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om forest predictions of polyester
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biodegradation data
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Vincenzo Taresco, Steven M. Howdle and Jonathan D. Hirst *

The development of new, biodegradable polyesters is becoming increasingly important as legislative and

consumer drivers push society towards more sustainable polymers. One key bottleneck in the

development of biodegradable polyesters is the slow nature of biodegradability testing, which can often

take weeks to months. High-throughput screening assays serve as a rapid tool to determine the

biodegradability of materials quickly, without the need for lengthy, expensive testing. When combined

with machine learning, the data generated by high-throughput assays can be exploited to predict the

properties of other similar materials. Here, we report the development of a high-throughput enzymatic

biodegradation assay, which has been used to determine the biodegradability of 48 polyesters. Using

data generated from the assay to train a predictive model, we can predict the biodegradability of

polyesters using an explainable random forest model with 71% accuracy. Transfer learning and model

chaining were investigated as routes to improve the model predictions by exploiting existing literature

data. SHAP analysis gives insight into the beneficial structural features of biodegradable polyesters. This

understanding can be applied in the development of future biodegradable polyesters.
Introduction

The non-degradable nature of many commonly used polymers
has a detrimental impact on the environment, leading to the
accumulation of waste in oceans, landlls, and other ecosys-
tems.1 This build-up contributes to water pollution, habitat
destruction, and risks to human health. One strategy to mitigate
pollution from plastics as well as polymers in liquid formula-
tions (PLFs) is the development of biodegradable polymers,
which break down into their constituent monomers under
natural conditions, reducing long-term waste accumulation.2–4

The United Nations Sustainable Development Goals (SDGs)
were announced in 2015 to address global threats and strive
towards a more sustainable future.5 Although pollution from
polymers is only mentioned as part of one goal – life on land
(SDG 14, item 14.1.1b), this goal is intrinsically intertwined with
several other goals including SDGs 11 (sustainable cities and
communities), 12 (responsible consumption and production)
and 13 (climate action).6 The motivation for a more sustainable
future, driven by these SDGs, has resulted in an increase in
consumer awareness and more substantive government legis-
lation. This, in turn, has increased research and development
into biodegradable polymers, with several large-scale
am, Nottingham, NG7 2RD, UK. E-mail:
applications now emerging in food packaging and biomedical
applications.7 Standard biodegradation tests oen require
weeks of incubation and extensive data collection, making them
both time- and resource-intensive. These limitations slow down
the design and optimisation of new biodegradable materials.

Machine learning (ML) has gained traction as a powerful tool
for predicting polymer properties.8–13 Fransen et al. used
machine learning to predict biodegradability, screening over
600 polyesters and polycarbonates using a clear-zone assay and
trained a random forest (RF) model on the data, predicting
biodegradability with 82% accuracy.14 A lack of consistent and
available biodegradation data could be attributed to the slow
progress in biodegradability prediction. The range of biodeg-
radation screenings used in the literature means that biodeg-
radation data oen cannot be directly compared, making
pattern recognition viaML difficult. Furthermore, access to raw
data is oen limited as data are frequently presented graphi-
cally in the literature. With little access to large data, the
development of ML applications in this eld has been stymied.

In this work, amphiphilic polyesters are of particular interest
due to their application as surfactant-type molecules. These
polymers are capable of self-assembly, similar to surfactants,
and there are multiple examples of their use in drug delivery,
personal care and as PLFs.15,16 In 2023, the Royal Society of
Chemistry highlighted the unsustainable nature of many
frequently used PLFs.17 Whilst amphiphilic polyesters may be
one route towards more sustainable PLFs, it is important to
© 2026 The Author(s). Published by the Royal Society of Chemistry
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consider their biodegradation proles, as many polyesters are
not biodegradable. With the publication of this report in 2023,
our work is particularly timely and will provide a strong foun-
dation for future research into biodegradable PLFs.

Herein, we report the development of a high-throughput
accelerated biodegradation assay feeding into an RF model to
predict the biodegradability of functional polyesters. A predic-
tive model was trained from biodegradability data obtained
from a library of polymers prepared in-house. We compared two
different algorithms and feature representations during the
model development, as well as assessing the applicability
domain of the model to ensure reliable predictions. SHAP
analysis18 has been used to examine feature importance,
providing insights into structural features inuencing biode-
gradability. Using a highly explainable model supports the
rational design of biodegradable polymers and facilitates more
efficient screening of new materials.
Methods
Polymer synthesis

All reagents were used as received without further purication.
Details of reagent suppliers and purity can be found in the
supplementary information (Table S1).

To synthesise a library of amphiphilic polyesters, a range of
monomers were chosen accordingly (Fig. 1). Previously reported
literature on high-throughput polymer biodegradation focuses
on non-water-soluble polymers with few pendant functional-
ities.14 The limited functionality of these literature polymers
does not align with our aim of assessing the biodegradability of
surfactant-type polymers for application in the PLF eld.
Therefore, we synthesised a new polymer library, better aligned
to our research objectives. Using monomers including glycerol,
Fig. 1 Examples of monomer types used in the synthesis of the library o

© 2026 The Author(s). Published by the Royal Society of Chemistry
diglycerol, sorbitol and xylitol, amphiphilic polyesters were
successfully synthesised.

