enhanced fluctuations in the unfolded globular protein, due to transient in-

teractions between amino acids, which are less frequent in more extended structures like

SAWs or intrinsically disordered proteins. As shown by comparing Figures 1 and 3, the

variation of S in gpW at Tm relative to its SAW reference closely resembles the entropy

profile of α-synuclein at T = 310 K, for both D = 1 and D = 2. At Tm, gpW exhibits

⟨S⟩ / ⟨Ssaw⟩ = 0.730 at D = 1 and 0.996 at D = 2. This suggests that the conformational

disorder of a folded protein at the transition state can closely match that of a fully disor-

dered protein under physiological conditions. Further investigation is required to determine

whether this observation reflects a general principle applicable to other protein systems. In-

deed, these observations may also arise from the different models employed (all-atom versus

coarse-grained force fields) and from the different time scales involved (microsecond versus

millisecond effective time scales).

Among the different regions, the NAC domain appears as the most disordered, while the

C-terminal domain is comparatively more structured, particularly at D = 1. Specifically,

the entropy ratios ⟨S⟩ / ⟨Ssaw⟩ at D = 1 are 0.893, 0.907, and 0.762 for the N-terminal, NAC,

and C-terminal regions, respectively. The same trend holds at D = 2 with values of 0.982,
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0.992, and 0.965.

At D = 2, the local entropy is nearly uniform along the sequence, except at the termini

and for a few specific residues. Distinct local minima of S are observed at residues E13, G25,

G31, K45, T59, E110, and D119, with shallower minima in the NAC region around residues

G68, V74, and E83. Many of these residues also exhibit low entropy at D = 1, particularly

E13, K45, T59, E83, E110, and D119.

As evident from both D = 1 and D = 2, the minima at K45 and T59 lie at the centers

of the low-entropy segments K43–E46 and K58–E61, respectively, which separate the P1

and P2 regions. These regions were recently shown to play a crucial role in α-synuclein

aggregation, in addition to the well-known NAC region.83 Maxima of local entropy at D = 1

are observed in these regions at hydrophobic residues L38 (P1), V52–A53 (P2), and I88–A89

(NAC). Interestingly, the residues forming native contacts in α-synuclein fibril-like dimers

with probability greater than 0.9 in our previous simulations on a millisecond time scale

are located near this flexible segment in the NAC (residues G86–F94).85 Further work will

be required to establish whether a clear relationship exists between the local entropy of the

monomeric state and aggregation propensity.

Interestingly, residues with the lowest entropy values tend to be charged. As for gpW,

the Pearson correlation coefficient between the local entropy Sk and the number of distinct

micro-environments nk visited by each residue is high (P = 0.954). Low S values can

therefore be interpreted as reflecting a reduced number of accessible microstates, due to

strong electrostatic interactions or hydrogen bonding. For example, deep entropy minima

at K45, K60, and E110 correspond to the sampling of only 7,217, 6,349, and 3,282 distinct

sPGs, respectively, out of a maximum of 100,000, compared to the average ⟨nk⟩k = 17, 800

and the maximum, 40,633, observed for L38.
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Local order in α-synuclein from theory and experiment

In gpW, we observed strong correlations between the temperature-dependent chemical shifts

δ(T ) and the local entropy S(T ), particularly for residues located within secondary structural

elements. These correlations reflect larger excursions of the main chain in dihedral space,

originating from local minima in the folded state. For α-synuclein, however, no experimental

chemical shift data are currently available at multiple temperatures. Furthermore, this

protein only exhibits transient secondary structures,79 making the interpretation of 13Cα

chemical shift variations along the sequence in terms of local order/disorder more challenging.

In the absence of experimental measurements of the temperature-dependent chemical

shift variation ∆δ(T ) for α-synuclein—which would provide direct evidence for a link be-

tween ∆δ and S in IDPs—we instead compare variations in S to two residue-level disorder

descriptors based on chemical shifts at a single temperature and compared them to the func-

tion 1 − S/Ssaw. This function is designed to reflect the relative degree of local order, with

a maximum value of 1 corresponding to S = 0 (i.e., a single stable micro-environment), and

values approaching zero when S = Ssaw, which corresponds to maximal steric disorder as

represented by self-avoiding walks.

