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Proteolysis Targeting Chimeras (PROTACs) are heterobifunctional molecules that recruit an ubiquitin ligase
(E3) and a neo-substrate into a ternary complex, enabling selective protein degradation. Despite the
presence of over 600 E3s, only a handful are utilised in PROTAC application, potentially limiting the
number of druggable targets. Here, we investigate whether Casitas B-cell lymphoma (CBL) can be
harnessed as a degrader E3 to promote ubiquitination and degradation of the eukaryotic translation
initiation factor 4E (elF4E). Using a selective CBL binding peptide, CBLock, we demonstrate that CBL
facilitates the ubiquitination of CBLock-elF4E fusion in cells and in in vitro reconstituted assays. We
further developed peptidic PROTACs, termed elFTerminators, by linking CBLock to an elF4E-binding

peptide. Among them, elFTerminator4 rapidly eliminates endogenous elF4E via both lysosomal and

Eig:g&% 122;:2/\5135:;112?52025 proteasomal pathways. Unexpectedly, elFTerminator4 also caused a decrease in elF4A and elF4G levels,
leading to a reduction in overall protein translation in cells. Our findings establish proof-of-concept that

DOI: 10.1039/d55c06141e CBL can function as a degrader E3, expanding the arsenal of E3s available for targeted protein
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Introduction

Proteins are constantly degraded and replenished to maintain
homeostasis. Protein degradation, a process by which proteins
are hydrolysed into amino acids, is primarily carried out by
lysosomes or proteasomes. Many proteins destined for degra-
dation are conjugated with ubiquitin (Ub) through a process
known as ubiquitination, which involves the sequential action
of Ub-activating enzyme (E1), Ub-conjugating enzyme (E2), and
Ub-ligase (E3). The research community has harnessed this
natural system to eliminate disease-causing proteins by
inducing their degradation through a ubiquitin-mediated
pathway. One such strategy involves PROTACs (PROteolysis
TArgeting Chimeras), which are heterobifunctional molecules
composed of two ligands: one binds the target protein, and the
other binds an E3 Ub-ligase. This brings the E3 into proximity
with the target, allowing it to catalyse the ubiquitination of the
target protein, leading to its degradation.*

“Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow,
G61 1BD, UK. E-mail: d. huang@crukscotlandinstitute.ac.uk

School of Cancer Sciences, University of Glasgow, Glasgow, G61 1QH, UK
‘AstraZeneca, R&D Biopharmaceuticals, Discovery Sciences, Cellular Assay
Development, The Discovery Centre, 1 Francis Crick Avenue, Cambridge, CB2 0AA, UK
‘AstraZeneca, R&D Biopharmaceuticals, Discovery Sciences, Protein Sciences,
Structure & Biophysics, The Discovery Centre, 1 Francis Crick Avenue, Cambridge,

CB2 0AA, UK

© 2026 The Author(s). Published by the Royal Society of Chemistry

degradation in combating challenging drug targets.

Since the advent of a heterobifunctional chimeric compound
recruiting an E3 to the substrate MetAP-2 in 2001, approxi-
mately 50 substrates have been degraded with this approach,?
and over 25 PROTACs are currently in clinical trials.* These
PROTACSs primarily rely on ligands that recruit either Cereblon
(CRBN) or VHL E3s to promote ubiquitination and degradation
of neo-substrates.” However, it has been shown that CRBN- or
VHL-based PROTACs do not always result in efficient ubig-
uitination or selective degradation of the target protein.®”
Furthermore, acquired resistance to CRBN- and VHL-based
PROTACs have been reported.**® Given that the human
genome encodes more than 600 E3s," it is plausible that
previously untapped E3s could offer distinct structural plasticity
and cooperativity that favour productive ubiquitination,™
enabling the degradation of otherwise difficult or undruggable
targets and potentially improving potency. Interest in alterna-
tive E3s for PROTAC development has increased in recent years.
To date, these include DCAF1,** DCAF2,** DCAF11,* DCAF15,*
DCAF16,” DDB1,** FBX022,° GID4,® IAP,> KEAP1,2
KLHDC2,>® TRIM21,>** MDM2,* SPOP,*® and ZYG11B.””

Casitas B-cell lymphoma (CBL) is an E3 best characterised
for its role in signalling pathways involving non-receptor and
receptor tyrosine kinases (RTKs). Several features make CBL
a promising candidate as an alternative E3 in PROTAC appli-
cations. Firstly, CBL interacts with various substrates localised
to the cytosol or plasma membrane,*® suggesting its potential to
target a broad range of neo-substrates in these compartments.
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Secondly, CBL mediates Ub transfer that can lead to either
lysosomal or proteasomal degradation,*** which may improve
degradation efficiency by utilising both degradation pathways,
unlike conventional PROTACs that typically rely solely on the
proteasome. Thirdly, CBL is a monomeric RING E3 that
becomes catalytically active upon phosphorylation of Tyr371 in
its linker helix region (LHR).*>** This distinguishes it from most
RING E3s used in the PROTAC system, which generally belong
to the multi-subunit Cullin RING ligase family.**° In addition,
the modular domain architecture of CBL enables it to ubig-
uitinate substrates recruited via its N-terminal tyrosine kinase-
binding domain (TKBD), proline-rich region or C-terminal
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region, suggesting its catalytic RING domain has ample
spatial accessibility to carry out ubiquitination. Finally, CBL is
ubiquitously expressed across most human tissues (The Human
Protein Atlas, http://www.proteinatlas.org/),’” which potentially
makes CBL a pan-cancer therapeutic.

