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Finding catalysts that have both high activity and high stability presents a long-standing
challenge. Since optimizing activity and stability are conflicting objectives, the best one can do

is find the Pareto front that yields optimal tradeoffs between these features. On the Pareto front,
there is a trade-off where a portion of catalytic activity must be sacrificed to gain further stability
and vice versa. Here, we provide a method to optimize the front by designing a multi-objective
genetic algorithm that combines machine learning, graph neural network calculations, and
density functional calculations. The application considered is the oxygen evolution reaction
catalyzed by high-entropy alloys. We find that the Pareto front generally contains alloys with
diverse elements, but that enhancing stability inevitably inflicts a toll on activity. We compare
the general conclusions of our work to a survey of 545 experiments.

Introduction

Improving catalytic processes remains a persistent
challenge in chemistry.'* One desires a good catalyst
to have robust activity and prolonged operational
durability, especially for functioning under harsh
conditions.>8. Striking a balance between activity and
stability is a foundational problem in catalysis,’ !¢ and
optimizing this balance is challenging. While many
catalysts possessing both good activity and good
stability have been developed,!’-2¢ one is usually unsure
whether the trade-off between activity and stability has
been optimized, and a better way to manage this trade-
off would be beneficial .27-2°

A key feature of multi-objective optimization of
conflicting features is that there is no optimal solution.
The best one can do is find a Pareto-optimal catalyst in
which one objective cannot be improved without
worsening another.3%-32 Pareto-optimized solutions to
the bi-objective optimization problem are said to be
non-dominated, and the set of non-dominated solutions
constitutes the Pareto front. Figure 1 illustrates that for
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each solution on the front, no improvement can be made
in one objective without sacrificing the other. Catalysts
on the Pareto front are non-inferior to each other and
superior to catalysts not on the front. The present article
presents a strategy for finding the Pareto front.

Key issues in multi-objective genetic algorithms
are advancing the population toward the Pareto front
and maintaining the diversity of the current best
estimate of the Pareto front. The present algorithm
combines genetic algorithms with a machine learning
model and density functional calculations to advance
the front, and it applies fitness sharing and niching to
promote sampling the whole Pareto front, in contrast to
converging to a single member of the front. As our
illustrative application, we consider high-entropy
alloys®3-412 (HEAs) as catalysts for the oxygen
evolution reaction (OER). This is an especially
challenging problem because HEAs have a large
number of possible compositions. Our work uses global
optimization as a tool to uncover the fundamental
activity-stability trade-off wunder realistic OER
conditions, directly linking site-resolved OER potential
barrier and  Pourbaix-governed  decomposition
thermodynamics to experimentally observed catalyst
degradation and overpotential . #>-+3

Descriptor-based methods have been widely used
to predict catalyst stability and activity,**-*7 and we
formulate the present bi-objective optimization as a
maximization of stability and activity descriptors. We
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Fig 1. Workflow of the genetic algorithm. (left) A possible Pareto front for a bi-objective optimization of activity and stability for the
oxygen evolution reaction. (right) Workflow integrating a genetic algorithm and machine learning, either with a graph neural network (in
the surrogate stage) or GNN for the pre-optimization and DF theory to get the final energy (in the final stage).

adopt the negative of the decomposition energy per atom
derived from Pourbaix analysis at 1.23 V vs. RHE and pH
7 as the stability descriptor because it directly reflects the
electrochemical environment relevant to OER operation.
For activity, we explicitly calculate the Gibbs free energies
of *OH, *0, and *OOH at each adsorption site to construct
the complete four-step OER free-energy profile. The
overpotential is determined from the largest free-energy
change minus the 1.23 eV, and its negative value is adopted
as the activity objective in the multi-objective optimization.
With this definition, a larger (less negative) value of the
descriptor corresponds to higher catalytic activity.

We consider alloys composed of Ag, Au, Cu, Ir, Ni,
Pd, Pt, and Rh or a subset of these elements in a
surrogate model. In our model, each catalyst structure
contains 32 atoms.

