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The disconnect between AI-generated molecules with desirable properties and their synthetic feasibility

remains a critical bottleneck in computational discovery of drugs and materials. While generative AI has

accelerated the proposal of candidate molecules, many of these structures prove challenging or

impossible to synthesize using established chemical reactions. Here, we introduce SynTwins, a novel

retrosynthesis-guided molecule design framework that finds synthetically accessible molecular analogs

by emulating expert chemists' strategies in three steps: retrosynthesis, searching similar building blocks,

and virtual synthesis. Using a search algorithm instead of a stochastic data-driven generator, SynTwins

outperforms state-of-the-art machine learning models at exploring synthetically accessible analogs

while maintaining high structural similarity to original target molecules. Furthermore, when integrated

into existing molecular property-optimization frameworks, our hybrid approach produces synthetically

feasible analogs with minimal loss in property scores. Our comprehensive benchmarking across diverse

molecular datasets demonstrates that SynTwins effectively bridges the gap between computational

design and experimental synthesis, providing a practical solution for accelerating the discovery of

synthesizable molecules with desired properties for a wide range of applications.
Introduction

The discovery of novel molecules with specic chemical prop-
erties is a critical yet challenging process in the pharmaceutical
and chemical industries, oen requiring years or decades due to
the vastness of chemical space.1,2 Generative articial intelli-
gence (AI) has emerged as a powerful accelerator for this
process, rapidly proposing candidate molecules with target
properties.3,4 When paired with accurate property prediction
models, these AI approaches enable efficient computational
screening of molecules against desired criteria. However,
a fundamental limitation persists: a signicant portion of AI-
generated molecules are difficult or impossible to synthesize
using known chemical reactions and available building blocks.5

While synthetic accessibility scoring can partially guide gener-
ative models toward more feasible structures, many proposed
molecules remain synthetically challenging, creating
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a disconnect between computational design and experimental
implementation.

To address this synthesis planning bottleneck, computa-
tional tools for single-step and multi-step retrosynthesis have
been developed.6–8 However, even with these tools, many AI-
generated molecules remain synthetically challenging. In such
cases, generating structurally similar synthetically accessible
analogs offers a promising alternative to bypass synthesis
difficulties while preserving desired properties, similar to how
medicinal chemists have designed accessible analogs of
complex natural products.9,10 In real-world laboratory settings,
synthesis capabilities vary considerably—pharmaceutical labs
frequently rely on amide formations and heterocycle synthesis,
while materials science teams favour reactions such as Suzuki
coupling for developing OLEDs. Additionally, the growing
emphasis on sustainable chemistry has shied preferences
toward greener reactions and building blocks.11–13

Given these constraints, the set of synthetically accessible
molecules varies across different research environments.
Consequently, researchers are exploring strategies for designing
molecules by virtually synthesizing them from predened
reaction sets and available building block libraries. For
example, the virtual on-demand libraries constructed by
computationally enumerating in-house reactions and
compounds from different pharmaceutical companies and
chemical suppliers were reported to have the collections of
more than 1 billion molecules.14–16 On the other hand, Levin
Chem. Sci., 2026, 17, 2255–2262 | 2255
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Fig. 1 The three strategies for designing novel molecules using computational methods. (a) Inverse molecular design model. (b) Conditional
virtual synthesis model. (c) Synthetically accessible analog design.
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et al.17 developed an algorithm to explore diverse and syntheti-
cally accessible analogs by enumerating different building
blocks to replace the precursors in a known synthesis pathway
of one molecule.

Recent advances have applied machine learning (ML) to
address these challenges through two main strategies. The rst
approach focuses on explicitly generating synthesizable mole-
cules by selecting reactants and reaction pathways optimized
for both synthetic feasibility and target properties using
machine learning models18–21 (Fig. 1b). The second strategy
designs synthetically accessible analogs, structurally similar
alternatives to promising but challenging-to-synthesize AI-
generated molecules (Fig. 1c). For example, Noh et al.22

created a variational autoencoder (VAE) that encodes multi-step
synthesis sequences into a latent space to generate complex yet
synthetically feasible molecules. Similarly, Gao et al.23 formu-
lated the problem as a Markov decision process (MDP) with an
amortized solution approach. While these methods represent
promising directions, existing models typically achieve subop-
timal structural similarity to target molecules, limiting their
practical utility.