Notably, values of S exceeding Ssaw may occur when multiple minima in the interaction

potential generate a greater diversity of sPGs. In such cases, the probability of the contact-

free sPG—typically dominant in SAWs— drops significantly, resulting in negative values of

the function 1 − S/Ssaw.

The first experimental descriptor used for comparison is the 13Cα secondary chemical

shift,80,81 which reflects local backbone conformational preferences. The second is the Chem-

ical Shift Z-score for assessing Order/Disorder (CheZOD score), which integrates the sec-

ondary chemical shifts of all backbone atoms into a quantitative measure of local order.82

It is important to note that the chemical shifts of α-synuclein are sensitive to solvent

conditions and pH.81 For consistency with the simulation conditions, we used NMR data

collected under near-physiological conditions, corresponding to the α-synuclein monomer
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entry in the Biological Magnetic Resonance Bank (bmrb ID: 6968).80,81

Figure 4: Representation of 1/(S − Ssaw) of α-synuclein at a graph distance D = 1 and
R = 8 Å as a function of the amino acid sequence, computed from coarse-grained MD
simulations (solid line, open symbols) at physiological temperature, and of the absolute
values of Cα secondary chemical shifts δCα extracted from Figure 1 of reference81 (dashed
line, solid symbols). The dot-dashed lines correspond to the condition S = Ssaw (right Y
axis) and to random coils values of the chemical shifts (left Y axis). All lines are provided
as guide for the eye. Light gray shading indicates the P1 (residues 36–42) and P2 (residues
45–57) segments, while dark gray shading indicates the NAC region (residues 61–95).

We first compare the 13Cα secondary chemical shifts,80,81 δCα, to the function 1−S/Ssaw

in Figure 4. As discussed above, MD simulations indicate that the NAC region is the most

disordered, while the C-terminal is the most ordered. This is reflected in the averaged

values of the entropy-based order parameter: ⟨1 − S/Ssaw⟩N−term / ⟨1 − S/Ssaw⟩NAC = 1.19,

and ⟨1 − S/Ssaw⟩C−term / ⟨1 − S/Ssaw⟩NAC = 2.63. These estimates can be compared to the

experimental secondary chemical shifts: ⟨|δCα|⟩N−term / ⟨|δCα|⟩NAC = 1.75, and

⟨|δCα|⟩C−term / ⟨|δCα|⟩NAC = 2.13, supporting the conclusion that the NAC region is the

most flexible and the C-terminal the most structured—consistent with MD results.

A similar conclusion arises from the CheZOD descriptor82 (see Supporting Information,

Figure S15), which also shows increased order in the N-terminal and C-terminal regions.

When averaged (after shifting to positive values), the CheZOD values yield:
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⟨CheZOD⟩N−term / ⟨CheZOD⟩NAC = 1.19, and ⟨CheZOD⟩C−term / ⟨CheZOD⟩NAC = 2.63. This

is also in agreement with NMR measurements of the 15N transverse relaxation rate R2, which

indicate enhanced backbone flexibility in the NAC region under physiological pH and tem-

perature conditions.94,95

Figures 4 and S14 highlight noticeable differences between the two NMR-derived disorder

descriptors and the entropy-based data at the residue level. A quantitative residue-by-residue

comparison is thus difficult, given the inherent uncertainties in both NMR chemical shift

measurements and MD simulations, but shared patterns do emerge. Along the N-terminal

region, peaks indicative of increased local order appear at residues K6, V16–A29, K34, K45,

V52, and T59 in |δCα|, and at comparable positions in 1−S/Ssaw (notably K6, E13, K21–E35,

K45, K60). The CheZOD score also shows elevated values at K6, V15–T33, and A53, but

differs by presenting a distinct peak at V40 and lower order at K60.