Recently, we developed a peptide, CBLock, that binds selec-
tively to the TKBD substrate-binding site of CBL with nanomolar
binding affinity (Fig. 1A).*® In this study, we investigated whether
CBL can be utilised as a degrader E3 by using CBLock as a handle
to recruit neo-substrates to CBL. To demonstrate proof-of-
concept, we targeted eIFAE, a key component of the eIF4F
translation initiation complex, which also includes eIF4A and
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Fig. 1 CBL ubiquitinates elF4E-CBLock fusion protein in an in vitro reconstitution system and in mammalian cells. (A) Crystal structure of CBL's
TKBD (light blue) bound to CBLock peptide (light green) (PDB: 9ERZ). (B) A schematic diagram showing the design of elF4E-CBLock fusion
proteins, FP1-4, where elF4E protein (pink) is fused to either the N- or C- terminus of CBLock (green) via a GGS or 3xGGS linker. (C) SDS-PAGE gel
showing in vitro ubiquitination of FP1-FP4 and controls catalysed by pTyr371-CBL detected with fluorescently-labelled Ub. A representative gel
from three independent experiments is shown. The single asterisk indicates an E1-Ub band and the double asterisk indicates contamination from
the fluorescently-labelled Ub. (D) Western blot showing in vitro ubiquitination of FP1-FP4 and controls catalysed by pTyr371-CBL detected with
an anti-elF4E antibody. A representative gel from two independent experiments is shown. (E) Mass spectrometry analysis of ubiquitination sites
on elF4E from the poly-ubiquitinated FP1-4 products (>120 kDa; S| Fig. 1B) catalysed by pTyr371-CBL. Ubiquitination sites on elF4E are rep-
resented as a heatmap based on the abundance of peptides detected. No peptides were detected in the grey-boxed area. Ubiquitinated lysine
sites on elF4E are shown as light green sticks on a cartoon representation of the elF4E structure (PDB: 1IPB; pink). (F) Western blots showing
ubiquitination of HA-FP2 and HA-elF4E stably expressed in HEK293 cells in the absence or presence of proteasome (MG132) or lysosomal
inhibitor (chloroquine). The cell lysates were subjected to HA-tag pulldown followed by detection with an anti-Ub antibody. Cell lysates were
analysed with anti-HA and anti-actin antibodies (loading control) as indicated. A representative gel from two independent experiments is shown.
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elF4G, and plays a vital role in binding the 5 cap of mRNA to
facilitate translation.®® Overexpression of eIF4E has been linked
to hallmarks of cancer such as uncontrolled cell growth and
proliferation.**** Cancer-dependency analyses further show that
many different cancer cell types rely heavily on eIF4E for survival
(https://depmap.org/portal). Consistently, antisense
oligonucleotide-mediated downregulation of eIF4E suppresses
tumour growth in xenograft models.** Moreover, studies in eIF4E
haplo-insufficient mice revealed that a 50% reduction in eIF4E is
compatible with normal development and global protein
synthesis, yet is sufficient to block cellular transformation.*
Thus, there is an interest in targeting eIF4E for degradation by
induced-proximity approaches. However, CRBN and VHL-
recruiting PROTACs are so far unable to successfully degrade
eIF4E in cells.***” To test if a previously unexplored CBL can be
used as a degrader E3 in a PROTAC system, CBL-recruiting
PROTACs, termed elFTerminators, were generated by linking
CBLock to the elF4E-targeting sequence eIF4G1-D5S.*®
Biochemical and cell-based analyses showed that e[FTerminators
enable ternary complex formation and promote CBL-mediated
elF4E degradation as well as other components of eIF4F
complex, including eIF4A and elF4G, leading to a reduction in
protein translation. These findings demonstrate the feasibility of
using CBL as a degrader E3 for targeted protein degradation.

Results and discussion

Appending CBL-binding peptide to eIF4E facilitates its
ubiquitination by CBL

To test whether CBL could serve as a degrader E3, we examined
its ability to ubiquitinate a neo-substrate in vitro upon induced
proximity. As the 16-mer peptide CBLock occupies TKBD
substrate-binding site where multiple substrates are known to
bind and undergo ubiquitination (Fig. 1A; Ahmed et al., 2025;
PDB: 9ERZ), we decided to use CBLock as a ligand to promote
ubiquitination of a neo-substrate eIF4E by CBL. We fused
a CBLock peptide sequence to either the N- or C-terminus of
eIF4E, using short or long Gly-Gly-Ser (GGS) linkers (Fig. 1B) to
facilitate CBL recruitment. The length of the GGS linkers was
chosen based on a structural model of the N-terminal catalytic
fragment of pTyr371-CBL bound to E2-Ub and CBLock, with
eIF4E's globular body modelled near the E2-Ub active site and
its N- or C-terminus proximal to CBLock's N- or C-terminus,
respectively (SI Fig. 1A). These CBLock-eIF4E fusion
constructs, referred to as FP1-FP4, were purified and then
assessed for CBL-mediated ubiquitination.

