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We predict that Al4Cz adopts a cubic, anti-spinel-type structure (Al4C3-11) between 7 and 33 GPa, peaking in
stability relative to other Al4Cs structures at 26 GPa. At ambient pressure, AlyCs-Il is mechanically robust,
with a bulk modulus of 160 GPa and a Vickers hardness of around 30 GPa. Beyond Al,Cs-1I, we identify
three additional post-spinel phases appearing in the Al4Cs phase diagram, including an anti-ThzP4-type
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Accepted 3rd December 2025 at 140 GPa. The clear enthalpy differences under pressure leave little doubt that the known trigonal R3m
ground state of Al,C3z will undergo multiple phase transitions. The accessible pressure window for spinel-
DOI: 10.1039/d55c06382e type AlLCs-Il is easily accessible in both laser-heated diamond anvil cell and large-volume multi-anvil

rsc.li/chemical-science cell experiments. We therefore encourage experimental exploration of the Al-C system at high pressure.
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Introduction

High-pressure chemistry is a rich field in materials research,
and advanced synthesis techniques have delivered a variety of
new compounds in recent times.”™ A notable research method
is the laser heating-diamond anvil cell (LH-DAC) used in
conjunction with in situ X-ray diffraction (XRD).>”” Modern LH-
DAC equipment can explore temperatures and pressures above
~5000 K and 300 GPa,**® and enables dynamic compression
rates of several 100 GPa s~ '.**"** Larger volumes of material can
be synthesized using Multi-Anvil-Cells (MAC) at pressures up to
50 GPa.™

Computational methods are now a standard tool for char-
acterizing synthesized materials and are essential for exploring
the phase space and advancing experimental research at high
pressure.*'® For example, the spinel-type y-Si;N, was achieved
at 15 GPa and 2000 K through a collaborative effort of compu-
tation and experiment.”” Recently, after more than three
decades of effort, a crystal phase of C;N, was synthesized at
high pressure (>100 GPa).**>*

Hitherto, the only known polymorph of Al,C; is the trigonal
(R3m) ground state structure.?>* The high-pressure behavior of
Al,C; was explored up to 6 GPa at 300 K.*® Exploration at higher
temperatures occurred only up to 8 GPa, but resulted in an
incongruent thermal decomposition of Al,C;.**” Recently,
M,C; with anti-Th;P, type structures have been synthesized for
Dy,C; at 19 GPa and for Sc,C; at 10 GPa.*®* Despite its
simplicity, Al,C; appears to have been overlooked,**** and our
own efforts had been communicated but not published.
However, its composition suggests it may display a similar rich
high-pressure chemistry as SizN,.***
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Results and discussion

While computing several hundred polymorphs with composi-
tion A,X; at different pressures, we ultimately identified four
high-pressure modifications of Al,C;, indexed with Roman
numerals (II, III, IV, and V), that surpass the trigonal ground-
state modification Al,C;-I. In sequence, these are an anti-
spinel type, an anti-CaFe,0,-like orthorhombic modification,
an anti-CaFe,O,4-type, and an anti-Th;P, type. Polyhedral
structure depictions are shown in Fig. 1.

Ground state energies, lattice parameters, volumes, and bulk
moduli of the structures are given in Table 1. The energy-volume,
AE-V, diagram is shown in Fig. 2a, the corresponding pressure-
volume diagram in Fig. 2b, and the enthalpy-pressure, AH-p,
diagram is presented in Fig. 2c. Accordingly, the ground state
modification will transform into the denser (anti-) spinel type of
Al,C5-1I at 7 GPa. This is a relatively low-pressure process that can
be attained with various experimental equipment, including
large-volume presses. The largest enthalpy difference of Al,C;-II
to another phase, hence the maximum driving force for its
formation, about 0.2 eV/Al,C3, is attained at 26 GPa. At 33 GPa,
cubic AL,C;-1I will be superseded by an orthorhombic structure
that is related to the (anti-) CaFe,O,4-type. This Al,C5-III remains
favored up to 50 GPa, at which point it will transform into an
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Fig. 1 The five phases of Al,Cs studied. Space groups and (average)
coordination numbers (CN) of Al are indicated. Black spheres repre-
sent carbon; aluminum is depicted in colored polyhedra.
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Table 1 Energy, lattice parameters, and volume of AlCs structures. The bulk modulus B is computed from E-V data using the Murnaghan

equation of state

Energy (eV/Al,C;)

