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3 attainable above 7 GPa and more
high-pressure phases of Al4C3

Mitchell Falgoust and Peter Kroll *

We predict that Al4C3 adopts a cubic, anti-spinel-type structure (Al4C3-II) between 7 and 33 GPa, peaking in

stability relative to other Al4C3 structures at 26 GPa. At ambient pressure, Al4C3-II is mechanically robust,

with a bulk modulus of 160 GPa and a Vickers hardness of around 30 GPa. Beyond Al4C3-II, we identify

three additional post-spinel phases appearing in the Al4C3 phase diagram, including an anti-Th3P4-type

at 140 GPa. The clear enthalpy differences under pressure leave little doubt that the known trigonal R�3m

ground state of Al4C3 will undergo multiple phase transitions. The accessible pressure window for spinel-

type Al4C3-II is easily accessible in both laser-heated diamond anvil cell and large-volume multi-anvil

cell experiments. We therefore encourage experimental exploration of the Al–C system at high pressure.
Introduction

High-pressure chemistry is a rich eld in materials research,
and advanced synthesis techniques have delivered a variety of
new compounds in recent times.1–4 A notable research method
is the laser heating-diamond anvil cell (LH-DAC) used in
conjunction with in situ X-ray diffraction (XRD).5–7 Modern LH-
DAC equipment can explore temperatures and pressures above
∼5000 K and 300 GPa,8–10 and enables dynamic compression
rates of several 100 GPa s−1.11–13 Larger volumes of material can
be synthesized using Multi-Anvil-Cells (MAC) at pressures up to
50 GPa.14

Computational methods are now a standard tool for char-
acterizing synthesized materials and are essential for exploring
the phase space and advancing experimental research at high
pressure.15,16 For example, the spinel-type g-Si3N4 was achieved
at 15 GPa and 2000 K through a collaborative effort of compu-
tation and experiment.17 Recently, aer more than three
decades of effort, a crystal phase of C3N4 was synthesized at
high pressure (>100 GPa).18–21

Hitherto, the only known polymorph of Al4C3 is the trigonal
(R�3m) ground state structure.22–24 The high-pressure behavior of
Al4C3 was explored up to 6 GPa at 300 K.25 Exploration at higher
temperatures occurred only up to 8 GPa, but resulted in an
incongruent thermal decomposition of Al4C3.26,27 Recently,
M4C3 with anti-Th3P4 type structures have been synthesized for
Dy4C3 at 19 GPa and for Sc4C3 at 10 GPa.28,29 Despite its
simplicity, Al4C3 appears to have been overlooked,30,31 and our
own efforts had been communicated but not published.
However, its composition suggests it may display a similar rich
high-pressure chemistry as Si3N4.32–38
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Results and discussion

While computing several hundred polymorphs with composi-
tion A4X3 at different pressures, we ultimately identied four
high-pressure modications of Al4C3, indexed with Roman
numerals (II, III, IV, and V), that surpass the trigonal ground-
state modication Al4C3-I. In sequence, these are an anti-
spinel type, an anti-CaFe2O4-like orthorhombic modication,
an anti-CaFe2O4-type, and an anti-Th3P4 type. Polyhedral
structure depictions are shown in Fig. 1.

Ground state energies, lattice parameters, volumes, and bulk
moduli of the structures are given in Table 1. The energy–volume,
DE–V, diagram is shown in Fig. 2a, the corresponding pressure–
volume diagram in Fig. 2b, and the enthalpy–pressure, DH–p,
diagram is presented in Fig. 2c. Accordingly, the ground state
modication will transform into the denser (anti-) spinel type of
Al4C3-II at 7 GPa. This is a relatively low-pressure process that can
be attained with various experimental equipment, including
large-volume presses. The largest enthalpy difference of Al4C3-II
to another phase, hence the maximum driving force for its
formation, about 0.2 eV/Al4C3, is attained at 26 GPa. At 33 GPa,
cubic Al4C3-II will be superseded by an orthorhombic structure
that is related to the (anti-) CaFe2O4-type. This Al4C3-III remains
favored up to 50 GPa, at which point it will transform into an
Fig. 1 The five phases of Al4C3 studied. Space groups and (average)
coordination numbers (CN) of Al are indicated. Black spheres repre-
sent carbon; aluminum is depicted in colored polyhedra.
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Table 1 Energy, lattice parameters, and volume of Al4C3 structures. The bulk modulus B0 is computed from E–V data using the Murnaghan
equation of state