In vitro ubiquitination assays were performed using recombi-
nant UBA1 (E1), UBE2D2 (E2), fluorescent-labelled Ub and the
Tyr371-phosphorylated CBL fragment (residues 47-435, pTyr371-
CBL), which represents the catalytically active portion of CBL as
described previously.*> FP1-FP4 were readily ubiquitinated by
pTyr371-CBL, as indicated by the appearance of Ub ladders
detected with fluorescent-Ub or Coomassie staining, which were
absent in control reactions with eIF4E lacking a CBLock peptide
appendage as well as reactions without any form of eIF4E (Fig. 1C
and SI Fig. 1B). In addition, when detected with an anti-eIF4E
antibody, FP1-FP4 showed pronounced eIF4E ladders compared

© 2026 The Author(s). Published by the Royal Society of Chemistry
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to lanes containing eIF4E lacking a CBLock fusion peptide
(Fig. 1D). To investigate the modification sites on FP1-FP4 and the
poly-Ub chain types, we subjected the smears above the 120 kDa
region, indicated in black boxes, to mass spectrometry analysis
(SI Fig. 1B). Mass spectrometry confirmed that Ub was the most
abundant protein identified in these smears. Various Ub linkages
were detected, with K11- and K48-linked Ub peptides being the
most prevalent, consistent with the promiscuous activity of
UBE2D2 (SI Fig. 1C). Ubiquitination was observed at four lysine
residues of eIF4E: K108, K119, K159, and K212 (Fig. 1E). These
lysine sites are distributed across one face of the eIF4E protein,
with K212 ubiquitination consistently detected in FP1-FP4
(Fig. 1E). Notably, FP2 was the only construct ubiquitinated at
all four lysine sites. In contrast, FP1, which shares the same
elF4E-CBLock orientation as FP2 but has a shorter GGS-linker,
was only ubiquitinated at K212, and the K29-Ub linkage was
absent. FP4, which retains FP2's GGS-linker but has the reversed
eIF4E-CBLock orientation, was only ubiquitinated at K159 and
K212, with the K27-, K29-, and K33-Ub linkages being absent.
These findings suggested that the spatial arrangement of eIF4E
relative to CBLock influences both the ubiquitination sites on
eIF4E and the resulting Ub chain patterns.

Since FP2 exhibited a greater extent of ubiquitination sites on
eIF4E in a reconstituted system, we next investigated whether
endogenous CBL could facilitate ubiquitination of FP2 in cells.
We generated stable cell lines that constitutively express either
HA-eIF4E as a control or HA-FP2. The HA-tag was appended to the
N-terminus of FP2, as this sequence lacks lysine residues that
could undergo ubiquitination. Previous studies have shown that
EGF stimulation activates CBL E3 ligase activity via phosphoryla-
tion of its Tyr371.3>* To assess the phosphorylation status of
CBL Tyr371, HEK293 cells expressing Myc-tag CBL were serum-
starved overnight, treated with EGF, and harvested at different
time points. CBL exhibited basal Tyr371 phosphorylation, which
peaked at 5 min post-stimulation and returned to baseline within
2 h (SI Fig. 1D). Based on this, we treated HA-FP2 expressing cells
with EGF after serum starvation to determine whether HA-FP2
undergoes CBL-mediated ubiquitination. HA-FP2 protein levels
were detectable, and treatment with the proteasome inhibitor
MG132 or lysosomal inhibitor chloroquine had little impact on its
abundance. To directly assess ubiquitination, we performed HA
pulldown under denatured conditions followed by anti-Ub
immunoblotting. HA-FP2 was poly-ubiquitinated to a greater
extent than HA-eIF4E (Fig. 1F). MG132 treatment intensified the
poly-ubiquitinated bands, suggesting stabilisation, whereas
chloroquine had a minimal effect. These findings demonstrate
that CBL can induce poly-ubiquitination of a neo-substrate and
promote its degradation when brought into proximity via a CBL-
binding peptide fusion.

Designing peptidic PROTACs to recruit CBL for targeting
elF4E

Previous studies have identified a sub-micromolar 12-mer
peptide binder of eIF4E, elF4G1-D5S, using phage display
technology.”® The crystal structure of eIF4G1-D5S bound to
eIF4E revealed that it occupies the same dorsal surface of eIF4E
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as the eIF4G canonical helix (Fig. 2A).>* To recruit CBL to eIF4E's
proximity, we designed peptidic PROTACs by linking CBLock to
eIF4G1-D5S. We modelled the eIF4G1-D5S-eIF4E complex onto
a structural model of the pTyr371-CBL-E2-Ub-CBLock complex
by simultaneously positioning eIF4G1-D5S in proximity to
CBLock and eIF4E near the E2-Ub active site (SI Fig. 2A and B).
The model suggested that linking eIF4G1-D5S to either
terminus of CBLock would support this arrangement. Based on
this, we generated four variants incorporating either a short
GGSG or a long GGSGGSGGSG linker, with CBLock positioned
at either terminus of eIF4G1-D5S. These constructs were named
elFTerminator1-4 (Fig. 2B).

To assess whether elFTerminatorl-4 could induce CBL-
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ubiquitination assays using recombinant UBA1, UBE2D2,
fluorescent-labelled Ub, His-eIF4E, and pTyr371-CBL in the
absence or presence of elFTerminatorl-4. All four PROTACs
promoted poly-ubiquitination of eIF4E with the concomitant
disappearance of the eIF4E band as compared to the control
reaction lacking PROTAC (Fig. 2C and D). These findings
suggest that eIlFTerminator1-4 could bring CBL and elF4E into
proximity to facilitate CBL-mediated eIF4E ubiquitination.