Lattice parameters (A)

Volume (A%/AL,C;) Bulk modulus (GPa)

1 —62.89 a=3.33
c=24.88
I —62.81 a=8.53
111 —61.83 a=9.24
b =3.12
¢ =10.08
v —61.02 a=8.79
b = 3.03
¢ =10.45
v —59.56 a=6.48
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Fig. 2 (a) Energy—volume, AE-V, diagram of relevant Al,Cs poly-
morphs. The energy is given relative to Al4Cs-I. (b) Pressure—volume
diagram of relevant AlLCs polymorphs. The arrows indicate transition
pressures between the phases. Note that Al,Cs-V is mechanically
unstable below 30 GPa. (c) Enthalpy-volume, AH-p, diagram of
relevant AlyCs polymorphs. The enthalpy is given relative to Al,Cs-Ill.
The insert in the upper right corner details the transition sequence I1-
I1I-1V between 25 and 60 GPa. Black, red, blue, orange, and green lines
represent Al,Cs-1, 11, IIl, IV, and V, respectively.

(anti-) CaFe,O,-type. Finally, at pressures above 140 GPa, an (anti-
) Th3P4-type of Al,Cs-V will be the most favorable structure. This
final structure resembles the high-pressure phases of Sc,C; and
Dy,Cj;, attained at 10 and 19 GPa, respectively.”®*** Hence, the
larger trivalent cations of Sc and Dy attain the (anti-) Th3P,-type at
much lower pressures than the smaller AI** - a trend commonly
observed in high-pressure chemistry of elements and
compounds, including sesquioxides and sesquisulfide.***' As
expected, the densities of the Al,C; polymorphs increase from
phase I to V. Since the bulk moduli of the polymorphs are
comparable, the initial slopes of the pressure-volume graphs
(Fig. 2b) are very similar. That they remain so indicates a similar
pressure dependence of the compressibility of the polymorphs.
The average coordination number of Al,C; polymorphs increases
from phase I to V—except for the transition from the ground-
state to the spinel-type structure (Fig. 1). This progression of
phases thus reflects a systematic densification and coordination
enhancement under pressure. The sequence of phase trans-
formations, including transition pressure p; and volume change
at py, is summarized by

7 GPa 33 GPa 50 GPa 140 GPa

—2.5% —6.6% —3.8% -3.0%

At ambient pressure, the energy difference between the (anti-
) spinel-type of Al,Cs-II and the ground state modification Al,C;-

Chem. Sci.

79.64 172
77.65 176
72.56 170
69.61 171
68.00 —

Table 2 Elastic constants (GPa) of AlyC3z polymorphs (I-V) computed
at zero pressure (0 GPa)

I i} 111 v \%
Cn 347 342 306 351 110
Cas 347 342 424 510 110
Cis 397 342 455 407 110
Cas 111 168 17 65 —966
Css 116 168 17 53 —966
Ces 116 168 151 141 —966
Cis 124 94 65 76 134
Cis 55 94 78 44 134
Cuia 14 0 0 0 0

Cas 55 94 47 44 134

I is only 80 meV/Al,C;. LDA calculations even place Al,C;-1I
below Al,C;-1 by 23 meV/Al,C;, although both structures are
built up by AIC,-tetrahedra only, and, thus, the number of
nearest atoms (coordination number) of Al is identical.

The elastic constants of Al,C; polymorphs (I-V) computed at
zero pressure are shown in Table 2. Based on stability
criteria,"** the structures of Al,C;-I-IV are mechanically stable
at ambient pressure. Thus, the high-pressure phases may be
recoverable. While Al,C;-V is mechanically stable at 140 GPa, it
becomes unstable below ~30 GPa. A possible distortion along
a Bain strain path may transform it into the spinel-type Al,Cs;-
11> The elastic constants can be used to compute the aggregate
moduli, particularly the elastic shear modulus G. We obtain
123, 148, 70, and 110, for Al,C;-I-IV, respectively. Using the
formula of Chen,** we estimate the Vickers hardness of Al,C;-1
to 22 GPa and that of spinel-type Al,C;-II to 30 GPa. All poly-
morphs of Al,C; presented here are semi-conductors, with band
gaps of 1.6, 1.4, 1.9, 2.2, and 2.5 eV (GGA values) for Al,C;-I-V,
respectively.