The success of a genetic algorithm is determined to
a large extent by the choice of its hyperparameters.
Therefore, we used a two-stage procedure in which the
first stage optimizes hyperparameters, and the second
stage finds the Pareto front. For the second stage, we
employed a graph neural network (GNN, specifically
the UMA-m-1p) for pre-optimization and density
functional (DF) calculations to derive the descriptors
utilized by the genetic algorithm. For the first stage, we
the GNN as a surrogate model to optimize the
hyperparameters. The usage of a GNN in the surrogate
stage allowed us to explore a broad hyperparameter
space at a lower computational cost than using DF

2 | Chem. Sci., 2025, 00, 1-3

calculations. Except for the shift from GNN to GNN-
DF, the two stages use the same procedures; however,
the GNN stage runs the genetic algorithm many times
with different choices of hyperparameters, whereas the
GNN-DF stage is carried out only once (with the
optimized hyperparameters) in order to find the final
Pareto front.

We start each genetic algorithm run with pure face-
centered-cubic (FCC) metals. This is the first generation.
For the stability descriptor, we compute decomposition
energy per atom; the formula is in Section S3.2 (sections
and figures with a prefix S are in the SI Appendix). Before
calculating the activity descriptor, we use CazKit to cleave
surfaces and enumerate all possible hollow adsorption sites.
We then calculate the adsorption energy of *O, *OH, and
*OOH on each site; the activity formula is in Sections S3.1.

Starting with the second generation, the stability
calculation is preceded by a stability filter, which is an
empirical equation to eliminate unreasonable alloy
structures; the details of the filter are in Section S5. The
filter is not needed in the first generation since we do not
have alloys yet.

This journal is © The Royal Society of Chemistry 2025
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After stability fitting and activity screening, we
calculate the two descriptors (by GNN in the surrogate
runs and by DF in the final run), and the descriptors are
used to calculate the fitness. Details of the fitness
calculation are in Section S4.1. Based on the
descriptors, the alloys are divided into an elite group, in
which no catalyst of this generation outperforms the
alloy in both activity and stability, and a non-elite

Chemical Science

This mechanism encourages exploration of.a.breader
and more diverse region of design spalc¥)1039/b55C06100H

We continue making new generations until the
Pareto front converges.

As mentioned above, the surrogate stage consists of
many runs with different values of the hyperparameters. As
an example, consider the optimization of the number of
offspring per generation, denoted as O, and the number of

the first generation forms the initial best estimate of the
Pareto front. We breed successive generations by
crossover and mutation, as detailed in Section S4.2. The
elite group of each new generation is mixed with the
Pareto front of the previous generation to obtain a new
Pareto front.

We breed subsequent generations based on the
population of the new Pareto front and the latest
generation. Breeding is achieved through mutation and
crossover. During the mutation process, a specified
number of atoms are randomly selected and replaced
with different metal species. The mutation number thus
determines the extent of compositional diversity
introduced in each generation. Breeding priority is also
affected by a similarity-based selection parameter
called the niche size, which is denoted as og,. The
niche size penalizes candidates that are too similar to
others in the population, reducing their likelihood of
similar catalysts being selected to generate offspring.

This journal is © The Royal Society of Chemistry 2025
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carried out six independent genetic algorithm runs in each
of which we fixed the total number of structures evaluated
at 600, which is the product of O and G. Each pair O-G pair
represents a different trade-off between breadth (more
offspring per generation) and exploration depth (more
generations). We obtain a different Pareto front for each O-
G pair. We then combine these Pareto fronts into a global
Pareto front that contains the best overall candidates. The
Pareto front generated with G = 15 and O = 40 contributed
the most points to the combined Pareto front, and therefore,
this pair is considered the most effective and was selected
as our optimized pair. More details of this optimization as
given in Section S4.3.2.

The same procedure was also applied to optimize the
mutation number and the niche size. Details of these runs
are given in Section S4.3.3. A mutation number of 6, and a
Oghare Of 20% were adopted for the DF run.

All steps are summarized in Fig. 1 and in more
detail in Fig. S1.

Chem. Sci., 2025, 00, 1-3 | 3
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Results & discussion

The final Pareto front is based solely on DF results
but is obtained with hyperparameters optimized with
the GNN model. Fig 2(a-e) shows the evolution of the
boundary as the generation number increases. We can
see that by the 15th generation, trade-offs appear and
settle down to a well-delineated Pareto front.
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Fig 3. Pareto frontier from experiments. Experimental results based on concave (a), linear (b), and convex(c) fitting to estimate catalyst
stability. We used the time to 90% efficiency as an indicator to determine the stability of the material.