We introduce SynTwins, a novel tree search algorithm that
designs synthetically accessible molecular analogs by emulating
the intuitive strategies employed by experienced medicinal and
synthetic chemists. SynTwins implements a three-step process:
(1) retrosynthetic analysis of target molecules to identify key
structural components, (2) systematic searching for similar yet
readily available building blocks that maintain essential phar-
macophores, and (3) virtual synthesis using well-established
reaction templates to assemble the nal molecular analog.
While the molecular analog generation process is similar to the
approach described in Levin et al.,17 instead of diversifying,
SynTwins generates a set of structurally similar and syntheti-
cally accessible molecular analogs from a reference molecule.
Our comprehensive evaluation demonstrates that SynTwins,
a non-ML-based approach, outperforms state-of-the-art ML-
based models in generating synthetically accessible analogs
2256 | Chem. Sci., 2026, 17, 2255–2262
preserving high structural similarity to original target mole-
cules. SynTwins prioritizes generating synthetically accessible
analogs with high structural similarity to enable systematic
property optimization. Importantly, when complete retro-
synthetic reconstruction fails, SynTwins leverages partial
decompositions to discover alternative routes using available
chemistry components.

Furthermore, by integrating SynTwins with existing ML-
based molecule optimization pipelines, our hybrid approach
produces synthetically feasible molecules with comparable
bioactivity and physicochemical proles to those generated by
unconstrained molecular optimizers. This work presents
a practical solution to the synthesis–design gap and establishes
a foundation for more effective molecular discovery pipelines
that successfully translate computational designs into labora-
tory syntheses.
Results and discussion
SynTwins

SynTwins is a synthetically accessible analog search algorithm
that mirrors the intuitive workow of chemists in a laboratory.
Typically, chemists rst evaluate whether a target molecule can
be synthesized directly using available reactions and building
blocks. If direct synthesis is not feasible due to the unavail-
ability of specic precursors, they explore alternative building
blocks with structural similarities to construct analogous
molecules. Following this intuition, SynTwins systematically
explores potential analogs of a target molecule through
a combined iterative process of retrosynthesis analysis and
virtual synthesis. The algorithm operates in three distinct
phases: retrosynthesis, building block search, and virtual
synthesis. Computationally, the full processes are achieved by
the following three phases of SynTwins (Fig. 2).

(1) Retrosynthesis. The rst step of SynTwins is to perform
multi-step retrosynthesis using retro-reaction templates24 (deno-
ted as Tr, detailed in the next subsection) to build a synthesis tree.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 An example of generating synthetically accessible analogs using SynTwins. The imidazole in the target molecule Pref is decoupled to two
precursors Rref containing aldehyde and diamine functional groups, respectively. Next, the building blocks structurally similar to the precursors
Rtwin were searched from the list of available molecules. Finally, the synthetically accessible analogs Ptwin are virtually synthesized by the same
imidazole synthesis reaction using the aldehyde and diamine functional groups in the building blocks.
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For retrosynthesis, we apply all the compatible retro-reaction
templates to the target molecule at each retrosynthesis step
instead of applying ML-based retrosynthesis models in this work.
The synthesis tree is expanded until maximum tree depth (dmax)
is reached. The default number of dmax is 3 in this study. The
targetmolecule and the precursors found in the synthesis tree are
denoted as Pref and {Rref}, where {Rref} may ormay not include the
ones in the set of available building blocks. More details about
the retrosynthesis are given in the SI.

(2) Building block search. Aer the retrosynthesis is
completed, the building blocks that are structurally similar to
the found precursors {Rref} are searched using a k-nearest
neighbor (kNN) algorithm,25 which search for the molecules
that have the shortest distance in the chemical space according
to their Extended Connectivity Fingerprints (ECFP).26 The
building blocks found by the kNN algorithms are denoted as
{Rtwin}, and these molecules are limited to have the same
functional groups presented in Tr to guarantee the compatibility
of applying the reverse reaction templates used for the virtual
synthesis in the next step. The default number of neighbors (k)
in the kNN search is 10 in this study. More details about the
kNN implementation are given in the SI.