48 polyesters were synthesised via polycondensation or ring-
opening polymerisation for biodegradation assessment (Table
1). Polycondensations were performed in bulk (solvent-free
conditions) using equimolar ratios of diol:diacid/diester and
potassium carbonate (K2CO3) catalyst (5 wt% w.r.t the total
monomer mass) for 24 h.15 Specic molar amounts and reaction
temperatures are detailed in Table S2.

Ring-opening polymerisations of 3-caprolactone, d-
valerolactone and D,L-lactide were performed in bulk for 24 h
using tin(II) 2-ethylhexanoate (Sn(Oct)2) as a catalyst and benzyl
alcohol as an initiator.19 Polymers were puried by precipitation
from dichloromethane (DCM) into cold diethyl ether. Specic
molar amounts and reaction temperatures are detailed in Table
S3. Gel permeation chromatography (GPC) analysis of all poly-
mers can be found in Table S4. Characterisation methods can
also be found in the supplementary information.

Biodegradation assay

Polymer (20 mg) was dissolved in dimethylsulfoxide (DMSO) (1
mL), and a 25 mL aliquot was solvent cast into a 96-well plate
(Greiner, black, at bottom, chimney). Where polymers were
not completely soluble in DMSO, a suspension of polymer in
DMSO was used. DMSO was removed in vacuo in a 50 °C vacuum
oven for 24 h. Once dry, lipase from porcine pancreas (1 mg
mL−1 solution in pH 8 buffer, 100 mL) and uorescein solution
(0.025 mM in pH 8 buffer, 70 mL) were added to the wells.
Control experiments were run in the absence of enzyme and/or
dye. Phosphate buffer (1 mM, pH 8) was freshly prepared for
each assay.

As biodegradation takes place, diacid monomers are
produced and these lower the pH of the solution. Fluorescence
f polyesters that underwent biodegradability assessment.
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Table 1 Monomer combinations, molar masses and biodegradability of polyesters

Polymer number Monomer 1 Monomer 2 Mn (g mol−1) Mw (g mol−1) Đ Biodegradableb

1 Isosorbide Dimethyl furan-2,5-dicarboxylate 610 870 1.4 Yes
2 Sorbitol Dimethyl succinate n.d. n.d. n.d. No
3 Sorbitol Dimethyl suberate 510 4745 9.3 No
4 Sorbitol Dimethyl azelate 680 3472 5.1 No
5 Xylitol Dimethyl adipate 4160 7410 1.8 No
6 Curcumin Dimethyl fumarate 1030 1270 1.2 No
7 Isosorbide Dimethyl fumarate 1780 2895 1.6 Yes
8 Glycerol Dimethyl suberate 1725 2225 1.3 Yes
9 1,3-Propanediol Cyclobutane-1,1-dicarboxylic acid 470 580 1.2 Yes
10 PEG400 Dimethyl adipate 2065 3305 1.6 No
11 PEG400 Dimethyl furan-2,5-dicarboxylate 3045 4450 1.5 No
12a 1,2-Propanediol Dimethyl isophthalate 2080 3545 1.7 No
13a 1,4-Cyclohexanedimethanol Dimethyl terephthalate n.d. n.d. n.d. No
14a 3-Methyl-1,5-pentanediol Dimethyl terephthalate 2795 4480 1.6 No
15a 1,10-Decanediol Dimethyl terephthalate n.d. n.d. n.d. No
16a 1,6-Hexanediol Dimethyl furan-2,5-dicarboxylate n.d. n.d. n.d. No
17a 2-Butene-1,4-diol Dimethyl succinate 1345 3530 2.5 Yes
18a 3-Methyl-1,5-pentanediol Dimethyl succinate 3120 6385 2.0 Yes
19a 1,10-Decanediol Dimethyl succinate 915 2900 3.2 No
20a 2,2-Dimethyl-1,3-propanediol Dimethyl adipate 1030 1620 1.6 No
21a 1,6-Hexanediol Dimethyl adipate 6135 11 430 1.9 No
22a Diethylene glycol Dimethyl adipate 5835 10 860 1.8 Yes
23a 1,4-Cyclohexanedimethanol Dimethyl sebacate 910 1880 2.1 No
24a 1,10-Decanediol Dimethyl sebacate 871 1070 1.2 No
25a 1,6-Hexanediol Dimethyl sebacate 7470 13 680 1.8 No
26a Diethylene glycol Dimethyl sebacate 2510 6260 2.5 Yes
27 Glycerol Dimethyl furan-2,5-dicarboxylate 1480 2115 1.4 Yes
28 Glycerol Dimethyl succinate 3130 5795 1.9 Yes
29 Glycerol Dimethyl adipate 2465 3485 1.4 Yes
30 Glycerol Dimethyl azelate 2490 3820 1.5 Yes
31 Glycerol Dimethyl sebacate 2410 3291 1.4 Yes
32 Diglycerol Dimethyl succinate 3310 4595 1.4 Yes
33 Diglycerol Dimethyl adipate 3945 7045 1.8 No
34 Diglycerol Dimethyl azelate 4405 9690 2.2 Yes
35 Diglycerol Dimethyl furan-2,5-dicarboxylate 2210 3290 1.5 Yes
36 Diglycerol Dimethyl azelate 1350 1665 1.2 Yes
37 Diglycerol Dimethyl sebacate 3950 6330 1.6 Yes
38 Diglycerol Dimethyl suberate 3295 4355 1.3 Yes
39 1,3-Propanediol Dimethyl furan-2,5-dicarboxylate n.d. n.d. n.d. Yes
40a 1,3-Propanediol Dimethyl succinate 1450 2785 1.9 Yes
41 PEG400 Dimethyl succinate 1950 3085 1.6 No
42 PEG400 Dimethyl suberate 1500 2105 1.4 Yes
43 PEG400 Dimethyl azelate 1340 1785 1.3 Yes
44 PEG400 Dimethyl sebacate 1970 3100 1.6 Yes
45a 3-Caprolactone — 9120 12 900 1.4 No
46a d-Valerolactone — 6940 13 360 1.4 No
47a Lactide — 12 830 15 300 1.2 No
48a Lactide Glycolide 4990 14 690 2.9 Yes

