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Finding the Pareto front for high-entropy-alloy catalysts
Chengyi Zhang,a Ruihu Lu,a Qi Sun,a Yu Mao,a Tilo Söhnel,a Yan Zhao,*b Donald G. Truhlar,*c 
Ziyun Wang*a 

Finding catalysts that have both high activity and high stability presents a long-standing 
challenge. Since optimizing activity and stability are conflicting objectives, the best one can do 
is find the Pareto front that yields optimal tradeoffs between these features. On the Pareto front, 
there is a trade-off where a portion of catalytic activity must be sacrificed to gain further stability 
and vice versa. Here, we provide a method to optimize the front by designing a multi-objective 
genetic algorithm that combines machine learning, graph neural network calculations, and 
density functional calculations. The application considered is the oxygen evolution reaction 
catalyzed by high-entropy alloys. We find that the Pareto front generally contains alloys with 
diverse elements, but that enhancing stability inevitably inflicts a toll on activity. We compare 
the general conclusions of our work to a survey of 545 experiments. 

Introduction
Improving catalytic processes remains a persistent 

challenge in chemistry.1-4 One desires a good catalyst 
to have robust activity and prolonged operational 
durability, especially for functioning under harsh 
conditions.5-8. Striking a balance between activity and 
stability is a foundational problem in catalysis,9-16 and 
optimizing this balance is challenging. While many 
catalysts possessing both good activity and good 
stability have been developed,17-26 one is usually unsure 
whether the trade-off between activity and stability has 
been optimized, and a better way to manage this trade-
off would be beneficial.27-29

A key feature of multi-objective optimization of 
conflicting features is that there is no optimal solution. 
The best one can do is find a Pareto-optimal catalyst in 
which one objective cannot be improved without 
worsening another.30-32 Pareto-optimized solutions to 
the bi-objective optimization problem are said to be 
non-dominated, and the set of non-dominated solutions 
constitutes the Pareto front. Figure 1 illustrates that for 

each solution on the front, no improvement can be made 
in one objective without sacrificing the other. Catalysts 
on the Pareto front are non-inferior to each other and 
superior to catalysts not on the front. The present article 
presents a strategy for finding the Pareto front.

Key issues in multi-objective genetic algorithms 
are advancing the population toward the Pareto front 
and maintaining the diversity of the current best 
estimate of the Pareto front. The present algorithm 
combines genetic algorithms with a machine learning 
model and density functional calculations to advance 
the front, and it applies fitness sharing and niching to 
promote sampling the whole Pareto front, in contrast to 
converging to a single member of the front. As our 
illustrative application, we consider high-entropy 
alloys33-412 (HEAs) as catalysts for the oxygen 
evolution reaction (OER). This is an especially 
challenging problem because HEAs have a large 
number of possible compositions. Our work uses global 
optimization as a tool to uncover the fundamental 
activity-stability trade-off under realistic OER 
conditions, directly linking site-resolved OER potential 
barrier and Pourbaix-governed decomposition 
thermodynamics to experimentally observed catalyst 
degradation and overpotential.42-45

Descriptor-based methods have been widely used 
to predict catalyst stability and activity,43-47 and we 
formulate the present bi-objective optimization as a 
maximization of stability and activity descriptors. We 
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adopt the negative of the decomposition energy per atom 
derived from Pourbaix analysis at 1.23 V vs. RHE and pH 
7 as the stability descriptor because it directly reflects the 
electrochemical environment relevant to OER operation. 
For activity, we explicitly calculate the Gibbs free energies 
of *OH, *O, and *OOH at each adsorption site to construct 
the complete four-step OER free-energy profile. The 
overpotential is determined from the largest free-energy 
change minus the 1.23 eV, and its negative value is adopted 
as the activity objective in the multi-objective optimization. 
With this definition, a larger (less negative) value of the 
descriptor corresponds to higher catalytic activity. 

We consider alloys composed of Ag, Au, Cu, Ir, Ni, 
Pd, Pt, and Rh or a subset of these elements in a 
surrogate model. In our model, each catalyst structure 
contains 32 atoms.

The success of a genetic algorithm is determined to 
a large extent by the choice of its hyperparameters. 
Therefore, we used a two-stage procedure in which the 
first stage optimizes hyperparameters, and the second 
stage finds the Pareto front. For the second stage, we 
employed a graph neural network (GNN, specifically 
the UMA-m-1p) for pre-optimization and density 
functional (DF) calculations to derive the descriptors 
utilized by the genetic algorithm. For the first stage, we 
the GNN as a surrogate model to optimize the 
hyperparameters. The usage of a GNN in the surrogate 
stage allowed us to explore a broad hyperparameter 
space at a lower computational cost than using DF 

calculations. Except for the shift from GNN to GNN-
DF, the two stages use the same procedures; however, 
the GNN stage runs the genetic algorithm many times 
with different choices of hyperparameters, whereas the 
GNN-DF stage is carried out only once (with the 
optimized hyperparameters) in order to find the final 
Pareto front.