Energy (eV/Al4C3) Lattice parameters (Å) Volume (Å3/Al4C3) Bulk modulus (GPa)

I −62.89 a = 3.33 79.64 172
c = 24.88

II −62.81 a = 8.53 77.65 176
III −61.83 a = 9.24 72.56 170

b = 3.12
c = 10.08

IV −61.02 a = 8.79 69.61 171
b = 3.03
c = 10.45

V −59.56 a = 6.48 68.00 —

Fig. 2 (a) Energy–volume, DE–V, diagram of relevant Al4C3 poly-
morphs. The energy is given relative to Al4C3-I. (b) Pressure–volume
diagram of relevant Al4C3 polymorphs. The arrows indicate transition
pressures between the phases. Note that Al4C3-V is mechanically
unstable below 30 GPa. (c) Enthalpy–volume, DH–p, diagram of
relevant Al4C3 polymorphs. The enthalpy is given relative to Al4C3-III.
The insert in the upper right corner details the transition sequence II–
III–IV between 25 and 60 GPa. Black, red, blue, orange, and green lines
represent Al4C3-I, II, III, IV, and V, respectively.

Table 2 Elastic constants (GPa) of Al4C3 polymorphs (I–V) computed
at zero pressure (0 GPa)

I II III IV V

C11 347 342 306 351 110
C22 347 342 424 510 110
C33 397 342 455 407 110
C44 111 168 17 65 −966
C55 116 168 17 53 −966
C66 116 168 151 141 −966
C12 124 94 65 76 134
C13 55 94 78 44 134
C14 14 0 0 0 0
C23 55 94 47 44 134
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(anti-) CaFe2O4-type. Finally, at pressures above 140 GPa, an
(anti-) Th3P4-type of Al4C3-V will be the most favorable structure.
This nal structure resembles the high-pressure phases of Sc4C3

and Dy4C3, attained at 10 and 19 GPa, respectively.28,29 Hence, the
larger trivalent cations of Sc andDy attain the (anti-) Th3P4-type at
much lower pressures than the smaller Al3+ – a trend commonly
observed in high-pressure chemistry of elements and
compounds, including sesquioxides and sesquisulde.39–41 As
expected, the densities of the Al4C3 polymorphs increase from
phase I to V. Since the bulk moduli of the polymorphs are
comparable, the initial slopes of the pressure–volume graphs
(Fig. 2b) are very similar. That they remain so indicates a similar
pressure dependence of the compressibility of the polymorphs.
The average coordination number of Al4C3 polymorphs increases
from phase I to V—except for the transition from the ground-
state to the spinel-type structure (Fig. 1). This progression of
phases thus reects a systematic densication and coordination
enhancement under pressure. The sequence of phase trans-
formations, including transition pressure pt and volume change
at pt, is summarized by

I �����!7 GPa

�2:5%
II �����!33 GPa

�6:6%
III �����!50 GPa

�3:8%
IV �����!140 GPa

�3:0%
V

At ambient pressure, the energy difference between the
(anti-) spinel-type of Al4C3-II and the ground state modication
2768 | Chem. Sci., 2026, 17, 2767–2771
Al4C3-I is only 80 meV/Al4C3. LDA calculations even place
Al4C3-II below Al4C3-I by 23meV/Al4C3, although both structures
are built up by AlC4-tetrahedra only, and, thus, the number of
nearest atoms (coordination number) of Al is identical.

The elastic constants of Al4C3 polymorphs (I–V) computed at
zero pressure are shown in Table 2. Based on stability
criteria,42,43 the structures of Al4C3-I–IV are mechanically stable
at ambient pressure. Thus, the high-pressure phases may be
recoverable. While Al4C3-V is mechanically stable at 140 GPa, it
becomes unstable below ∼30 GPa. A possible distortion along
a Bain strain path may transform it into the spinel-type Al4C3-
II.33 The elastic constants can be used to compute the aggregate
moduli, particularly the elastic shear modulus G. We obtain
123, 148, 70, and 110, for Al4C3-I–IV, respectively. Using the
formula of Chen,44 we estimate the Vickers hardness of Al4C3-I
to 22 GPa and that of spinel-type Al4C3-II to 30 GPa. All poly-
morphs of Al4C3 presented here are semi-conductors, with band
gaps of 1.6, 1.4, 1.9, 2.2, and 2.5 eV (GGA values) for Al4C3-I–V,
respectively.
Computational method