(3) Virtual synthesis. Finally, k2 molecular analogs {Ptwin} are
synthesized by applying the forward-reaction template (Tf),
which represent the reverse version of the retro-reaction
template Tr used in the rst phase, on every pair of building
blocks searched in the last phase {Rtwin}.
Retro-reaction templates

The chemical reactions available in this study are represented
by forward-reaction templates in the form of Simplied
Molecular Input Line Entry System of Reactions (SMIRKS),
where the reactive substructure patterns are described in the
© 2026 The Author(s). Published by the Royal Society of Chemistry
SMILES arbitrary target specication (SMARTS) format.27 To
derive retro-reaction templates from the known forward-
reaction templates, we virtually synthesized multi-step (from 3
to 5 steps) chemical reactions by applying the forward-reaction
templates to the available building blocks and extracted the
retro-reaction templates using amodied version of RDChiral.28

More details are given in the SI.
To balance the specicity and generalizability of retro-

reaction templates, the extracted retro-reaction template
includes the reaction center and its one-hop neighboring
atoms, without explicitly dening functional groups. This
representation is similar to the extended local reaction template
(ELRT) used in LocalMapper.29 Consequently, the number of
retro-reaction templates is approximately 10 times greater than
the number of forward-reaction templates in our experiments.
Synthetically accessible analog design

To run SynTwins for our experiments, we followed existing
studies18,22,23,30,31 and collected 58 reaction templates from
Hartenfeller et al.32 and 64 reaction templates from Button
et al.33 Aer removing the 21 duplicated reactions, where
different reaction templates from different literature studies
represent the same chemical reaction, 101 forward-reaction
templates remained from the total 122 forward-reaction
templates.

We use the same set of 150 560 commercially available
molecules from the Enamine Building Blocks Catalog (Global
Stock)34 used in the previous molecular analog generation
studies.22,35Using these 101 forward-reaction templates and 150
560 building blocks, we virtually synthesized 1.01 million
reactions and extracted 18 590 retro-reaction templates
according to their atom mappings. Aer ltering the retro-
reaction templates that appear less than 100 times in the 1.01
Chem. Sci., 2026, 17, 2255–2262 | 2257

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05225d


Table 1 The exact-match rate and the top-k average similarity of generated molecules on the benchmarked datasets. The highest values are
highlighted in bold fonts

Test data Model Exact-match rate

Top-k average similarity

k = 1 3 5

Virtual molecules ChemProjector 39.8% 0.8018 0.7554 0.7268
SynFormer 7% 0.6543 0.6247 0.6070
SynTwins (this work) 55% 0.8701 0.8209 0.7992

ChEMBL molecules ChemProjector 10.8% 0.5612 0.5256 0.5043
SynFormer 8.9% 0.5725 0.5397 0.5221
SynTwins (this work) 19.6% 0.6630 0.6222 0.6025

USPTO molecules ChemProjector 0% 0.4225 0.4103 0.4009
SynFormer 0% 0.4323 0.4204 0.4114
SynTwins (this work) 1.8% 0.5298 0.5064 0.4941

FDA-approved drugs ChemProjector 1% 0.4543 0.4382 0.4258
SynFormer 4% 0.3294 0.3089 0.2979
SynTwins (this work) 17% 0.6387 0.6051 0.5873
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million reactions, we obtained 1163 retro-reaction templates as
our nal retro-reaction template collections. More details about
the selected reaction templates are given in the SI.

To evaluate the performance of SynTwins on generating the
synthetically accessible analogs, we compare our method with
two state-of-the-art ML-based models, ChemProjector30 and
SynFormer,31 aer training the models with the same set of
reaction templates and building blocks. We note that these
methods employ fundamentally different strategies: SynTwins
uses a retrosynthesis-guided building block search, whereas ML
models generate analogs through learned representations. To
ensure fair comparison, we provide all methods with identical
chemical resources: the same 101 forward-reaction templates
and 150 560 Enamine building blocks. While SynTwins uses
retro-reaction templates for its framework, ChemProjector and
SynFormer's forward-only architectures cannot integrate retro-
reaction templates without a complete redesign, as they
generate analogs directly without retrosynthetic decomposition.
More details of training the baseline models are given in the SI.