Computational method

We started our search for potential high-pressure modifications
of Al,C; by screening models that we previously considered for
SizN,.** The results were confirmed by evolutionary algorithms
using the USPEX code,***® with a slight modification to Al,Cs;-
III. All structures were computed using density functional
theory (DFT), implemented with the Vienna Ab initio

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Simulations Package (VASP).**® We employed the projector
augmented wave (PAW) formalism, along with the strongly
constrained and approximately normed (SCAN) functional, for
electron correlation and exchange.”* A plane wave energy
cutoff of 500 eV was applied, and fine grids sampled the Bril-
louin zone with spacings of 0.030-0.040 A™'.* With these
parameters, forces, and energies converged to within 5 mevV A™*
and 0.1 meV per atom, respectively. Throughout the work, we
approximate Gibbs energy differences by enthalpy differences,
hence AG = AH. Potential contributions from defects, non-
stoichiometry, or surface effects during growth may be factors
that alter the thermodynamic balance through configurational
or vibrational entropy. We assume that if these effects occur,
they affect all structures similarly. Remaining entropy differ-
ences are, in general, much smaller in comparison to the much
larger variation of AH within a few GPa of pressure. Justification
for this common approach stems from calculations of the phase
boundary between the B- and y-phase of Si;N,, with y-Si;N,
adopting the spinel-structure,® and from the prediction of
a synthesis of Hf;N, with Th;P,-structure from the elements.*®

Conclusions

We predict a cubic (anti-) spinel-type of Al,C; succeeding the
known trigonal ground state modification at higher pressures.
While Al,C;-IT is 0.08 meV/AlL,C; above the ground state at
ambient pressure, it becomes thermodynamically favored
between 7 and 33 GPa with a maximum enthalpy difference
(hence, driving force) of 0.2 eV f.u.”' at 26 GPa. Al,C5-1I is also
stable against decomposition into the elements, by 1.8 and 1.7
eV/Al,C; at ambient pressure and 30 GPa, respectively. The re-
ported energy differences are well above the “uncertainty” of
DFT calculations for enthalpies of formation differences, about
10 meV per atom.”” The proposed stability range of spinel-type
Al,C; is accessible with large-volume presses®® or LH-DAC.®
However, high temperatures may be required to facilitate the
transition. Previous experiments examined pressures up to
8 GPa and maintained temperatures below 2500 K.>***” Al,C5-1I
is mechanically stable at ambient pressure, with a bulk
modulus of 160 GPa comparable to that of Fe;C or ThC.>**° The
hardness of Al,C;-1I will be substantially higher than that of the
known modification, we estimate H, = 30 GPa for Al,C5-II.
Beyond Al,C;-11I, the phase diagram of Al,C; features three
post-spinel modifications. Several other materials also exhibit
post-spinel modifications, including CaFe,O4, ZnGa,0,, and
CdCr,Se,.**® For Si3;N,, such phases were also proposed,****
but ultimately a pernitride SiN, with N,* -units emerged.
Motivated by this analogy, we explored a series of Al-C
compounds with C,-dimers in various oxidation states (CZZ’,
C,"", and C,°7), but none yielded a thermodynamically stable
polymorph. In addition to Al,C;-I to Al,C;-V, we also identified
several candidate structures of Al,C; that, at certain pressures,
approach the stability of the thermodynamically most favorable
structure shown here. These include types related to SrPb,0,,
P,S;, and further variants of the CaFe,O,-type. While our
calculations neglect possible contributions from defects, non-
stoichiometry, or surface effects — factors that could alter the

© 2025 The Author(s). Published by the Royal Society of Chemistry
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thermodynamic balance through configurational or vibrational
entropy - it is evident that Al,C; will undergo pressure-induced
phase transitions. We therefore encourage experimental efforts
to synthesize the predicted Al,C;-II modification and advance
the high-pressure chemistry of metal carbides.
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