The Pareto front in Fig. 2e illustrates the trade-off
between activity and stability in catalysts for the
oxygen evolution reaction. In the initial optimization
stages, activity and stability increased; however, after a
critical point, the boost in activity was met with a
corresponding decline in stability. The Pareto front's
shape shows that as activity continuously increases on
the front, achieving the same level of improvement in
stability requires an increasingly significant sacrifice in
stability.

Figure 2f shows a converging trend of the Pareto
front with the increasing generations. The Pareto front
stabilizes at the 15th generation and maintains its shape
for approximately ten generations, indicating
convergence.

To gain insight into the relationship between
activity and stability in catalysts for the oxygen
evolution reaction, we compiled a dataset consisting of
545 experimental data points. For analyzing
experiments, we adopted the reciprocal of the
experimental overpotential to represent activity; a
higher reciprocal implies lower overpotential and better
activity. Adopting a measure of experimental stability
is complicated by the fact that the definition of stability
varies across different publications; for example, some
report stability based on the time it takes for activity to
decay to 90%, while others report the time it takes for
activity to decay to 80%. To standardize, we choose the
90% time. The next complication is that different
degradation mechanisms can lead to variations in
estimating the 90% decay time. To account for this, we
analyzed the activity data with three possible decay

. . t?
models having decay functions that vary as 1 — = 1-

t/7, and e~t/7 where 7 is a fitting parameter. For each

4 | Chem. Sci., 2025, 00, 1-3

points farther from the origin represent better-
performing materials. We found that, regardless of the
mathematical model used to describe activity over time,
a clear and consistent trade-off between catalytic
activity and stability emerges in experimental studies.
This trade-off is reflected in the downward trend of the
reciprocal of overpotential overtime for the best
catalysts. This inherent trade-off reflects a fundamental
challenge in designing catalysts, particularly for
applications that require prolonged operation, such as
industrial electrocatalysis and energy conversion
technologies.

We return to the DF computations in Fig. 4. By
incorporating degradation thermodynamics under realistic
electrochemical conditions, our framework establishes a
composition-dependent Pareto frontier that reveals how
HEAs strike a balance between activity and stability during
OER. The results indicate that within the complex HEA
compositional space, certain alloys can remain both stable
and catalytically active under reaction conditions, while
most conventional transition-metal surfaces readily oxidize
or dissolve. This finding suggests a possible design route for
future OER catalysts, namely the construction of inert
metallic backbones (e.g., Ag or Au) doped with a limited
fraction of active transition metals (such as Cu or Pd) to
generate suitable OER sites while maintaining structural
integrity. Although achieving such atomic-level site control
experimentally remains challenging, especially in multi-
component alloys, the Pareto frontier offers a quantitative
framework for understanding how stability and activity
emerge collectively from composition.

Furthermore, the Pareto frontier also holds important
implications for the understanding of OER catalysts based
on layered double hydroxides (LDHs). In most practical

This journal is © The Royal Society of Chemistry 2025
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systems, high-entropy or multimetallic precursors do not
remain metallic but rather reconstruct in situ into multi-
cation oxyhydroxide or LDH phases that constitute the real
active state. However, the cation composition of these
LDHs largely inherits that of their metallic precursors, with
only minor surface enrichment or depletion observed
experimentally. Operando X-ray studies by Dionigi et al.
demonstrated that Ni-Fe and Co-Fe alloys rapidly transform
under OER conditions into MFe(oxy)hydroxide phases,
indicating that the metallic precursor primarily serves as a
chemical reservoir and structural template for the active
phase, indicating the close contact between the alloy
precursor and the LDH.*°

Chemical Science

value represents excessive inertness, suppressing sutface
reconstruction and resulting in low sie!deasityDBetween
these two extremes lies a narrow stability corridor where the
alloy is sufficiently oxophilic to evolve into an active LDH-
like surface under reaction conditions yet remains stable
enough to avoid self-destruction. This delicate balance
between reactivity and structural resilience defines the
optimal region on the Pareto frontier, unifying the behaviour
of metals and LDHs under electrochemical environments.
Our theoretical predictions agree with experimental
observations. Within the Pareto frontier obtained from our
simulations, alloys enriched with Au and Ag occupy the
most favourable region, indicating that during iterative
optimization, the system naturally tends to adopt inert noble
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Fig 4. The distribution of all alloys by density functional calculations. The colours indicate the number of elements in the HEA.