In the NAC region, |δCα| shows peaks at V70, T75, A85, and I88. The entropy-based

descriptor 1−S/Ssaw displays corresponding peaks at G67, G73, K80, and G84. The CheZOD

score shows similar variations with peaks at V66, K80, and A85.

The C-terminal region displays significant variability in all three descriptors. In |δCα|,

prominent peaks are observed at A124, E126, and E137. The CheZOD score presents ad-

ditional maxima at K96, A107, M116, G132, E126, and E137. The entropy-derived profile

also reveals numerous peaks within residues K96–E139, including E110, D119, M127, G132,

and P138.

While a perfect residue-by-residue correspondence is not observed, even between the two

experimental descriptors based on the same δ data, overall trends and relative variations in

local order along the α-synuclein sequence are consistent across all three descriptors, albeit

with some positional shifts. Interestingly, the similarity between |δCα| and the entropy-

based descriptor is stronger than with the CheZOD score. This is expected, as both |δCα|

and S are sensitive to the local environment of Cα atoms, whereas CheZOD is derived from

chemical shifts of all backbone atoms and therefore captures a broader range of structural
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features. The present discussion highlights the need for further experimental studies on

IDPs across different temperatures to clarify the role of local entropy in protein dynamics

and aggregation.

Effects induced by single amino-acid subsitutions in disordered pro-

tein ensembles as measured by the local entropy

The conformational ensemble of an IDP is vast, characterized by a rugged free-energy land-

scape with numerous minima of comparable energy. As a result, deciphering the impact of a

single amino acid substitution on its structural diversity remains a significant challenge. This

issue is particularly relevant for studying missense mutations in α-synuclein. The familial

Parkinson’s disease-associated variants A30P, E46K, and A53T exhibit distinct amyloid ag-

gregation kinetics, leading to different pathological outcomes. Notably, the E46K mutation

is associated with more severe clinical symptoms.

In this context, we propose using local entropy as a quantitative descriptor to assess the

impact of single-point mutations on the structural ensemble of α-synuclein. This analysis is

based on coarse-grained MD simulations reported in a previous study.79
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Figure 5: Local entropy S at graph distance D = 1 as a function of the amino acid sequence
of α-synuclein mutants at physiological temperature, calculated from a coarse-grained MD
trajectory with R = 8 Å. Normalized values of the local entropy, S/Swt, are shown, where
Swt corresponds to the local entropy of the wild-type protein. Lines are provided as guides
for the eye. Full red symbols indicate positively charged amino acids, and blue symbols
indicate negatively charged amino acids. Diamond symbols mark the positions of mutated
residues: P30, K46, and T53. Light gray shading indicates the P1 (residues 36–42) and
P2 (residues 45–57) segments, while dark gray shading indicates the NAC region (residues
61–95).

The variations of the local entropy S at D = 1 and D = 2 for the mutants A30P,

E46K, and A53T are presented in the Supporting Information (Figure S1 panels c to h).

The average values of S across the N-terminal, NAC, and C-terminal regions follow the

same trend observed for the wild-type protein, as discussed in the previous section, namely:

⟨S⟩C-term < ⟨S⟩N -term < ⟨S⟩NAC . As in the wild-type, local inhomogeneities of S are observed

along the sequence, with values tending to converge toward those of the SAW ensemble at

D = 2. In general, residues near the mutation sites exhibit a decrease in local entropy, while

distant residues can experience either an increase or a decrease. These effects are examined

in more detail at D = 1 in Figure 5, and are discussed below for each mutant.

In the A30P mutant, the substitution of alanine by proline induces a marked local effect,

with a sharp reduction of S in the A27–K34 segment. The lowest entropy values are found
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at P30 and G31. Notably, P30 explores only 2,521 microstates (sPGs), compared to 23,736

for A30 in the wild-type. Additional significant changes in S are observed at or near K21, as

well as in key regions associated with aggregation: at K43, between the P1 and P2 regions;

at E57, between the P2 and NAC regions; and at G73 within the NAC region. In contrast,

the highly negatively charged C-terminus remains largely unaffected.