a Polymers marked with an asterisk also appear in the literature dataset.14 Molar masses were determined using GPC, further details in SI.
b According to the in-house assay.
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spectroscopy (TECAN Innite M Plex) was used to monitor the
pH of each polymer-containing well and hence monitor
biodegradation (lexcitation = 498 nm, lemission = 517 nm). A
calibration curve relating the uorescence intensity of uores-
cein to pH was prepared by measuring the uorescence of
phosphate buffer solutions at regular intervals between pH 5.6–
7.95 (Fig. S1). Between these pH values, the uorescence of
uorescein can be related to pH.20 All biodegradation assays
were run in at least duplicate. Polymers were considered
946 | Chem. Sci., 2026, 17, 944–955
biodegradable if a pH of less than 5.4, indicative of diacid
formation, was measured aer 18.5 h.

Not all polymers were soluble in the aqueous environment
used in the assay. Indeed, a variety of degradation rates were
observed whilst monitoring the pH using uorescence spec-
troscopy, and this can be attributed to several factors including
polyester solubility. It is anticipated that the differences in
biodegradation rate and solubility have been somewhat miti-
gated by the longer timeframe used in the assay. Several
© 2026 The Author(s). Published by the Royal Society of Chemistry
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polyesters reached the pH cutoff within shorter times, but
a longer timeframe (18.5 h) was used to avoid bias in the assay
towards faster-degrading polyesters.

Data preparation

The in-house dataset comprising 48 polyesters was utilised for
ML. To standardise the representation of polymer structures,
each polymer was considered as a trimer. Each trimer was
generated by computationally ‘polymerising’ the repeat unit of
the corresponding polymer. This representation was chosen as
it is theoretically the shortest sequence where RDKit nger-
prints21 with the default maximum path length cannot capture
an entire polymer backbone in a single bit. Each polymer in the
dataset was represented by its Simplied Molecular Input Line
Entry System (SMILES)22 string along with its biodegradability
classication (biodegradable or non-biodegradable). Several
generalisations have been made when using trimer represen-
tations, including the assumption that all polymers have one
acid and one alcohol end group (for polymers made using
polycondensation as well as ROP), as well as regular incorpo-
ration of asymmetric monomers into the polymer chain.

Polymer chain-end groups as well as internal ester linkages
are considered within the trimer representation. Both of these
moieties are reported to play a role in polyester biodegradation
as chain ends are most susceptible to hydrolysis, while random
scission of the polymer chain is responsible for the large
reduction in polymer molar mass.23 This representation is also
in agreement with the regulation on the registration, evalua-
tion, authorisation and restriction of chemicals (REACH) de-
nition of a polymer molecule: “a molecule that contains
a sequence of at least 3 monomer units, which are covalently
bound to at least one other monomer unit or other reactant.”24

This trimer representation was used as the primary structural
input for feature extraction and modelling.

Feature extraction

Two types of molecular features were considered: molecular
descriptors and ngerprints. Molecular descriptors were
computed using RDKit for each trimer, resulting in a feature set
of 210 descriptors. These descriptors captured various struc-
tural, electronic, and physicochemical properties relevant to the
polymer's biodegradability. A variance thresholding step was
applied to remove descriptors with zero variance across the
dataset, eliminating redundant features.