We examine the performance of these algorithms using 1000
virtually synthesized products, 1000 molecules from ChEMBL,36

170 molecules from the US Patent Trade Office (USPTO) data-
set,37 and 100 molecules from FDA-approved drugs.38 The
details of curating test datasets are given in the SI.

The results are evaluated by exact-match rate and top-k
average similarity. The exact-match rate shows the percentage
of generated molecular analogs being exactly same with the
target molecules, and the top-k average similarity is a metric to
measure how structurally similar the top-k generated molecular
analogs are compared to the target molecule. The structural
similarity is calculated using the Tanimoto similarity39,40 of
4096-bits ECFP4.26

As shown in Table 1, SynTwins consistently outperforms the
baseline methods across all datasets in both exact-match
capability and molecular similarity. Compared to Chem-
Projector and SynFormer, SynTwins ranks rst in exact-match
performance, especially notable in realistic molecules such as
USPTO molecules and FDA-approved drugs, where other
methods struggle to recover most of the original molecules.
2258 | Chem. Sci., 2026, 17, 2255–2262
This suggests that SynTwins is better designed to handle both
virtual and real-world molecular structures. Notably, although
the approximation process of SynTwins inevitably sacrices
a signicant portion of the exact-match rate, it can generate
synthetically accessible analogs that are highly structurally
similar to the targets.

In terms of structural similarity, SynTwins also leads across
all datasets, producing molecules that are more structurally
similar to the target chemicals even when an exact match is not
achieved. While ChemProjector performs moderately well,
especially with virtual molecules, it falls short in real-world
cases. SynFormer, though competitive for the ChEMBL test
set, consistently ranks lowest overall. These results highlight
the versatility and robustness of SynTwins in generating high-
quality molecules across diverse chemical spaces. The abla-
tion study using different synthesis tree depths, numbers of
neighbors, ngerprint vector sizes, and ngerprint radii in
SynTwins can be found in the SI.

Next, we analyze the relationship between the heuristic
synthetic accessibility score and the top-5 similarity of molecular
analogs generated by SynTwins for the USPTO molecules in
Fig. 3. The synthetic accessibility score of amolecule is calculated
using the building block and reaction-aware SAScore (BR-
SAScore)41 using the reactions and building blocks available in
this study. For reading clarity, we show BR-SAScores and molec-
ular similarities of 10 molecules with the lowest BR-SAScores
(easy-to-synthesize) and 10 molecules with the highest BR-
SAScores (hard-to-synthesize) sampled from the USPTO mole-
cules in Fig. 3a and b. Similar plots for the FDA-approved drugs,
and comparisons with ChemProjector and SynFormer for all
USPTO and FDA-approved molecules, are provided in the SI.

As expected, molecules with lower BR-SAScores are easier for
SynTwins to search the synthetically accessible analogs with
higher similarity. Notably, the 7 molecules (1 from USPTO-190
molecules and 6 from FDA-approved drugs) having BR-SAScore
lower than 4 are all successfully reproduced by SynTwins. In
contrast, SynTwins struggles to generate molecules having high
BR-SAScores, resulting molecular analogs with low structural
similarities. Furthermore, the generated molecular analogs
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The statistics and examples of synthetically accessible analogs generated by SynTwins from the molecules sampled from the USPTO
dataset.37 The example molecules in (c) and (d) are highlighted with star symbols in (a) and (b). (a) The BR-SAScores of the target molecules and
the most similar molecular analogs generated by SynTwins. (b) The box plots of the top-5 similarity of the molecular analogs generated by
SynTwins. (c) An example of the most similar molecular analog generated from an easy-to-synthesize target molecule by SynTwins. The target
molecule is colored in blue, and the generated molecular analog is colored in green. (d) An example of the most similar molecular analog
generated from a hard-to-synthesize targetmolecule by SynTwins. The targetmolecule is colored in blue, and the generatedmolecular analog is
colored in green. R82:Williamson reaction, R30: Negishi coupling, R40: Grignard reaction, and R91: amide formation. The full list of reactions can
be found in the SI.
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consistently exhibited lower BR-SAScores than their correspond-
ing target molecules. This decrease was more evident for hard-to-
synthesize molecules than for easy-to-synthesize ones.