elFTerminatorl-4 promote the formation of the CBL-eIF4E
ternary complex

To investigate the binding kinetics and affinity of

mediated eIF4E ubiquitination, we performed in vitro CIFTerminatori-4, surface plasmon resonance (SPR) analysis
was performed. SPR measures changes in the refractive index
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bound to elF4G1-D5S peptide (cyan) (PDB ID: 4AZA).*8 (B) Designs of elF4E targeting PROTACs. The cartoons represent the peptide sequences of
elFTerminatorl-4, which consist of elF4G1-D5S and CBLock connected with a flexible GGSG or GGSGGSGGSG linker. (C) SDS-PAGE gel
showing pTyr371-CBL-catalysed ubiquitination of elF4E in the absence or presence of elFTerminatorl-4 detected with fluorescently-labelled
Ub. Data are representative of three independent experiments. The single asterisk indicates the E1-Ub band and the double asterisk indicates
a contaminant from the fluorescently-labelled Ub. (D) Coomassie-stained gel from C is shown. The single asterisk indicates the E1 band.
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Table 1 Binding affinities between the ligand, GST-CBL, and the
analytes, elFTerminatorl-4 and CBLock. A kinetic fit to a 1: 1 binding
model was used to determine the Kp (n = 3, mean =+ SD, except
CBLock is n = 2, mean + SD)

Binary Kp, (nM)

elFTerminatorl 64.6 + 41.2
elFTerminator2 56.9 + 25.4
elFTerminator3 42.9 + 22.8
elFTerminator4 59.9 + 27.0
CBLock (positive ctrl) 122 £ 4.2

near the sensor surface, where the analyte interacts with an
immobilised ligand. This allows real-time monitoring of
molecular interactions, providing quantitative binding affinity
and Kkinetic parameters. First, we assessed whether
elFTerminatorl-4 designs have any impact on CBL or eIF4E
binding affinity. A three-fold dilution series of the
elFTerminatorl-4, starting at 1 uM, was injected over immobi-
lised CBL to assess the protein-protein interactions between
elFTerminator1-4 to CBL (SI Fig. 3A). The binding affinities of
elFTerminator1-4 were similar (Kp: 42.9-64.6 nM; Table 1 and SI
Fig. 3B) and comparable to that of CBLock (Kp: 122 nM; Table 1
and SI Fig. 3B). Next, we examined the interactions between
eIF4E and elFTerminator1-4 by immobilising His-eIF4E on the
SPR chip and injecting a dilution series of eIFTerminatori-4.
The Kp values ranged from 38.9 nM to 67.5 nM, and the
binding affinity as well as kinetics were similar to that observed
for the control ligand eIF4G1-D5S (Table 2 and SI Fig. 4A). These
findings suggest that the design of eIFTerminator1l-4 did not
affect the binding affinity of the individual ligands for their
respective binding partners, namely CBLock for CBL and
elF4G1-D5S for eIF4E.

In SPR, the binding of a large analyte results in a greater
change in refractive index, leading to a higher response unit
(RU). By immobilising eIF4E on the SPR chip, we anticipated
that binding of the eIFTerminator-CBL binary complex will
cause a greater change in refractive index, leading to a larger RU
compared to elFTerminator alone if the ternary complex
between eIF4E, elFTerminator and CBL has assembled (Fig. 3A-
C). To investigate the ternary complex formation, a saturating
concentration of CBL (1 uM), which is over five-fold higher than
the Kp for the CBL-CBLock interaction, was included with the
elFTerminatorl-4 analytes and flowed over immobilised eIF4E.

Table 2 Steady-state binding affinities between the ligand His-elF4E
and the analytes elFTerminatorl-4 or elF4G1-D5S in a binary complex,
and in a ternary complex with a fixed concentration of CBL (n = 3,
mean =+ SD)

Binary K, (nM)  Ternary Kp: CBL (nM)

elFTerminatorl 54.0 +£ 9.0 77.8 +£9.7
elFTerminator2 67.5+ 7.4 60.7 + 22
elFTerminator3 39.5 + 3.4 81.8 + 8.2
elFTerminator4 60.6 + 8.5 43.8 + 6.0
eIF4G1-D5S (positive ctrl)  38.9 £+ 6.5 N/A

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Addition of CBL alone, in the absence of eIFTerminators,
caused little change in RU, indicating that CBL did not interact
with eIF4E (Fig. 3D-G). When elFTerminatorl-4 was injected
alone, there was an increase of 10-15 RU. In contrast, in the
presence of CBL, there was an increase of 100-120 RU (Fig. 3D-
G), confirming ternary complex formation. In addition, since
positive cooperativity in ternary complexes has been shown to
influence degradation efficiency,” we compared the
elFTeminatorl-4 binding affinities for eIF4E in binary
complexes to ternary complexes in the presence of 1 uM CBL.
The Kp, values and binding kinetics were similar (Table 2 and SI
Fig. 4B), suggesting no cooperative effect. Together, these
findings demonstrate that eI[FTerminators bind both CBL and
eIF4E to form the ternary complex.

CP-elFTerminator4 reduces the level of eIF4E in a dose-
dependent manner

To examine whether elFTerminatorl-4 could induce eIF4E
degradation in cells, we incorporated a 16-mer penetratin
peptide sequence from the Drosophila Antennapedia homeo-
domain® at their N-terminus to facilitate cell entry. Addition-
ally, an N-terminal FITC label was included to monitor cell
uptake. These modified peptidic PROTACs are referred to as
cell-penetrating  elFTerminatorl-4  (CP-eIFTerminatorl-4).
Among them, CP-eIFTerminator1, CP-eIFTerminator3, and CP-
elFTerminator4 readily dissolved in water or DMSO, whereas
CP-elFTerminator2 was insoluble and therefore not pursued
further.