RDKit ngerprints were generated directly from the SMILES
strings of the trimers. Parameters such as ngerprint length
and maximum path length were tuned. To minimise bit colli-
sions and enhance interpretability, longer ngerprint lengths
and shorter maximum-paths were set. Polymers were treated as
linear entities in their trimer representations, although in some
cases, more branched structures may also be present.

Model development and training

Two types of model were considered: RF and neural networks
(NN), selected for their robustness and ability to handle high-
dimensional feature spaces. The models were trained and
© 2026 The Author(s). Published by the Royal Society of Chemistry
validated using a nested cross-validation approach to ensure
reliable performance estimation and hyperparameter optimi-
sation. Stratied ve-fold nested cross-validation was employed
to maintain the class balance in both training and validation
splits and to avoid overtting, problems oen observed when
handling limited data.25 In the inner loop, hyperparameters
were tuned, while the outer loop estimated the model's gener-
alisation performance. Hyperparameter tuning was conducted
over a predened search space (Table 2) which included
parameters related to both ngerprint generation, such as
length and path size, and model conguration. Optimal
hyperparameters were identied based on the highest accuracy
achieved during the inner cross-validation loop.

Aer identifying the best hyperparameters, the nal model
was trained and evaluated using the outer loop of cross-
validation. Performance metrics such as accuracy, precision,
recall, F1 score, and receiver operating characteristic area under
the curve (ROC-AUC) were calculated to assess model perfor-
mance. The Brier score was used to evaluate model calibration.

Statistical analysis

Statistical tests were employed to evaluate the signicance of
differences in model congurations and hyperparameter
settings. The Friedman test, a non-parametric test, was used to
compare multiple model congurations across cross-validation
splits. Pairwise comparisons were conducted using the Conover
test, with Holm-Bonferroni corrections applied to control for
family-wise error rates.

Explainable AI (XAI)

Feature importance was analysed by the calculation of Shapley
values using the SHAP package.18 Feature mapping to visualise
these results occurred by the decomposition of Shapley values
onto their constituent atoms.

Results and discussion
Polyester design and synthesis

48 polyesters were synthesised in this work and underwent
biodegradability testing, and out of these, 25 were classed as
biodegradable. These polymers were designed with the aim of
yielding a relatively even split of degradable and non-
biodegradable polyesters aer biodegradability testing, and
avoiding any potential bias in the model training set. The
library of polyesters was designed to include linear as well as
branched monomers, aromatic as well as aliphatic monomers
and sugar-based monomers to endow hydrophilicity. PEG400
and diethylene glycol, hydrophilic (poly)ethers, were also used
as diols to endow hydrophilicity, with the anticipation that the
presence of the (poly)ether backbone may impact the polyester
biodegradability (Fig. 1).

It is widely acknowledged that terephthalate-based poly-
esters do not readily biodegrade.26 Therefore, both terephthalic
and isophthalic acid were selected in the synthesis of potentially
non-degradable polymers. It is also known that aliphatic diacids
and diols, up to a certain length, when incorporated into
Chem. Sci., 2026, 17, 944–955 | 947
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Table 2 Hyperparameter search space

Hyperparameter Search space

Fingerprint generation
Fingerprint length 2048, 4096, 8192
Maximum path length 4, 5, 6

Random forest
Number of trees 100, 200, 500
Maximum tree depth 2, 4, 6
Maximum number of features considered for each
split

2, 5, 10

Neural network
Hidden layer sizes (8, 0), (16, 0), (8, 4), (16, 8)
Maximum number of iterations 500, 1000, 1500
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polyesters, can be biodegradable.27 Furan-based monomers
have received signicant attention as terephthalic acid alter-
natives in polyester synthesis.28 Therefore, several furan-
containing polyesters were synthesised to assess the differ-
ences in biodegradability between these two moieties.

Using the library of polymers synthesised in-house, a uo-
rescence-based enzymatic biodegradation assay was devel-
oped, based on a previously reported method using lipase from
porcine pancreas.29 The use of this enzyme in polyester
biodegradation is well-reported.30–33 The uorescence of uo-
rescein is pH-dependent due to the cationic, neutral, anionic
and dianionic forms that uorescein can adopt depending on
the pH of the solution it is in.34,35 The cationic species is most
prevalent in acidic conditions, while between pH 4.3 and 6.4,
the monoanionic form is most common. The dianion of uo-
rescein exists at pH values greater than 6.4.36

Prior to the development of the uorescein-based uores-
cence assay, another UV-vis absorption-based biodegradation
assay was trialled involving the use of phenol red, a pH-
responsive dye, as has been previously published by Pirillo
et al.37 However, it was found that the biodegradation products
of several of the polymers screened absorbed in a similar region
to phenol red, rendering it difficult to determine the true
absorbance of the dye, and hence the pH of the solution and the
extent of biodegradation.