We start each genetic algorithm run with pure face-
centered-cubic (FCC) metals. This is the first generation. 
For the stability descriptor, we compute decomposition 
energy per atom; the formula is in Section S3.2 (sections 
and figures with a prefix S are in the SI Appendix). Before 
calculating the activity descriptor, we use CatKit to cleave 
surfaces and enumerate all possible hollow adsorption sites. 
We then calculate the adsorption energy of *O, *OH, and 
*OOH on each site; the activity formula is in Sections S3.1. 

Starting with the second generation, the stability 
calculation is preceded by a stability filter, which is an 
empirical equation to eliminate unreasonable alloy 
structures; the details of the filter are in Section S5. The 
filter is not needed in the first generation since we do not 
have alloys yet.

Fig 1. Workflow of the genetic algorithm. (left) A possible Pareto front for a bi-objective optimization of activity and stability for the 
oxygen evolution reaction. (right) Workflow integrating a genetic algorithm and machine learning, either with a graph neural network (in 
the surrogate stage) or GNN for the pre-optimization and DF theory to get the final energy (in the final stage).
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After stability fitting and activity screening, we 
calculate the two descriptors (by GNN in the surrogate 
runs and by DF in the final run), and the descriptors are 
used to calculate the fitness. Details of the fitness 
calculation are in Section S4.1. Based on the 
descriptors, the alloys are divided into an elite group, in 
which no catalyst of this generation outperforms the 
alloy in both activity and stability, and a non-elite 

group, in which at least one property, either stability or 
activity, is inferior to other catalysts. The elite group of 
the first generation forms the initial best estimate of the 
Pareto front. We breed successive generations by 
crossover and mutation, as detailed in Section S4.2. The 
elite group of each new generation is mixed with the 
Pareto front of the previous generation to obtain a new 
Pareto front. 

We breed subsequent generations based on the 
population of the new Pareto front and the latest 
generation. Breeding is achieved through mutation and 
crossover. During the mutation process, a specified 
number of atoms are randomly selected and replaced 
with different metal species. The mutation number thus 
determines the extent of compositional diversity 
introduced in each generation. Breeding priority is also 
affected by a similarity-based selection parameter 
called the niche size, which is denoted as 𝜎share. The 
niche size penalizes candidates that are too similar to 
others in the population, reducing their likelihood of 
similar catalysts being selected to generate offspring. 

This mechanism encourages exploration of a broader 
and more diverse region of design space. 

We continue making new generations until the 
Pareto front converges.

As mentioned above, the surrogate stage consists of 
many runs with different values of the hyperparameters. As 
an example, consider the optimization of the number of 
offspring per generation, denoted as O, and the number of 

catalysts in each generation, denoted as G; these two 
hyperparameters were optimized as a pair. To do this, we 
carried out six independent genetic algorithm runs in each 
of which we fixed the total number of structures evaluated 
at 600, which is the product of O and G. Each pair O-G pair 
represents a different trade-off between breadth (more 
offspring per generation) and exploration depth (more 
generations). We obtain a different Pareto front for each O-
G pair. We then combine these Pareto fronts into a global 
Pareto front that contains the best overall candidates. The 
Pareto front generated with G = 15 and O = 40 contributed 
the most points to the combined Pareto front, and therefore, 
this pair is considered the most effective and was selected 
as our optimized pair. More details of this optimization as 
given in Section S4.3.2.

The same procedure was also applied to optimize the 
mutation number and the niche size. Details of these runs 
are given in Section S4.3.3. A mutation number of 6, and a 
𝜎share of 20% were adopted for the DF run.

All steps are summarized in Fig. 1 and in more 
detail in Fig. S1.

Fig 2. The boundary evolution by density functional calculations. The performance distribution of the alloys in individual generations (a) 1, 
(b) 5, (c) 10, (d) 15, and (e) 20. We utilize the transition from red to blue to signify an increase in the number of elements in the alloy. Each 
generation's new Pareto points and the total points on the Pareto front are shown in (f).
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Results & discussion
The final Pareto front is based solely on DF results 

but is obtained with hyperparameters optimized with 
the GNN model. Fig 2(a-e) shows the evolution of the 
boundary as the generation number increases. We can 
see that by the 15th generation, trade-offs appear and 
settle down to a well-delineated Pareto front. 