A key consideration when characterising PROTACs in cells is
cytotoxicity, as compounds that significantly reduce cell
viability within a few hours may exert off-target cytotoxic effects
rather than on-target degradation. To assess this, cell viability
assays were performed after incubating HeLa cells with CP-
elFTerminators at concentrations ranging from 0.16-24.4 uM
for 3 h and 8 h (SI Fig. 5A and B). The parental cell-penetrating
peptides CP-CBLock and CP-eIF4G1-D5S were included as
controls. The assay showed that CP-eIF4G1-D5S exhibited
cytotoxicity at concentrations of 16.10 uM or higher, reducing
viable cells to as low as 35% at 3 h and 25% at 8 h post-peptide
treatment, whereas lower concentrations (0.16-16.10 pM) had
no apparent effect on cell viability (SI Fig. 5A and B). In contrast,
CP-CBLock and CP-elFTerminator4 did not affect cell viability
under the tested conditions. However, CP-e[FTerminatorl and
CP-elFTerminator3 showed mild cytotoxic effects at higher
concentrations (16.10-24.4 uM). Although it remains unclear
why the eIF4E warhead eIF4G1-D5S exhibited cytotoxicity at
higher concentrations, it is intriguing that linking CBLock to its
N-terminus in CP-eIFTerminator4 mitigates the cytotoxicity.

Based on these findings, we treated HeLa cells with 10 uM of
CP-eIFTerminatorl, CP-eIFTerminator3 or CP-eIFTerminator4 and
assessed the effects on the endogenous levels of eIF4E. HeLa cells
were chosen, due to their high EIF4F and CBL mRNA expression
(The Human Protein Atlas, https://www.proteinatlas.orgy/).
Treatment with CP-eIFTerminatorl, CP-eI[FTerminator3 or
CP-elFTerminator4 resulted in a similar extent of reduction in
eIF4E protein levels, namely a reduction between 24.6% and
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Fig.3 SPR showing elFTerminatorl-4 form a ternary complex with CBL and elF4E. (A—C) Schematic illustrating the principles of ternary complex
formation analysed by SPR. Briefly, elF4AE was immobilised onto the SPR sensor chip. CBL (A), elFTerminators (B), or a mixture of elFTerminator
and a fixed concentration of CBL (C) was then flowed over the surface. Binding of an analyte to the immobilised ligand alters the refractive index
near the sensor surface, generating a signal measured in response unit (RU). A small analyte, such as an elFTerminator alone, produced a modest
RU signal due to its low molecular weight. In contrast, binding of the large elFTerminator-CBL complex generated a significantly higher RU,
indicative of the ternary complex formation. (D—G) Representative sensorgrams showing changes in RU between the ligand elF4E and the
analytes elFTerminatorl-4 (D-G) alone or in the presence of CBL. elF4E was immobilised and elFTerminatorl-4 alone (0.375 uM, blue line) or
with a fixed concentration of CBL (1 uM, gold line) were injected as analytes. The line in light green represents the CBL substrate control in the
absence of elFTerminatorl-4. Data are representative of three independent experiments.

28.7%, compared to the no PROTAC treatment control (Fig. 4A).
CP-eIFTerminator4 was selected for further testing, as it did not
cause acute cytotoxicity at 3-h and 8-h post treatment (SI Fig. 5A
and B), which enabled the assessment of its potency at higher
concentrations.

Next, a time course experiment was performed to assess
whether the reduction in eIF4E levels was sustained over time.
HeLa cells were incubated with 20 uM CP-eIFTerminator4 and
examined at selected time points over a 24-h period. Western

Chem. Sci.

blot analysis showed minimal changes in FITC levels over the
24-h period (Fig. 4B). CP-eIFTerminator4 readily entered cells as
soon as 30 min and caused a reduction in eIF4E protein levels
between 0.5-12 h. Although eIF4E levels gradually increased by
24 h, the level was still lower in CP-eIFTerminator4-treated cells
compared to untreated cells. Since levels of eIFAE were most
reduced at 3 h following CP-elFTerminator4 treatment, we
opted to further characterise this PROTAC at the 3-h time point.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 CP-elFTerminators facilitate elF4E degradation in cells. (A) Western blots showing elF4E and actin (loading control) levels from lysates of
Hela cells treated with water (no PROTAC), 10 uM CP-elFTerminatorl, CP-elFTerminator3, and CP-elFTerminator4 for 3 h. The band intensities
of elF4E from each lane were quantified and normalised using actin band intensities and shown as a ratio relative to the no PROTAC control lane.
Data are representative of three independent experiments. (B) Western blots showing the loading control actin, elF4E and FITC levels from lysates
of Hela cells treated with 20 uM FITC-labelled CP-elFTerminator4 or water (no PROTAC) over indicated times. The band intensities of elF4E from
each lane were quantified and normalised using actin band intensities. Data are representative of two independent experiments. (C) Western
blots showing actin (loading control), elF4E, and FITC levels from lysates of HelLa cells treated with 5, 10, and 20 uM of CP-elFTerminator4 for 3 h.
Water was added as a negative control, indicated as O uM. The band intensities of elF4E from each lane were quantified and normalised using
actin band intensities and shown as a ratio relative to the no PROTAC control lane. Data are representative of two independent experiments. (D)
Western blots showing the loading control actin, elF4E, and FITC levels from lysates of U-2 OS cells treated with 5, 10, and 20 uM of FITC-labelled
CP-elFTerminator4 for 3 h. Water was added as a negative control, indicated as O uM. The band intensities of elF4E from each lane were
quantified and normalised using actin band intensities and shown as a ratio relative to the no PROTAC control lane. Data are representative of two
independent experiments. (E) An AlphaLISA assay showing a dose—response curve when Hela cells are treated with CP-elFTerminator4 for 3 h
elF4E in Hela cells was detected using acceptor and donor beads for quantification. The datapoint associated with the hook effect was omitted
when calculating DCsgq (n = 3 repeated experiments, mean + SEM). (F) Western blots showing actin (loading control) and elF4E levels from lysates
of Hela cells treated with water (no PROTAC), 10 uM CP-elFTerminator4, CP-elF4G1-D5S, or CP-CBLock for 3 h. The band intensities of elF4E
from each lane were quantified and normalised using actin band intensities and shown as a ratio relative to the no PROTAC control lane. Data are
representative of three independent experiments.
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Two cancer cell lines, HeLa and U-2 OS, were chosen based
on their high mRNA expression of CBL and EIF4E (The Human
Protein Atlas, https://www.proteinatlas.org/), in order to
validate that CP-eIFTerminator4 exerts its effect in a concentra-
tion-dependent manner. HeLa cells were treated with varying
concentrations of CP-eIFTerminator4 and harvested after 3 h
for immunoblotting analysis. A concentration-dependent
decrease in eIF4E levels was observed (Fig. 4C). Similarly, U-2
OS cells treated under comparable conditions showed a reduc-
tion in intracellular eIF4E levels as the concentration of CP-
elFTerminator4 was increased (Fig. 4D). Since the two cancer
cell lines exhibited similar results, we selected HeLa cells for
further characterisation.