In our framework, catalytic activity is quantified using
the theoretical overpotential at 1.23 V vs. RHE, obtained
from DF calculations of the adsorption energies of *O,
*OH, and *OOH intermediates following the standard four-
step OER mechanism. These adsorption energies reflect
each alloy’s average oxophilicity, corresponding to the
intrinsic tendency of its constituent elements to form M-O
bonds. Numerous studies have demonstrated a linear
relationship between oxygen adsorption energies on
transition metals and those on their corresponding oxides,
indicating that the same underlying M-O interaction
governs  both  chemisorption and  oxidation!?
Consequently, the Pareto frontier established for metallic
systems can be mapped onto LDHs, consistent with our
results, which show that both metals and LDHs align along
a shared frontier of activity and stability.

Complementing this descriptor, the decomposition
energy from Pourbaix analysis at 1.23 V vs. RHE and pH =
7 captures the thermodynamic driving force for oxidation or
dissolution. Numerous studies also demonstrate that the
strength of the M-O interaction directly correlates with
surface chemistry and bulk stability.33-35 A stronger oxygen
adsorption energy reflects the formation of a stronger M-O
bond, which in turn stabilizes the corresponding oxide phase
and enhances the thermodynamic driving force for
oxidation. In this context, a strong decomposition energy
indicates excessive oxophilicity and a tendency toward
rapid oxidation and structural collapse, whereas a positive

This journal is © The Royal Society of Chemistry 2025

metals as the structural backbone to preserve overall
stability, while incorporating only a limited fraction of
active transition metals (such as Cu or Pd) to generate OER-
active sites. This compositional bias reflects the
fundamental balance between activity and durability
encoded in the frontier itself, namely that inert metals
maintain the framework, while moderately oxophilic
dopants provide the necessary binding strength for oxygen
intermediates.

In current experimental systems, the primary active
centers are derived from transition-metal cations such as Ni,
Co, and Fe, which govern the lattice-oxygen-mediated OER
pathway through redox transitions between MZ*/M3*
states.’® However, their high oxophilicity also renders them
prone to oxidation and dissolution, leading to the
progressive collapse of the layered structure during
operation.’”-*® Incorporating more inert or noble elements,
such as Au, Zn, V, or Cr, does not necessarily introduce new
active sites; however, it can stabilize the lattice and maintain
the structural framework during long-term operation. For
instance, single atoms or small clusters of Au can suppress
Fe leaching and confine lattice oxygen activation, thereby
extending the lifetime without sacrificing activity.3%60
Similarly, V or Zn doping tunes the metal-oxygen
covalency, promoting electronic delocalization that
mitigates overoxidation and facilitates reversible redox
cycles.t192 These experimentally observed stabilization
effects align closely with our theoretical Pareto frontier,

Chem. Sci., 2025, 00, 1-3 | 5
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which captures the same trade-off between activity and
structural resilience across both metallic and hydroxide
catalysts.

Recent operando investigations have provided
evidence supporting this principle. Xia demonstrated
that by rationally pre-designing the precursor
composition, one can steer the in-situ reconstruction
pathway to form a stable and active phase under high-
current conditions.®* Our computational Pareto
framework, which simultaneously ensures sufficient
oxophilicity for activation and adequate structural
robustness for durability, echoes the experimentally
validated concept of “precatalyst programming.”
Together, these insights highlight a converging route
for theory-guided synthesis, using descriptor-based
Pareto mapping to pre-program alloy or precursor
compositions that autonomously evolve into resilient,
high-performance catalysts under realistic
electrochemical environments.