The Pareto front in Fig. 2e illustrates the trade-off 
between activity and stability in catalysts for the 
oxygen evolution reaction. In the initial optimization 
stages, activity and stability increased; however, after a 
critical point, the boost in activity was met with a 
corresponding decline in stability. The Pareto front's 
shape shows that as activity continuously increases on 
the front, achieving the same level of improvement in 
stability requires an increasingly significant sacrifice in 
stability. 

Figure 2f shows a converging trend of the Pareto 
front with the increasing generations. The Pareto front 
stabilizes at the 15th generation and maintains its shape 
for approximately ten generations, indicating 
convergence. 

To gain insight into the relationship between 
activity and stability in catalysts for the oxygen 
evolution reaction, we compiled a dataset consisting of 
545 experimental data points. For analyzing 
experiments, we adopted the reciprocal of the 
experimental overpotential to represent activity; a 
higher reciprocal implies lower overpotential and better 
activity. Adopting a measure of experimental stability 
is complicated by the fact that the definition of stability 
varies across different publications; for example, some 
report stability based on the time it takes for activity to 
decay to 90%, while others report the time it takes for 
activity to decay to 80%. To standardize, we choose the 
90% time. The next complication is that different 
degradation mechanisms can lead to variations in 
estimating the 90% decay time. To account for this, we 
analyzed the activity data with three possible decay 
models having decay functions that vary as 1 ― 𝑡2

𝜏2, 1 ―
𝑡/𝜏, and e―𝑡/𝜏, where 𝜏 is a fitting parameter. For each 

catalyst, the reported operation time and percentage of 
activity decay were fit to these three functions to derive 
the 90%-activity-decay time, which is taken as the 
stability descriptor. Details of the experimental data are 
presented in a spreadsheet file in the SI Appendix.

Figure 3(a-c) shows stability (90%-activity decay 
time) and activity (reciprocal of overpotential) for each 
of the three possible decay functions. In each graph, the 

points farther from the origin represent better-
performing materials. We found that, regardless of the 
mathematical model used to describe activity over time, 
a clear and consistent trade-off between catalytic 
activity and stability emerges in experimental studies. 
This trade-off is reflected in the downward trend of the 
reciprocal of overpotential overtime for the best 
catalysts. This inherent trade-off reflects a fundamental 
challenge in designing catalysts, particularly for 
applications that require prolonged operation, such as 
industrial electrocatalysis and energy conversion 
technologies.

We return to the DF computations in Fig. 4. By 
incorporating degradation thermodynamics under realistic 
electrochemical conditions, our framework establishes a 
composition-dependent Pareto frontier that reveals how 
HEAs strike a balance between activity and stability during 
OER. The results indicate that within the complex HEA 
compositional space, certain alloys can remain both stable 
and catalytically active under reaction conditions, while 
most conventional transition-metal surfaces readily oxidize 
or dissolve. This finding suggests a possible design route for 
future OER catalysts, namely the construction of inert 
metallic backbones (e.g., Ag or Au) doped with a limited 
fraction of active transition metals (such as Cu or Pd) to 
generate suitable OER sites while maintaining structural 
integrity. Although achieving such atomic-level site control 
experimentally remains challenging, especially in multi-
component alloys, the Pareto frontier offers a quantitative 
framework for understanding how stability and activity 
emerge collectively from composition.

Furthermore, the Pareto frontier also holds important 
implications for the understanding of OER catalysts based 
on layered double hydroxides (LDHs). In most practical 

Fig 3. Pareto frontier from experiments. Experimental results based on concave (a), linear (b), and convex(c) fitting to estimate catalyst 
stability. We used the time to 90% efficiency as an indicator to determine the stability of the material.
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systems, high-entropy or multimetallic precursors do not 
remain metallic but rather reconstruct in situ into multi-
cation oxyhydroxide or LDH phases that constitute the real 
active state. However, the cation composition of these 
LDHs largely inherits that of their metallic precursors, with 
only minor surface enrichment or depletion observed 
experimentally. Operando X-ray studies by Dionigi et al. 
demonstrated that Ni-Fe and Co-Fe alloys rapidly transform 
under OER conditions into MFe(oxy)hydroxide phases, 
indicating that the metallic precursor primarily serves as a 
chemical reservoir and structural template for the active 
phase, indicating the close contact between the alloy 
precursor and the LDH.50