To visualize how the Tanimoto similarity aligns with the
chemist's view of structural similarity, we show the target mole-
cules and the analogs generated by SynTwins for one easy-to-
synthesize and one hard-to-synthesize molecule sampled from
the USPTO molecules in Fig. 3c and d. For easy-to-synthesize
molecules (Fig. 3c), SynTwins is able to generate a highly struc-
turally similar molecular analog with a 0.85 similarity score. On
the other hand, for hard-to-synthesize molecules (Fig. 3d), Syn-
Twins struggles to generate structurally similar molecules with
a 0.51 similarity score. We note that even if the generated
molecules are structurally different from the original molecules,
especially for the complex molecular structures, their bioactivity
can be similar when the crucial functional groups are preserved.
© 2026 The Author(s). Published by the Royal Society of Chemistry
For instance, the beta-lactam substructure, a well-known func-
tional group for antibiotics, in the target shown in Fig. 3c is
preserved in the generated synthetically accessible analogs
despite the low structural similarity.

To understand instances where SynTwins failed to generate
exact molecular matches from reference compounds, we
analyzed the building blocks and reactions employed in the
USPTO dataset and assessed whether SynTwins could repro-
duce the reported synthetic routes. Our analysis revealed that
none of the synthetic pathways used to prepare the 170 target
molecules could be fully reproduced using the building block
and reaction sets collected in this study. Of the 1268 reaction
steps comprising the 170 reported synthetic routes, a signicant
proportion of the required building blocks were unavailable
(48.9%), and an even larger fraction of reactions were absent
from our collected reaction set (84.2%). Nonetheless, SynTwins
Chem. Sci., 2026, 17, 2255–2262 | 2259
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Fig. 4 The workflow and results of embedding SynTwins in the molecule optimization tasks. (a) The comparison of the regular molecule
optimizer (Model) and the synthesizable molecule optimizer (Syn-Model). SynTwins can be applied to the final molecule generated by the regular
molecule optimizer to convert the optimized molecules into synthetically accessible molecules (Model*). (b) The top-10 scores on 7 multi-
property optimization (MPO) tasks from GuacaMol45 and the BR-SAScores of the compared models. The BR-SAScores are rescaled by a factor of
0.1 to match the scale of other metrics. (c) The optimization process of top-10 scores of compared molecule optimizers on two MPO tasks. The
solid lines represent the top-10 average scores, and the shaded regions near the lines indicate the standard deviations.
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successfully proposed alternative synthetic pathways for 3 of the
170 USPTO molecules, yielding a 1.8% exact-match rate. Addi-
tional analysis details and examples are provided in the SI.
Molecule optimization

Here, we explore the application of embedding SynTwins into
the existing molecule optimization methods to generate opti-
mized molecules that are synthetically accessible using the
available reactions and building blocks. Here, we selected the
two leading algorithms for molecule optimization, REINVENT42

and GraphGA,43 according to the practical molecule
2260 | Chem. Sci., 2026, 17, 2255–2262
optimization (PMO) benchmark.44 For each algorithm, we
designed a synthesizable molecule optimizer variant that
converts each optimized molecule into a molecular analog
using SynTwins during the optimization process, which guar-
antees the synthetic accessibility of all the generated molecules
(Fig. 4a). For comparison, we also compare the results by using
SynTwins to convert the molecules optimized at the end of the
optimization process. The results of the former methods are
denoted as “Syn-REINVENT” and “Syn-GraphGA”, and those of
the latter methods are denoted as REINVENT* and GraphGA*
for the variants using REINVENT and GraphGA as molecule
optimization backends, respectively. We perform the
© 2026 The Author(s). Published by the Royal Society of Chemistry
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optimization on 7 similarity-related multi-property objective
(MPO) tasks selected from GuacaMol.45 We only use the top-1
molecular analog generated from SynTwins with d = 2 and k
= 1 in this experiment. The scoring criteria of each MPO task
are given in the SI.