Conclusion

Catalyst optimization is crucial in chemical synthesis
for achieving objectives in energy sustainability,
materials  science, medicinal chemistry, and
environmental protection. Optimal design of catalysts
is a bi-objective optimization in which activity and
stability are conflicting targets. Since no catalyst will
provide the best solution for both objectives, the best
one can do is find a set of equally good solutions called
the Pareto front or the Pareto-optimal solutions. On the
front, one objective cannot be improved without
worsening the other. Here, we provide a new genetic
algorithm approach to the problem, and we apply it to
the Pareto front of catalysts composed of high-entropy
alloys, which offer exciting but challenging new
opportunities for catalyst tailoring because of their vast
number of possible compositions.

The bi-objective optimization of catalytic activity and
stability is crucial to catalyst design. Our algorithm has five
key features: (1) alloy offspring production; (2) filtering and
screening; (3) hyperparameter determination in preliminary
runs with more affordable calculations; (4) fitness
computation by density functional calculations; (5)
enrichment of the non-dominated offsprings database by a
genetic algorithm that uses niche recognition to promote
finding the whole Pareto front. The success of the algorithm
is demonstrated by application to the difficult problem of
HEA catalysts.

The relevance of a multi-objective optimization to
experiment is determined in large part by the choice of
features used as objectives. Our activity feature is based on
explicitly resolving the full four-electron OER free-energy
landscape at each surface site. For every adsorption site on
every candidate HEA, we compute the Gibbs free energies
of *OH, *O, and *OOH under the relevant pH and potential,
and extract the potential-limiting step and corresponding

6 | Chem. Sci., 2025, 00, 1-3

overpotential by subtracting the 1.23 V gquilibriym
potential. This site-resolved OER overpétentiatdsthencised
as the activity objective. As a result, our activity axis is not
a surrogate based on a single descriptor or an empirical
model but rather is the actual OER overpotential derived
from the complete *OH/*O/*OOH free-energy sequence on
heterogeneous HEA surfaces. Our stability feature aims to
capture the operando electrochemical stability of HEAs
under harsh OER conditions, where dissolution and phase
decomposition inevitably occur on experimentally relevant
time scales. To capture this, we derive the decomposition
energy per atom for each composition from Pourbaix

diagrams at the working pH and potential. This
decomposition  energy  directly = measures  the
thermodynamic  driving force for electrochemical

decomposition into stable oxides/hydroxides/ions in the
given electrolyte and is more relevant than using, for
example, the entropic preference for a random solid
solution. In our multi-objective optimization, we therefore
use the negative decomposition energy per atom and the
negative overpotential as stability and activity objectives to
be maximized. Because catalyst degradation for OER
catalysis ca be severe at lower potentials, our choice of
stability metric allows us to directly compare theory directly
with experiment. Under OER conditions, all catalysts
exhibit measurable performance decay within a limited time
window. By using Pourbaix-based decomposition energies
as a stability axis, we can correlate the predicted
thermodynamic  driving force for in-electrolyte
decomposition with experimentally measured degradation
(loss of activity and structural changes) and identify
compositions that optimally balance high OER activity with
acceptable finite-time stability. This provides an explicit,
quantitative connection between multi-objective ML-DFT
screening and experimentally observed degradation. With
the Pareto front based on physically realistic
electrochemical descriptors as a guide, one can strategically
balance competing catalyst properties to suit specific
operational needs.

Advances in our understanding of catalysis in specific
applications might suggest other features, in addition to
stability and activity, that must be optimized (for example,
selectivity or cost), and the present methods could in
principle be extended to multi-objective optimization of
three or more features. In this regard, we direct the reader to
a  machine-learning-density-functional — multi-objective
optimization framework for HEA oxygen-reduction-
reaction (ORR) electrocatalyst (the ORR is a reverse
reaction of the OER studied in the present work) that maps
Pareto fronts in activity, cost, and mixing entropy as a
stability proxy.®* The problem setting and overall system
perspective in that paper align closely with the present
work, such that the studies provide an opportunity to
compare computational strategies. In particular, their
activity feature is a distribution of *O and *OH adsorption
energies on HEA(111) surfaces, whereas ours is involves
the four-electron energy landscape at each surface site, and

This journal is © The Royal Society of Chemistry 2025
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their stability feature is ideal mixing entropy as a measure
of thermodynamic driving force to form single-phase solid
solutions whereas our stability feature is decomposition
energy per atom for each composition from Pourbaix
diagrams at the working pH and potential. This illustrates
how a variety of features can be used for multi-objective
catalyst design.
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