Exploiting the pH-dependent uorescence intensity of uo-
rescein, the biodegradation prole of the polyesters was
assessed within 18 hours, signicantly faster than can be ach-
ieved by alternative literature assays (Fig. 2). For example,
Fransen et al. reported the use of a clear-zone biodegradation
assay taking up to 13 days14 while the more standardised OECD
301 tests that look at gas evolution or consumption as an
indicator of biodegradation take up to 28 days.38 Whilst the
clear-zone assay and OECD testing do offer the advantage of
whole-organism biodegradation, their long timeframes do not
make them attractive preliminary biodegradation screening
techniques.

To assess the correlation between the uorescence-based
assay and whole-organism assays, the biodegradability of 20
polyesters, synthesised in-house but previously studied by
948 | Chem. Sci., 2026, 17, 944–955
Fransen et al.,14 was rst investigated (Table 3). Here, it was
found that aer 18.5 h, the agreement between the two assays
was 80%. Using this time as a cutoff point to assess biode-
gradability, the library of in-house polyesters was then tested.
The biodegradation data obtained using this assay were used
for ML predictions of biodegradability. Control reactions
conrmed that in the absence of the enzyme, pH change was
minimal, with a limited examples of a small degree of polymer
hydrolysis.

Whilst pH measurement offers a rapid, accessible approach
to biodegradation monitoring, there are limitations to this
method. Clearly, this method is most applicable to polyesters
and other similar polymers with labile functionalities that
would cause a pH change upon degradation. Furthermore,
there is a risk of ‘false positive’ results that may be caused by the
presence of short oligomeric chains, giving an articially low
pH reading in the absence of any biodegradation taking place.

To mitigate this, pH was monitored from t= 0 h (the point at
which the enzyme was added to the polymer) every 30 minutes
for 18.5 h. The initial pH of most polymers lay between 6 and 7,
and this is likely inuenced by the short chain length of the
polymers and the initial presence of carboxylic acid end groups.
Benchmarking: featurisation and algorithms

In the development of the predictive model, several model
congurations were assessed. The algorithms that were
considered were RF and NN, and the featurisation techniques
were RDKit ngerprints and descriptors. Additionally, regres-
sion modelling was tested to predict biodegradation half-life
and pH at 1110 minutes. However, its performance was poor,
and it was not pursued further. Details of the regression model
benchmarking are provided in the SI. Statistical methods were
used to determine the best-performing classication model.

As shown in Fig. 3, no statistical difference was found
between methods in accuracy nor receiver operating charac-
teristic area under the curve (ROC AUC), with Friedman's test p-
values of 0.070 and 0.195, respectively. As all methods were
statistically equivalent in performance, an RF with RDKit
ngerprints was chosen as the nal model conguration. RDKit
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Biodegradation profiles of three different polyesters measured over 18.5 h, showing two biodegradable polyesters and one non-
biodegradable polyester. Polymer 10 = poly(PEG400 adipate), polymer 39 = poly(1,3-propylene furandicarboxylate) and polymer 43 = poly(-
PEG400 azelate).
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ngerprints allow more intuitive, visual explanations of models
and facilitate the creation of an interpretable model.
Final model results

The performance metrics of the nal model using the in-house
data are as follows. The optimised RF model with RDKit
ngerprints achieved an accuracy of 70.7% (standard deviation
(SD) = 15.3%), a precision of 0.71 (SD = 0.13), a recall of 0.72
(SD = 0.20), and an F1 score of 0.71 (SD = 0.17). The ROC-AUC
score was 0.77 (SD = 0.07), reecting the model's ability to
discriminate between biodegradable and non-biodegradable
polymers.

This performance is broadly comparable to that of similar
models reported in the literature, despite the smaller size of the
training set.39–41 However, existing models differ substantially in
their applicability to our use case. Many are either trained on
datasets that do not focus on polyesters, rely on experimentally
derived physicochemical properties such as glass transition
temperature or solubility, or predict different biodegradability
endpoints derived from distinct assay systems. These factors
limit their suitability for virtual screening workows, where
predictions must be made directly from molecular structure
without the need for experimental data. In contrast, our model
is specically trained on polyesters and utilises exclusively
computationally derived structural descriptors, allowing in sil-
ico screening of novel polyesters for biodegradability.

Although Fransen et al.14 recently presented a high-
performing model for predicting the biodegradability of
Table 3 A confusion matrix of the results of the literature and in-house

In-h

Bio

Fransen et al. Biodegradable 5
Non-biodegradable 1
Sum 6

© 2026 The Author(s). Published by the Royal Society of Chemistry
polyesters and polycarbonates, with an accuracy of 82% re-
ported, their approach is also unsuitable for direct application
to our use case. The trained models have not been published
and cannot be independently validated, and their assay system
differs from ours in methodology and biodegradability criteria.
Furthermore, much of their dataset lacks functional features
critical for surfactant behaviour, such as pendant groups, and
the polymers oen exhibit poor aqueous solubility. As a result,
the chemical space of their study only partially overlaps with the
class of polyesters relevant for PLF design, further limiting their
model's utility for our intended application. In contrast, our
newly developedmodel provides a structure-based classication
tool trained exclusively on polyesters and tailored to a rapid
biodegradability assay, offering a valuable resource for the
identication of application-ready biodegradable polyester
candidates.
Applicability domain