For the E46K mutant, the replacement of glutamate by lysine leads to substantial changes

in local entropy across the sequence, including long-range effects in the C-terminal region

far from the mutation site. The most prominent variations are observed at K46 and E110:

the number of explored sPGs decreases from 9,482 for E46 in wild-type to 6,527 for K46

in mutant and increases from 3,282 in wild-type to 4,803 for E110 in mutant. Additional

fluctuations are noted at S9, K32, and K60 in the N-terminal, and at E110 and E119 in

the C-terminal. The key-related regions for aggregation are significantly affected by the

mutation: the entire region P2 and the residues between P1 and P2 and P2 and the NAC

regions. In the NAC region, aside from G73, S decreases significantly at T81 and increases

at G86 and G93.

The A53T mutation also causes significant changes in local entropy, particularly in the

N-terminal region. The largest reduction is observed at E57, where the number of substates

decreases from 16,050 in the wild-type to 8,343 in the mutant. For comparison, the number of

sPGs varies from 36,556 in the wild-type to 28,276 in the mutant for residue 53. Substantial

entropy variations are also seen for G25, G31, K43, and T53. In the C-terminal region, S

generally decreases, except at P120 and D121. In the NAC region, N65 shows a notable

reduction in entropy.

Interestingly, the residues that form native contacts in α-synuclein fibril-like dimers with

a probability greater than 0.9 in our previous millisecond-timescale simulations (nucleation

phase) are located in regions spanning both the P1 and P2 segments (L38–V55 in E46K and

L38–E57 in A53T). These regions display substantial alterations in local entropy compared

with the wild-type protein, for which residues with native-contact probabilities above 0.9 lie
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in the NAC region (G86–F94).85

The localization of these mutation-induced changes in local order/disorder correlates with

the physicochemical properties of the substituted amino acids. Alanine is small and flexible,

whereas proline introduces a rigid constraint due to its side chain being covalently linked

to the backbone, explaining the strong local reduction in S for A30P. The E46K mutation

replaces a negatively charged glutamate with a positively charged lysine, which significantly

alters the network of long-range electrostatic interactions. Similarly, the A53T mutation

introduces a polar side chain (threonine), which explain the extended perturbation along the

sequence.

Although a detailed analysis of the impact of a single mutation on the full network of

interactions is complex, the local entropy can quantify these effects by comparing the values

of S for the wild-type and mutant proteins, as shown in Figure 5. These variations can be

further interpreted by examining the individual sPGs.

As an example, we describe how the A30P mutation induces long-range effects on residues

K21, K43, E57, and G73. Since describing each individual sPG would be overly detailed and

cumbersome, we summarize the mechanisms underlying these distant mutational effects in

Tables S1 and S2.

Table S1 lists the nodes of the most probable sPGs (i.e., with pi > 0.01) for residues A30,

E43, V52, A53, T54, and V55 in the wild-type protein. Table S2 contains the corresponding

nodes for residues P30 and E43 in the A30P mutant.

In the wild-type protein, three regions—namely A19–K23, E28–E35, and V52–V55—are

involved in the sPGs of A30, showing high diversity with 15 graphs having pi > 0.01 (Table

S1). In the mutant, two of these regions, A19–K21 and E28–K32, are still present in the

sPGs of residue 30 (Table S2). The first has a slightly lower probability, explaining the

increase of S around K21 in the mutant. The second exhibits much greater stability, with

a probability an order of magnitude higher, accounting for the substantial decrease of S

around P30.
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Additionally, two new regions, M1–V3 and T64–V66, interact with residue 30 in the

mutant, while one region, V52–V55, is no longer part of its micro-environment (Table S2).