We started our search for potential high-pressure modications
of Al4C3 by screening models that we previously considered for
Si3N4.45 The results were conrmed by evolutionary algorithms
using the USPEX code,46–48 with a slight modication to Al4C3-
III. All structures were computed using density functional
theory (DFT), implemented with the Vienna Ab initio
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Simulations Package (VASP).49,50 We employed the projector
augmented wave (PAW) formalism, along with the strongly
constrained and approximately normed (SCAN) functional, for
electron correlation and exchange.51–53 A plane wave energy
cutoff of 500 eV was applied, and ne grids sampled the Bril-
louin zone with spacings of 0.030–0.040 Å−1.54 With these
parameters, forces, and energies converged to within 5 meV Å−1

and 0.1 meV per atom, respectively. Throughout the work, we
approximate Gibbs energy differences by enthalpy differences,
hence DG z DH. Potential contributions from defects, non-
stoichiometry, or surface effects during growth may be factors
that alter the thermodynamic balance through congurational
or vibrational entropy. We assume that if these effects occur,
they affect all structures similarly. Remaining entropy differ-
ences are, in general, much smaller in comparison to the much
larger variation of DH within a few GPa of pressure. Justication
for this common approach stems from calculations of the phase
boundary between the b- and g-phase of Si3N4, with g-Si3N4

adopting the spinel-structure,55 and from the prediction of
a synthesis of Hf3N4 with Th3P4-structure from the elements.56

Conclusions

We predict a cubic (anti-) spinel-type of Al4C3 succeeding the
known trigonal ground state modication at higher pressures.
While Al4C3-II is 0.08 meV/Al4C3 above the ground state at
ambient pressure, it becomes thermodynamically favored
between 7 and 33 GPa with a maximum enthalpy difference
(hence, driving force) of 0.2 eV f.u.−1 at 26 GPa. Al4C3-II is also
stable against decomposition into the elements, by 1.8 and 1.7
eV/Al4C3 at ambient pressure and 30 GPa, respectively. The re-
ported energy differences are well above the “uncertainty” of
DFT calculations for enthalpies of formation differences, about
10 meV per atom.57 The proposed stability range of spinel-type
Al4C3 is accessible with large-volume presses58 or LH-DAC.5

However, high temperatures may be required to facilitate the
transition. Previous experiments examined pressures up to
8 GPa and maintained temperatures below 2500 K.26,27 Al4C3-II
is mechanically stable at ambient pressure, with a bulk
modulus of 160 GPa comparable to that of Fe3C or ThC.59,60 The
hardness of Al4C3-II will be substantially higher than that of the
known modication, we estimate Hv z 30 GPa for Al4C3-II.

Beyond Al4C3-II, the phase diagram of Al4C3 features three
post-spinel modications. Several other materials also exhibit
post-spinel modications, including CaFe2O4, ZnGa2O4, and
CdCr2Se4.61–66 For Si3N4, such phases were also proposed,45,61

but ultimately a pernitride SiN2 with N2
4−-units emerged.

Motivated by this analogy, we explored a series of Al–C
compounds with C2-dimers in various oxidation states (C2

2−,
C2

4−, and C2
6−), but none yielded a thermodynamically stable

polymorph. In addition to Al4C3-I to Al4C3-V, we also identied
several candidate structures of Al4C3 that, at certain pressures,
approach the stability of the thermodynamically most favorable
structure shown here. These include types related to SrPb2O4,
P4S3, and further variants of the CaFe2O4-type. While our
calculations neglect possible contributions from defects, non-
stoichiometry, or surface effects – factors that could alter the
© 2026 The Author(s). Published by the Royal Society of Chemistry
thermodynamic balance through congurational or vibrational
entropy – it is evident that Al4C3 will undergo pressure-induced
phase transitions. We therefore encourage experimental efforts
to synthesize the predicted Al4C3-II modication and advance
the high-pressure chemistry of metal carbides.
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