The top-10 scores of the molecules generated by the
compared algorithms for the 7 MPO tasks are shown in Fig. 4b.
Overall, unconstrained REINVENT and GraphGA shows higher
top-10 score and higher BR-SAScores than their variants.
Nonetheless, these (potentially unsynthesizable) optimized
molecules exhibit huge MPO score drops aer they were con-
verted to synthetically accessible analogs by SynTwins, with
0.351 and 0.498 difference for REINVENT and GraphGA,
respectively. On the other hand, the proposed synthesizable
molecule optimizers, Syn-REINVENT and Syn-GraphGA, show
slightly lower MPO performance than regular molecule opti-
mizers while guaranteeing their synthetic accessibility and low
BR-SAScores. The top-1 and top-100 scores of the 7 MPO tasks
are provided in the SI.

We analyze the optimization curves of the optimizers and
show two of them in Fig. 4c. We observed that integrating
SynTwins into the optimization algorithms leads to longer
converging time than the original algorithms, showing the
increased difficulty of optimizing the molecules in a syntheti-
cally accessible molecule space. In particular, we found that
several molecules generated by the original optimization algo-
rithms collapsed to the same molecules during the analog
searching process, making the time of optimizing the synthet-
ically accessible molecules signicantly longer than that of the
regular optimization algorithms. The optimization plots of all
the 7 tasks for top-1, top-10 and top-100 molecules can be found
in the SI.

Conclusions

We presented SynTwins as a robust and powerful tool for
designing synthetically accessible molecular analogs for target
molecules. The proposed retrosynthesis-guided molecular
analog design framework leverages both retro-reaction and
forward-reaction templates to design analogs within a limited
set of reactions and building blocks. The key advantages of
SynTwins compared to existing methods are twofold. First,
unlike previous bottom-up approaches22,23,30,31,33 that directly
sample building blocks based on an arbitrary embedding of the
target molecule, SynTwins employs a top-down precursor-
searching strategy that aligns with chemists' practice of
designingmolecular analogs using available building blocks. By
mimicking this intuition through a three-step process (retro-
synthesis, similar building block searching, and virtual
synthesis), SynTwins provides interpretable results and allows
for easy optimization to better reect chemists' needs. Second,
SynTwins does not rely on machine learning models, making it
more robust to variations in training hyperparameters and
hardware constraints. For instance, SynFormer requires over
1000 GPU hours for training31 and retraining whenever new
chemistry becomes available. SynTwins avoids this by instantly
incorporating new building blocks or reactions on standard
© 2026 The Author(s). Published by the Royal Society of Chemistry
computers, making it practical for iterative workows. More-
over, it can exibly adapt to different reaction conditions and
building block sets without requiring retraining from scratch.
SynTwins has the potential to be embedded into molecular
optimization workows, enabling synthesis-aware molecular
design.

We acknowledge that SynTwins and ML-based methods
represent fundamentally different approaches with distinct
trade-offs. SynTwins' performance depends on nding valid
synthetic pathways within the provided reaction templates and
building blocks. When target molecules fall entirely outside the
accessible chemical space, ML-basedmethods may theoretically
have advantages due to their unconstrained learned represen-
tations. However, comprehensive real-world benchmarking
from USPTO and FDA-approved drugs, demonstrates that Syn-
Twins consistently achieves superior structural similarity while
guaranteeing synthesizability. This suggests that explicit
pathway construction provides valuable inductive bias that
outweighs theoretical exibility in practical analog generation.
Furthermore, SynTwins' algorithmic transparency enables not
only a clear understanding of success and failure modes but
also actionable insights, where chemists can inspect the retro-
synthetic decomposition to identify exactly which building
blocks or reaction templates are missing, enabling strategic and
targeted expansion of chemistry resources to improve coverage
systematically. This interpretability and actionability represent
critical advantages for iterative discovery workows where
experimental validation and continuous improvement are
essential. We anticipate that SynTwins will contribute to more
efficient molecular design by facilitating the synthesis of viable
molecular analogs using readily available reactions and
building blocks.
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