In our framework, catalytic activity is quantified using 
the theoretical overpotential at 1.23 V vs. RHE, obtained 
from DF calculations of the adsorption energies of *O, 
*OH, and *OOH intermediates following the standard four-
step OER mechanism. These adsorption energies reflect 
each alloy’s average oxophilicity, corresponding to the 
intrinsic tendency of its constituent elements to form M-O 
bonds. Numerous studies have demonstrated a linear 
relationship between oxygen adsorption energies on 
transition metals and those on their corresponding oxides, 
indicating that the same underlying M-O interaction 
governs both chemisorption and oxidation51,52 
Consequently, the Pareto frontier established for metallic 
systems can be mapped onto LDHs, consistent with our 
results, which show that both metals and LDHs align along 
a shared frontier of activity and stability.

Complementing this descriptor, the decomposition 
energy from Pourbaix analysis at 1.23 V vs. RHE and pH = 
7 captures the thermodynamic driving force for oxidation or 
dissolution. Numerous studies also demonstrate that the 
strength of the M-O interaction directly correlates with 
surface chemistry and bulk stability.53-55 A stronger oxygen 
adsorption energy reflects the formation of a stronger M-O 
bond, which in turn stabilizes the corresponding oxide phase 
and enhances the thermodynamic driving force for 
oxidation. In this context, a strong decomposition energy 
indicates excessive oxophilicity and a tendency toward 
rapid oxidation and structural collapse, whereas a positive 

value represents excessive inertness, suppressing surface 
reconstruction and resulting in low site density. Between 
these two extremes lies a narrow stability corridor where the 
alloy is sufficiently oxophilic to evolve into an active LDH-
like surface under reaction conditions yet remains stable 
enough to avoid self-destruction. This delicate balance 
between reactivity and structural resilience defines the 
optimal region on the Pareto frontier, unifying the behaviour 
of metals and LDHs under electrochemical environments.

Our theoretical predictions agree with experimental 
observations. Within the Pareto frontier obtained from our 
simulations, alloys enriched with Au and Ag occupy the 
most favourable region, indicating that during iterative 
optimization, the system naturally tends to adopt inert noble 

metals as the structural backbone to preserve overall 
stability, while incorporating only a limited fraction of 
active transition metals (such as Cu or Pd) to generate OER-
active sites. This compositional bias reflects the 
fundamental balance between activity and durability 
encoded in the frontier itself, namely that inert metals 
maintain the framework, while moderately oxophilic 
dopants provide the necessary binding strength for oxygen 
intermediates.

In current experimental systems, the primary active 
centers are derived from transition-metal cations such as Ni, 
Co, and Fe, which govern the lattice-oxygen-mediated OER 
pathway through redox transitions between M2+/M3+ 
states.56 However, their high oxophilicity also renders them 
prone to oxidation and dissolution, leading to the 
progressive collapse of the layered structure during 
operation.57,58 Incorporating more inert or noble elements, 
such as Au, Zn, V, or Cr, does not necessarily introduce new 
active sites; however, it can stabilize the lattice and maintain 
the structural framework during long-term operation. For 
instance, single atoms or small clusters of Au can suppress 
Fe leaching and confine lattice oxygen activation, thereby 
extending the lifetime without sacrificing activity.59,60 
Similarly, V or Zn doping tunes the metal-oxygen 
covalency, promoting electronic delocalization that 
mitigates overoxidation and facilitates reversible redox 
cycles.61,62 These experimentally observed stabilization 
effects align closely with our theoretical Pareto frontier, 

Fig 4. The distribution of all alloys by density functional calculations. The colours indicate the number of elements in the HEA.
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which captures the same trade-off between activity and 
structural resilience across both metallic and hydroxide 
catalysts.

Recent operando investigations have provided 
evidence supporting this principle. Xia demonstrated 
that by rationally pre-designing the precursor 
composition, one can steer the in-situ reconstruction 
pathway to form a stable and active phase under high-
current conditions.63 Our computational Pareto 
framework, which simultaneously ensures sufficient 
oxophilicity for activation and adequate structural 
robustness for durability, echoes the experimentally 
validated concept of “precatalyst programming.” 
Together, these insights highlight a converging route 
for theory-guided synthesis, using descriptor-based 
Pareto mapping to pre-program alloy or precursor 
compositions that autonomously evolve into resilient, 
high-performance catalysts under realistic 
electrochemical environments. 