Dening the applicability domain is crucial for determining
whether a model's predictions are valid for a given input. The
applicability domain helps assess the novelty of input data and
guides decisions on whether predictions should be made, while
ensuring that condence estimates remain meaningful. Using
the three-step framework suggested by Hanser et al., we dene
the applicability domain in terms of its validity, reliability and
decidability domains.42

We employed the bounding-box approach to dene the val-
idity domain. This method establishes the limits of the model's
biodegradability assays for the 20 polymers found in both datasets

ouse

degradable Non-biodegradable Sum

3 8
11 12
14 20
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Fig. 3 Comparison of the accuracy and ROC AUC of feature representations and algorithms. RF = random forest, NN = neural network, RDF =

RDKit fingerprint, RDD = RDKit descriptors.

Fig. 4 Calibration curves for different levels of Tanimoto similarity of
test samples to the training set, where each point represents at least
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training data in feature space and helps to identify novel
objects. Specically, a sample is considered inside the validity
domain if it contains only features observed during training and
does not omit any feature present across the entire training set.
By restricting predictions to data points within the learned
space, this approach reduces the risk of extrapolation and
unreliable predictions.

A key advantage of the bounding-box method is its practi-
cality for small datasets. Compared to other methods, it offers
a less restrictive denition of the validity domain, which is
benecial when data are limited, as it prevents unnecessary
exclusion of potentially valid samples.43 Additionally, this
approach simplies the handling of binary features in an
explainable fashion, by focusing on their presence or absence,
rather than with more complex continuous values.

Despite its advantages, the bounding-box method has
inherent limitations. A major challenge is the high dimen-
sionality of the data, which leads to signicant empty regions
within the dened hyperrectangle. This sparsity increases the
likelihood of falsely including novel samples that lie outside the
model's expertise.44 Another limitation is the issue of bit colli-
sions inmolecular ngerprinting. Due to the hashing process in
ngerprint generation, distinct substructures can map to the
same bit, resulting in potential false positives where unseen
substructures are incorrectly classied as being within the val-
idity domain. This problem is not unique to the bounding-box
approach but is a common limitation across various validity
domain denition strategies.

The reliability domain evaluates the proximity of new
samples to the training set and ensures that class probability
estimates are trustworthy.43 The similarity threshold can be
adjusted depending on the use case; here, we present an illus-
trative example. We assessed the information density around
each test polymer using Tanimoto similarity,45 comparing the
RDKit ngerprint of each sample to its ve nearest neighbours
in the training set. Leave-one-out cross-validation was used to
give a more complete picture of the size of the domain, and no
samples were found to be outside the validity domain. The 48
950 | Chem. Sci., 2026, 17, 944–955
samples were divided into three similarity groups: a low-
similarity group (<0.8 Tanimoto similarity) with 19 samples,
a mid-similarity group (0.8–0.9) with 10 samples, and a high-
similarity group (>0.9) with 19 samples (Table S7). Polymers
in the high-similarity group tended to feature multiple exam-
ples of their constituent diols and diacids within the training
set, whereas those in the low-similarity group oen contained
previously unseen or less-represented diols or diacids. A cali-
bration curve was generated for different levels of similarity,
providing an empirical basis for assessing the condence in
a prediction.

Fig. 4 illustrates the calibration curves for each level of
structural similarity to the training set, showing how well the
model's predicted probabilities align with the observed class
frequencies. Our results indicate that the model was poorly
calibrated for samples in the low-similarity group (<0.8),
making their predicted class probabilities unreliable. There-
fore, predictions for samples with similarity below this
four samples.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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threshold should be discounted. This problem could be over-
come by expanding the size of the training set to further
increase model generalisability. In contrast, the mid- and high-
similarity groups exhibited better calibration and are consid-
ered within the reliability domain.

While a polymer may fall within the validity and reliability
domains, it may still lie outside the decidability domain if the
model's predicted probability is close to 50%. The decidability
domain identies samples with high uncertainty, typically
those near the decision boundary, where the model cannot
condently assign a class label. Since predictions within the
reliability domain were shown to be well-calibrated, the model's
error rates can be estimated directly from predicted probabili-
ties. To minimise errors, predictions with high uncertainty are
rejected, as these correspond to cases where the model is
inherently less reliable. Samples with probabilities near the
decision boundary are excluded from the decidability domain to
improve overall prediction quality. Klingspohn et al. showed
that built-in class probability estimates are particularly effective
at reducing error rates.46

The choice of the threshold for the decidability domain
involves balancing accuracy and the number of samples for
which predictions can be made, which can vary depending on
the specic application.