Next, we examined the degradation efficiency of CP-
elFTerminator4 in HeLa cells using AlphaLISA. Cells were
treated with a titration series of CP-eIFTerminator4 (0.49-30.07
uM) for 3 h, followed by AlphaLISA analysis to quantify intra-
cellular eIF4E levels. CP-eIFTerminator4 showed a half-maximal
degradation concentration (DCs,) of approximately 4.66 uM and
a maximum degradation (Dp,,y) of 39.4% (Fig. 4E). Since it was
not possible to prepare eIF4E-knockout HeLa cells as a negative
control, background subtraction was done using empty wells
instead. For this reason, it was unclear if the true extent of
degradation was under-represented by the measured Dy In
comparison, quantification of eIF4E bands on immunoblots
from four independent samples treated with 20 pM CP-
elFTerminator4 for 3 h yielded an average Dy, of 44.0% (SD
=+ 18.6%). The AlphaLISA and western blot data were similar,
and the extent of degradation varied more across experiments
in the latter case. Nonetheless, the lack of an eIF4E knock-out
negative control is unlikely to significantly affect the determi-
nation of the DCs,.

To determine whether the degradation of eIF4E by CP-
elFTerminator4 is driven by an induced-proximity mechanism
rather than by the individual warheads, we tested CP-
elFTerminator4, CP-eIF4G1-D5S, and CP-CBLock separately in
HeLa cells (Fig. 4F). Since CP-eIF4G1-D5S affected cell viability
at concentrations above 16 pM while CP-CBLock and CP-
elFTerminator4 did not affect cell viability (SI Fig. 5A and B),
all compounds were tested at 10 uM. Under this condition, only
CP-elFTerminator4 significantly reduced eIF4E (Fig. 4F). This
confirms that CP-eIFTerminator4 functions as a PROTAC and
that the individual warheads do not trigger eIF4E degradation.

Degradation of eIF4E by an artificial induced-proximity
approach using a dTAG system has been shown to be
feasible.”® However, degradation of endogenous eIF4E via
a PROTAC approach using CRBN and VHL ligands has
remained challenging; despite achieving cell entry and ternary
complex formation, these PROTACs failed to induce eIF4E
degradation.*®*” Our work presents the first case in which eIF4E
is targeted for degradation in a PROTAC system.

CP-elFTerminator4 recruits CBL and induces eIF4E
degradation using two cellular degradation pathways

Since degradation was observed in the initial hours following
CP-elFTerminator4 treatment (Fig. 4B), the next step was to
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Fig. 5 CP-elFTerminator4 promotes CBL proteins-mediated elF4E
degradation via lysosomal and proteasomal pathways. (A) Western
blots showing the loading control actin, elF4E, and FITC from Hela cell
lysates treated with FITC-CP-elFTerminator4 for 3 h. Cells were pre-
treated with carfilzomib or chloroquine for 4 h prior to the PROTAC
treatment to block either the proteasomal or lysosomal pathways. The
band intensities of elF4E from each lane were quantified and nor-
malised using actin band intensities and shown as a ratio relative to the
no PROTAC control lane. Data are representative of three independent
experiments. (B) Western blot demonstrating knockdown of CBL and/
or CBL-B after 72 h siRNA treatment in Hela cells. Cell lysates were
probed with antibodies against CBL, CBL-B, elF4E, and anti-actin
(integrity control). Data are representative of two independent
experiments. (C) Western blot showing elF4E rescue in Hela cells co-
treated with CBL and CBL-B siRNA in the presence of CP-elFTermi-
nator4. Cells were treated with siRNA for 72 h prior to 20 uM CP-
elFTerminator4 treatment for 3 h. Lysates were probed for the loading
control actin, CBL, CBL-B, elF4E, and FITC. The band intensities of
elF4E from each lane were quantified and normalised using actin band
intensities and shown as a ratio relative to the no PROTAC control lane
(n=2).
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investigate the mechanism of degradation. To determine which
degradation pathway is responsible for eIF4E reduction, HeLa
cells were treated with 20 uM CP-eIlFTerminator4 alongside the
proteasome inhibitor carfilzomib or the lysosomal inhibitor
chloroquine. Carfilzomib, an irreversible proteasomal inhib-
itor, was pre-incubated at a concentration of 100 nM, while
chloroquine was used at a concentration of 50 uM for 4 h prior
to adding CP-elFTerminator4 for 3 h. Inhibition of protein
degradation via either proteasome or lysosome led to eIF4E
stabilisation (Fig. 5A).