Conclusion
Catalyst optimization is crucial in chemical synthesis 
for achieving objectives in energy sustainability, 
materials science, medicinal chemistry, and 
environmental protection. Optimal design of catalysts 
is a bi-objective optimization in which activity and 
stability are conflicting targets. Since no catalyst will 
provide the best solution for both objectives, the best 
one can do is find a set of equally good solutions called 
the Pareto front or the Pareto-optimal solutions. On the 
front, one objective cannot be improved without 
worsening the other. Here, we provide a new genetic 
algorithm approach to the problem, and we apply it to 
the Pareto front of catalysts composed of high-entropy 
alloys, which offer exciting but challenging new 
opportunities for catalyst tailoring because of their vast 
number of possible compositions.

The bi-objective optimization of catalytic activity and 
stability is crucial to catalyst design. Our algorithm has five 
key features: (1) alloy offspring production; (2) filtering and 
screening; (3) hyperparameter determination in preliminary 
runs with more affordable calculations; (4) fitness 
computation by density functional calculations; (5) 
enrichment of the non-dominated offsprings database by a 
genetic algorithm that uses niche recognition to promote 
finding the whole Pareto front. The success of the algorithm 
is demonstrated by application to the difficult problem of 
HEA catalysts. 

The relevance of a multi-objective optimization to 
experiment is determined in large part by the choice of 
features used as objectives. Our activity feature is based on 
explicitly resolving the full four-electron OER free-energy 
landscape at each surface site. For every adsorption site on 
every candidate HEA, we compute the Gibbs free energies 
of *OH, *O, and *OOH under the relevant pH and potential, 
and extract the potential-limiting step and corresponding 

overpotential by subtracting the 1.23 V equilibrium 
potential. This site-resolved OER overpotential is then used 
as the activity objective. As a result, our activity axis is not 
a surrogate based on a single descriptor or an empirical 
model but rather is the actual OER overpotential derived 
from the complete *OH/*O/*OOH free-energy sequence on 
heterogeneous HEA surfaces. Our stability feature aims to 
capture the operando electrochemical stability of HEAs 
under harsh OER conditions, where dissolution and phase 
decomposition inevitably occur on experimentally relevant 
time scales. To capture this, we derive the decomposition 
energy per atom for each composition from Pourbaix 
diagrams at the working pH and potential. This 
decomposition energy directly measures the 
thermodynamic driving force for electrochemical 
decomposition into stable oxides/hydroxides/ions in the 
given electrolyte and is more relevant than using, for 
example, the entropic preference for a random solid 
solution. In our multi-objective optimization, we therefore 
use the negative decomposition energy per atom and the 
negative overpotential as stability and activity objectives to 
be maximized. Because catalyst degradation for OER 
catalysis ca be severe at lower potentials, our choice of 
stability metric allows us to directly compare theory directly 
with experiment. Under OER conditions, all catalysts 
exhibit measurable performance decay within a limited time 
window. By using Pourbaix-based decomposition energies 
as a stability axis, we can correlate the predicted 
thermodynamic driving force for in-electrolyte 
decomposition with experimentally measured degradation 
(loss of activity and structural changes) and identify 
compositions that optimally balance high OER activity with 
acceptable finite-time stability. This provides an explicit, 
quantitative connection between multi-objective ML–DFT 
screening and experimentally observed degradation. With 
the Pareto front based on physically realistic 
electrochemical descriptors as a guide, one can strategically 
balance competing catalyst properties to suit specific 
operational needs. 

Advances in our understanding of catalysis in specific 
applications might suggest other features, in addition to 
stability and activity, that must be optimized (for example, 
selectivity or cost), and the present methods could in 
principle be extended to multi-objective optimization of 
three or more features. In this regard, we direct the reader to 
a machine-learning-density-functional multi-objective 
optimization framework for HEA oxygen-reduction-
reaction (ORR) electrocatalyst (the ORR is a reverse 
reaction of the OER studied in the present work) that maps 
Pareto fronts in activity, cost, and mixing entropy as a 
stability proxy.64 The problem setting and overall system 
perspective in that paper align closely with the present 
work, such that the studies provide an opportunity to 
compare computational strategies. In particular, their 
activity feature is a distribution of *O and *OH adsorption 
energies on HEA(111) surfaces, whereas ours is involves 
the four-electron energy landscape at each surface site, and 
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their stability feature is ideal mixing entropy as a measure 
of thermodynamic driving force to form single-phase solid 
solutions whereas our stability feature is decomposition 
energy per atom for each composition from Pourbaix 
diagrams at the working pH and potential. This illustrates 
how a variety of features can be used for multi-objective 
catalyst design.
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Data availability
All data supporting the findings of this study are presented in the article and ESI.
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