Prospective prediction

To assess the model's performance under fully prospective
conditions and eliminate any possibility of data leakage, seven
new polymers were selected and synthesised (details provided
in the SI). All seven samples fell within both the validity and
reliability domains of the nal model. The model correctly
classied four of these polymers. On average, correctly pre-
dicted samples exhibited slightly higher mean Tanimoto simi-
larity to their ve nearest neighbours in the training set,
suggesting that higher structural similarity enhances prediction
reliability.

In addition, three further polymers were synthesised that lay
outside the model's validity domain but showed high structural
similarity to the training data. Of these, none was correctly
predicted, highlighting the importance of restricting predic-
tions to samples within the dened applicability domain. This
result supports the robustness of the domain boundaries in
preventing unreliable extrapolations. However, given the
limited number of prospective samples, these observations
should be interpreted carefully, and additional validation with
larger datasets would be valuable to conrm these ndings.

Explaining predictions

To gain insight and understanding into the model's decision-
making process, SHAP values were calculated, providing
a ranking of the most inuential model features. SHAP scores
assess the relative contribution of model features to the output,
where positive SHAP values indicate that a feature will inuence
the model to predict the polymer as biodegradable.

The most inuential features used in the model have been
identied using SHAP analysis and visualised in Fig. 5, and the
© 2026 The Author(s). Published by the Royal Society of Chemistry
top features show repeats of the same substructures. According
to the SHAP analysis, fragments 2, 3 and 4, found in glycerol
and 1,3-propanediol as well as isosorbide, contribute very
positively to biodegradability when present in a polymer. When
absent from a polymer, there is an observable decrease in
biodegradability. The glycerol-based polymers assessed in this
study are water-soluble polymers, and it is possible that this
facilitates the interaction of the polymer with the lipase in the
biodegradation assay. Whilst hydrophilicity (log P) alone cannot
explain these trends, it does contribute to the trends observed
in the SHAP analysis (Fig. S5 and S6). This was veried by per-
forming SHAP analysis on the RF model built using RDKit
descriptors, which found log P to be a top feature.

Polymers were found to have a lower biodegradability when
fragment 9, an unsaturated moiety found in the curcumin,
isophthalate, terephthalate and furan-based polyesters, was
present in the polymer structure. Notably, fragment 9 is also
part of a larger, conjugated p-system. Polymers such as these
have a higher tendency to p–p stack, reducing the likelihood of
enzymatic hydrolysis occurring due to the strong interactions
between polymer chains. Feature mapping shown in Fig. 5B
demonstrates how the isophthalate group hinders biodegrad-
ability, despite the presence of groups that appear to have
a weak, positive inuence on biodegradability.

Fragment 8, present in poly(lactic acid) as well as poly(3-
methyl-1,5-pentylene succinate) (Fig. 5C), was detrimental to
biodegradability. The nature of this fragment, which includes
the methyl group present in poly(lactic acid), may hinder
enzyme access to the cleavable ester group. However, this is an
example of a bit collision where three moieties are represented
by a single ngerprint bit. It is possible that one of these may be
more inuential towards biodegradability than the others.

As noted previously, bit collisions present a limitation for
molecular ngerprinting approaches. Due to conating the
contributions of chemically distinct fragments within the same
ngerprint bit, it is difficult to link a specic fragment to a given
model outcome unambiguously. To enhance interpretability,
alternative non-hashed molecular representations could be
explored. SMARTS,47 for instance, avoid bit collisions through
explicit denition of the substructures to be represented, while
learned representations use machine learning to extract
meaningful descriptors.48

Analysis of SHAP interaction scores revealed there are no
signicant interactions between features. Of the features used
in the model, the top 20 have a cumulative SHAP score repre-
senting less than a third of the model, with the top feature
having less than a 3% share. This shows the top features cannot
be considered in isolation, though they can give insight.
Transfer learning

Given the similarity to prior work by Fransen et al., an attempt
was made to utilise their literature data to improve the perfor-
mance of the in-house model.14 Both sources focus on polyester
biodegradability, though under different experimental condi-
tions. Despite this distinction, the two datasets share over-
lapping polymer classes, with 20 polymers found in both,
Chem. Sci., 2026, 17, 944–955 | 951
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Fig. 5 (A) Visualisation of six of the most influential features used in the model, ordered by their mean contribution to the prediction outcome.
Features that influence the model to predict the polymer as biodegradable are coloured green, and those that influence it to predict non-
biodegradable are in red. Note that the fragments do not have implicit hydrogens, as only heavy atoms are represented in themodel. Examples of
polymers in the training set are shown, with the fragment highlighted in yellow. (B and C) Feature mapping onto trimer structures demonstrating
areas contributing positively (green) or negatively (pink) to biodegradation.
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making their data a potentially valuable resource for model
improvement. Two approaches were tested: transfer learning
through ne-tuning of a NN and a chained model, where
predictions from the Fransen model were used as an additional
Fig. 6 Model architectures for the benchmarking, transfer learning and

952 | Chem. Sci., 2026, 17, 944–955
feature (Fig. 6). Both approaches are discussed below, and their
respective methods can be found in the SI.