We previously showed that CBLock binds to both CBL and
CBL-B, as both CBL proteins share identical sequences at the
TKBD substrate-binding site targeted by CBLock.*® To deter-
mine whether eIF4E degradation by CP-elFTerminator4 is
mediated by the CBL proteins, we performed siRNA knockdown
of CBL and CBL-B in HeLa cells. We confirmed that CBL siRNA
and CBLB siRNA were able to deplete CBL or CBL-B, respectively,
in HeLa cells (Fig. 5B). In addition, knockdown of CBL and/or
CBL-B had no effect on eIF4E protein levels. As expected from
a peptide that recruits CBL, co-treatment of CBL and CBLB
siRNA inhibited CP-eIFTerminator4-mediated eIF4E degrada-
tion (Fig. 5C). These findings demonstrate that CBL proteins are
required for CP-eIFTerminator4-mediated degradation of eIF4E
and suggest that CBL and CBL-B can facilitate eIF4AE degrada-
tion through both lysosomal and proteasomal pathways.

Unlike lysosome-targeting chimeras (LYTACs), which rely on
lysosomal targeting receptors such as the cation-independent
mannose-6-phosphate receptor or the asialoglycoprotein
receptor,”® or autophagy-targeting chimeras (AUTACs), which
induces autophagosome formation through S-guanylation,®
our study, to our knowledge, represents the first example of
a PROTAC hijacking a cytoplasmic E3 to degrade a cytoplasmic
neo-substrate via the lysosomal pathway. It remains unclear
which types of Ub chains are assembled on the neo-substrate by
CBL in cells to direct it toward either lysosomal or proteasomal
degradation. However, the ability to engage both degradation
pathways may offer a distinct advantage by increasing the
likelihood of effective neo-substrate clearance. Interestingly,
arecent study showed that the natural CBL substrate Lyn kinase
was degraded by both CBL and CBL-B upon treatment with the
Lyn-targeting inhibitor SI-3 (Scholes, Bertoni®®). This degrada-
tion involved both lysosomal and proteasomal pathways.
Together, these results suggest that CBL proteins can mediate
substrate degradation through distinct mechanisms depending
on cellular context and pharmacological cues.

CP-elFTerminator4 disrupts the eIF4F complex and
translation

Since the eukaryotic cap-dependent translation complex eIF4AF
consists of the RNA helicase eIF4A1, mRNA cap-binder eIF4E,
and the scaffold protein eIF4G1 (Fig. 6A), we sought to assess
whether the depletion of eIF4E also affects the protein levels of
elF4A1 and the scaffold eIF4G1 concomitantly. Consistent with
previous reports,*” EIF4E siRNA treatment in HeLa cells for
96 h did not perturb eIF4A1 or eIFAG1 levels (Fig. 6B). In
contrast, 3 h of CP-eIFTerminator4 treatment in HeLa cells led

© 2026 The Author(s). Published by the Royal Society of Chemistry
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to a reduction in eIF4A1, eIF4E, and eIF4G1 levels (Fig. 6C). The
warheads, CP-eIF4G1-D5S or CP-CBLock, had minimal effects
on elF4A, elF4E, and eIF4G levels (Fig. 6C). Combined, it
appears that CP-eIFTerminator4 acts on the eIF4F complex via
a unique mechanism that is distinct from siRNA-mediated
knockdown of eIF4E, or occupancy-driven inhibition mediated
by eIF4G1-D5S.

To gain insight into the effect on translation as a result of
depletion of the core eIF4AF components, HeLa cells were pre-
treated with or without CP-eIFTerminator4 for 7 h, followed
by addition of puromycin for 1 h (Fig. 6D). Puromycin is
a tyrosyl-tRNA mimetic that inhibits translation, but it is widely
used to monitor the rate of protein synthesis.*®* It binds to the
ribosome during translation and is incorporated into the
nascent polypeptide chain, causing premature termination and
the release of puromycin-labelled peptides, which can be
detected using an anti-puromycin antibody. Treatment with CP-
elFTerminator4 for 8 h was found to reduce polypeptide
formation by 61.5% (SD =+ 23.2, n = 3) (Fig. 6D).

As the puromycin incorporation assay suggested that trans-
lation is impaired in HeLa cells treated with CP-
elFTerminator4, we next performed a quantitative expression
proteomics experiment to examine changes in the global pro-
teome. Three independent replicates of HeLa cell treated with
CP-elFTerminator4 for 3 h were compared to untreated
controls. Consistent with the puromycin incorporation data
(Fig. 6D), CP-eIFTerminator4 treatment induced a widespread
change in the proteome (Fig. 6E). The asymmetric volcano plot
highlights a stronger trend towards downregulation, and many
proteins were reduced to a greater extent than eIF4E. Proteomic
analysis revealed that 1207 proteins were upregulated and 1779
were downregulated (SI Data 1). Notably, eIF4A1, eIFAE, and
eIF4G1 showed a statistically significant reduction as a result of
CP-elFTerminator4 treatment. These findings suggest that
perturbation of eIF4E and the eIF4F complex results in exten-
sive downstream proteome remodelling.