This loss explains the long-range effects on residues E57 and G73, since in the wild-type,

residues A53–V55 interact with E57 and G73 (Table S1). Moreover, A30 was indirectly

connected to region T64–V66, which is involved in the sPGs of the now-missing residues

V52–V55 in the mutant. The substitution of A30 with P30 shifts the segment V62–V66

from being connected to residue 30 at a graph distance D = 2 in the wild-type protein to a

distance D = 1 in the mutant. This reorganization impacts the local entropy.

The effect of the mutation on the entropy of E43 can be understood by comparing the

node ensembles in Tables S1 and S2. In the A30P mutant, the absence of the region A53–A56

and the reduced probability of the A19–T22 segment compared to the wild-type result in a

redistribution of the sPG probabilities for E43. Specifically, the probability associated with

the Y39–K45 segment is significantly reduced in the mutant.

In conclusion, the substitution of a single amino acid in the N-terminal region of α-

synuclein alters the local order/disorder not only near the mutation site but also at distant

positions in key regions associated with aggregation, i.e., the P1, P2, and NAC segments,

and, in the case of E46K, even in the C-terminal region. These modifications are expected

to influence the dimerization behavior of α-synuclein. Indeed, we previously found that

the nucleation centers for the formation of amyloid precursors in dimers are located in the

NAC region for the wild-type and A30P proteins, whereas they shift predominantly to the

N-terminal region (V40-K60 segment) for the A53T and E46K mutants.85

CONCLUSIONS

The present results demonstrate that local entropy is a valuable theoretical order parameter

for characterizing residue-level protein disorder, and it can be directly compared with NMR

observables. It complements established descriptors such as the NMR S2 order parameter—
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which quantifies bond-vector orientational fluctuations—X-ray crystallographic B-factors—

which measure atomic positional variability—and the packing entropy, which quantifies

residue packing fractions.65 Unlike packing entropy65—which is tightly correlated with B-

factors and strongly influenced by the hydrophobic effect—local entropy does not probe the

accessible volume around a residue but instead captures the diversity of its interactions with

its microenvironment. By quantifying the variability of the structural pattern groups (sPGs)

in the neighborhood of each amino acid, local entropy provides residue-specific insight into

local conformational heterogeneity.

In structured proteins, local entropy varies significantly along the sequence, as the B

factors and packing entropy, including within secondary structure elements. This makes it

a powerful tool for identifying inhomogeneities in unfolding transitions at the residue level,

in good agreement with experimental observations, as illustrated here for the gpW protein.

In intrinsically disordered proteins such as α-synuclein, local entropy shows substantial

sequence dependence and is, on average, lower than that of a self-avoiding walk (SAW)

ensemble of the same chain length or the unfolded state modeled for gpW. The descriptor

S is particularly sensitive to amino-acid substitutions and can capture their effects through

a single quantitative metric. Significant differences in local entropy are observed between

mutants and the wild-type protein, particularly in regions implicated in aggregation such

as P1, P2, and the NAC segment. Further work will be required to determine whether the

local entropy of the monomeric state is predictive of fibril formation.

Beyond quantifying disorder, the concept of local entropy has broad potential applica-

tions. For instance, it could be employed to study protein–protein interactions by charac-

terizing the sPGs stabilized at binding interfaces, or to investigate allosteric mechanisms by

quantifying entropy changes upon ligand binding or post-translational modifications. More

generally, local entropy could be used outside protein science—for example, to characterize

heterogeneity and temperature dependence in polymer hydration, or to quantify molecular-

level or atom-level entropies at liquid–solid or disordered solid–solid interfaces.
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The data supporting this article are included in the Supporting Information. The codes for the calculation 
of local entropy [DOI: 10.5281/zenodo.16911661] and for the simulations of SAW ensembles [DOI: 
10.5281/zenodo.16914457] used in this study are licensed and can be accessed in the Zenodo repository 
at https://doi.org/10.5281/zenodo.16911661 and https://doi.org/10.5281/zenodo.16914457, 
respectively. The input data required to reproduce the results of this article with these codes are 
available in Zenodo repository at https://doi.org/10.5281/zenodo.16912838 [DOI: 
10.5281/zenodo.16912838].
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