Transfer learning has been used in a range of contexts in
polymer informatics49–52 and was attempted recently in the
chained models.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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prediction of polymer biodegradability41 using data from small
molecule biodegradability, though it did not offer a perfor-
mance increase. In this work, we used literature data from
Fransen et al. to pre-train a NN to predict biodegradability as
dened in the external study.14 Its output layer was then
retrained on the in-house dataset to predict in-house biode-
gradability. A nal ne-tuning step involved training the entire
network with a low learning rate for one epoch to improve
generalisation (Fig. 6). While this approach did not exceed the
baseline model's performance (achieving 67% accuracy), it
provided valuable insights into the challenges of cross-domain
knowledge transfer in polymer biodegradability prediction.

The absence of performance gains from this method is
attributed to differences in task and input domains between the
datasets. Although both studies focused on polymer biode-
gradability, the target data predicted enzyme-driven biode-
gradability, whereas the source data focused on whole-cell
biodegradability under different conditions. Furthermore, the
datasets occupied different regions of chemical space (Fig. S3
and S4); while both included polyesters, their compositions
diverged signicantly. The Optimal Transport Dataset
Distance53 between the source and target datasets, normalised
by the geometric mean of the datasets' self-distances, was 49.7.
This indicates that the datasets are substantially more dissim-
ilar than the variation observed within each dataset, supporting
low expected transferability. Transfer learning typically
performs well when differences in task or input domain are
modest, but struggles when both aspects differ substantially.54

Addressing such challenges may require domain adaptation
techniques to align feature spaces or task objectives.

The chained model partially addresses these issues by
explicitly aligning tasks and removing out-of-domain features.
The approach follows the simple premise of using the output of
one model as an input for another, in a sequential manner. In
this approach, predictions from amodel trained on the Fransen
et al.14 dataset were used as an additional feature for the in-
house model (Fig. 6). This method slightly increased the accu-
racy of the model, achieving 73% accuracy. Feature importance
analysis conrmed that the literature prediction was a signi-
cant feature, suggesting that knowledge transfer had occurred.
However, despite the performance improvement, a reduction in
explainability and potential for error propagation make this
model less desirable than direct prediction.

Conclusion

The development of biodegradable polymers is hindered by the
slow and resource-intensive nature of biodegradation testing,
necessitating more efficient screening methods. In this study,
an integrated experimental and computational approach was
developed to accelerate the discovery of biodegradable
polyesters.

A library of 48 amphiphilic polyesters was synthesised using
hydrophilic diols and hydrophobic diacids/diesters to generate
surfactant-type polymers. A uorescence-based enzymatic
biodegradation assay was developed, signicantly reducing
testing time compared to traditional whole-organism assays.
© 2026 The Author(s). Published by the Royal Society of Chemistry
The 18-hour assay demonstrated a strong correlation with
established methods, demonstrating its reliability for prelimi-
nary screening.

The biodegradation data obtained from this assay were
subsequently utilised to train a machine-learning model. Aer
benchmarking several model congurations, an RF classier
using RDKit ngerprints was selected due to its strong predic-
tive performance while maintaining interpretability. The model
achieved an accuracy of 71%, comparable to existing literature
models while being tailored to a domain of functional poly-
esters. By dening the applicability domain in terms of validity,
reliability, and decidability, the model ensures robust and
meaningful predictions. The use of RDKit ngerprints facili-
tated interpretability, with SHAP analysis providing insight into
key molecular features inuencing biodegradability. Further-
more, as themodel requires only repeat unit structures as input,
it enables in silico screening of new polymers before synthesis,
reducing experimental workload in the early stages of material
development.

To explore the potential for integrating literature data,
transfer learning and a chained modelling approach were
investigated using data from Fransen et al.14 Despite their
theoretical potential, neither method resulted in improved
predictive performance. The lack of improvement is attributed
to differences in task objectives and chemical space between
datasets, limiting knowledge transfer. While the chained model
showed some integration of external knowledge, this did not
increase model accuracy, suggesting that additional domain
adaptation techniques may be necessary for effective transfer.
This could involve approaches such as feature transformations
to map both datasets into a shared latent space or adversarial
training to learn a domain-invariant representation of the
polymer structures.55

Future work should focus on expanding the dataset to
improve model generalisation as well as including polymer
physical properties in the training data to account for differ-
ences in molar mass, for example. Extending the modelling
approach to include regression or multi-class classication
frameworks would allow for the development of predictions for
polymers with varying degradation rates or half-lives. Addi-
tionally, the utilisation of domain adaptation strategies may
enable better integration of larger datasets, enhancing the
model's performance and generalisation to a broader range of
functional polyesters. By combining rapid experimental
methods with machine learning, this study establishes a foun-
dation for more efficient and interpretable biodegradability
predictions, supporting the design of sustainable polymeric
materials.
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