Further KEGG and Reactome pathway analyses of the pro-
teomics data revealed that enzymes involved in tRNA amino-
acylation, the pentose phosphate pathway, and fructose and
mannose metabolism were downregulated. In particular, 11 out
of the 12 detected aminoacyl-tRNA synthetases were decreased,
raising the possibility that their reduced levels may further
compromise protein synthesis (SI Data 1).

Given the essential role of eIF4E in cap-dependent trans-
lation, our proteomics data do not allow a clear distinction
between direct and indirect effects of CP-eIFTerminator4 on the
proteome. It also remains to be determined how eIF4A and
elF4G are downregulated by CP-eIFTerminator4 treatment.
Nevertheless, in light of previous studies such as the 30%
reduction in [**S]methionine incorporation into the newly
synthesised proteins despite an 80-90% decrease in eIF4E levels
in rabbit reticulocytes,® and the largely unchanged global
translation in eIF4E haplo-sufficient mice,”” our results
demonstrate that targeted degradation of eIF4E and other
components of eIF4F complex by CP-eIFTerminator4 produces
a substantial impact on translation.
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Fig. 6 CP-elFTerminator4 has an on-target effect on elF4F-dependent translation through degradation of elF4E. (A) A schematic illustration of
the elF4F complex consisting of elF4A, elF4E, and elF4G in cap-dependent translation. elF4E is critical for cap-dependent translation as it binds
to the 5’ cap of MRNA that consists of 7-methylguanosine (m’G). elF4G serves as a scaffold for the RNA helicase elF4A. (B) Western blot showing
the levels of elF4A, elF4E, elF4G, and actin (loading control) from cell lysates of Hela cells treated with EIF4E siRNA or control siRNA for 96 h.
Data are representative of three independent experiments. (C) Western blot showing the levels of elF4E, elF4G, elF4A, FITC, and actin (loading
control) from lysates of Hel a cells treated with CP-elFTerminator4, CP-elF4G1-D5S or CP-CBLock for 3 h. The band intensities of elF4E from
each lane were quantified and normalised using actin band intensities and shown as a ratio relative to the no PROTAC control lane. Data are
representative of three independent experiments. (D) Western blots showing a puromycin incorporation assay demonstrating reduction in
translation when Hela cells are treated with 20 uM CP-elFTerminator4 for 8 h. Puromycin was added 1 h prior to harvest for the 8-h time point,
while cells were harvested immediately after puromycin was added to the cell culture for 0-h time point samples. Anti-actin was used as an
integrity control, anti-elF4E was used to validate elF4E degradation, anti-FITC was used to confirm CP-elFTerminator4 cell entry, and an anti-
puromycin antibody was used to visualise the newly synthesised peptides. Data are representative of three independent experiments. (E) Volcano
plot showing differences in the proteome of Hela cells treated with CP-elFTerminator4 compared to untreated control. The experiment was
performed in three biological replicates. Each dot represents a protein whose abundance increased (right side) or decreased (left side) upon CP-
elFTerminator4 treatment. Dots in pink highlight the components of the elF4F complex.
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Conclusion

Targeted protein degradation (TPD) via PROTACs has expanded
rapidly over the past decade. While an increasing number of E3s
have been exploited for PROTAC application, there remains
a strong demand to diversify the E3 toolbox, particularly to
address undruggable substrates, tissue-specific E3 expression
limitations, and emerging drug resistance.

In this study, we investigated the potential of the previously
uncharacterised E3, CBL, as a degrader E3 to target neo-
substrates for ubiquitination and degradation. We designed
peptidic PROTACs, elFTerminators, by linking CBLock to an
elF4E-binding peptide, e[F4G-D5S. We demonstrated that eIF-
Terminators promote ternary complex formation between CBL,
elFTerminator, and eIF4E, resulting in CBL-mediated eIF4E
ubiquitination in vitro. In cells, eIFTerminator4 rapidly targets
elF4E for degradation via both lysosomal and proteasomal
pathways in a manner dependent on CBL and CBL-B. Unex-
pectedly, eI[FTerminator4 also led to the depletion of eIF4A and
elF4G, resulting in a marked reduction in global protein
translation. Using a range of biochemical, biophysical, and cell-
based assays, we have established CBL as a viable degrader E3
for TPD applications.

Unlike siRNA, which typically requires 24-72 h to show
results, or CRISPR-Cas9, which involves months of intensive
effort to knock out a gene, CP-eIFTerminator4 achieved intra-
cellular eIF4E degradation in 30 min simply by adding the
peptide to cell culture media with EGF. Furthermore, CP-
elFTermiantor4 did not acutely affect cell viability. Thus, our
eIF4E PROTACs may be a useful chemical tool to study essential
survival genes with minimal disruption of cellular systems.

Importantly, our CBL PROTAC was able to degrade an
oncoprotein that is regarded undruggable with other E3s or
inhibitors,**75*¢6> hijghlighting its potential to expand the
scope of PROTAC-based anti-cancer therapies. Future studies
are required to elucidate the precise mechanism of action of CP-
elFTerminator4. Nonetheless, designing a PROTAC that targets
the entire eIF4F complex for degradation may represent an
interesting avenue for cancer therapy. Furthermore, a small
molecule targeting the CBL's substrate-binding site, similar to
elFTerminator4, has recently been reported.® In contrast to
CBL ligands that bind the LHR site and inhibit CBL E3
activity,*** this compound does not interfere with CBL's E3
activity. Combined with previously described small-molecule
inhibitors of eIF4E,**¢>%¢¢ jt could enable the development of
next-generation CBL-based elF4E PROTACs with improved
potency.
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