Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

ROYAL SOCIETY

: oy
Chemical
P OF CHEMISTRY

Science

View Article Online
View Journal | View Issue,

EDGE ARTICLE

Grammar-driven SMILES standardization with
TokenSMILES

Luis Armando Gonzalez-Ortiz,*® Lisset Noriega,® Filiberto Ortiz-Chi,
Gabriela Vidales-Ayala,? Emmanuel Soberanis-Caceres,? Amilcar Meneses-
Viveros, (2 *¢ Alan Aspuru-Guzik &2 *9 and Gabriel Merino (2 *@

{ '.) Check for updates ‘

Cite this: Chem. Sci., 2026, 17, 1666

All publication charges for this article b
have been paid for by the Royal Society
of Chemistry

The redundancy of SMILES notation, where multiple strings can describe the same molecule, remains
a challenge in computational chemistry and cheminformatics. To mitigate this issue, we introduce
TokenSMILES, a grammatical framework that standardizes SMILES into structured sentences composed
of context-free words. By applying five syntactic constraints (including branch limitations, balanced
parentheses, and aromaticity exclusion), TokenSMILES minimizes redundant SMILES enumerations for
alkanes while maintaining valence and octet compliance through semantic parsing rules. TokenSMILES
does not replace SMILES but rather formalizes its syntax into a standardized, machine-interpretable form.
This grammatical structure enables controlled generation and manipulation of valid SMILES strings,
ensuring syntactic and semantic consistency while substantially reducing redundancy. Implemented into
SmilX, an open-source tool, TokenSMILES generates valid SMILES with accuracy comparable to existing
computational implementations for molecules with low hydrogen deficiency (HDI = 4). Its applicability
extends beyond alkanes through stoichiometric modifications such as bond insertion, cyclization, and

heteroatom substitution. Nevertheless, challenges remain for highly unsaturated systems, where
Received 7th July 2025 icalizati tifacts highlight th d for d ic feasibilit hecks. By int ti l isti
Accepted 12th November 2025 canonicalization artifacts highlig e need for dynamic feasibility checks. By integrating linguistic
principles with cheminformatics, TokenSMILES establishes a scalable framework for systematic chemical

DO!: 10.1039/d55c05004a space exploration, supporting applications in drug discovery, materials design, and machine learning-

rsc.li/chemical-science driven molecular innovation.

several distinct strings can describe the same molecule (Fig. 1).
This redundancy arises from permissible syntactic variations

Introduction

The analysis of chemical space using artificial intelligence relies
on comprehensive and standardized molecular representa-
tions. The Simplified Molecular Input Line Entry System
(SMILES), introduced by Weininger and co-workers in the 1980s,
encodes molecular structures via a context-sensitive grammar
using ASCII characters.’” Initially, SMILES was designed to
represent atoms, bonds, branching, cycles, aromaticity,
charges, and hydrogen counts. Over time, its syntax was
expanded to include stereochemistry, isotopic labeling, and
hybridization. Despite its versatility, SMILES is not unique:

“Departamento de Fisica Aplicada, Centro de Investigacion y de Estudios Avanzados,
Unidad Mérida, km 6 Antigua Carretera a Progreso, Apdo. Postal 73, Cordemex
97310, Mérida, Yucatdan, Mexico

tSecihti-Departamento de Fisica Aplicada, Cinvestav-IPN, Antigua Carretera
a Progreso km 6, Mérida, Yucatdn, 97310, Mexico

‘Departamento de Computacion, Centro de Investigacion y de Estudios Avanzados,
Unidad Zacatenco, Av. IPN No. 2508, Apdo. Postal 07000, Col. San Pedro
Zacatenco, CDMX, Mexico

“Department of Chemistry, University of Toronto, DB 421D, Lash Miller Chemical
Laboratories, 80 St. George Street, Toronto, ON, M5S 3H6, Canada. E-mail:
gmerino@cinvestav.mx; luis.gonzalezo@cinvestav.mx; alan@aspuru.com; amilcar.
meneses@cinvestav.mx

1666 | Chem. Sci, 2026, 17, 1666-1675

within the language. Furthermore, grammatical extensions
have been proposed to include more complex systems as poly-
mers and crystal structures.*®

Table 1 shows syntactic variations,® including Kekulé,
aromatic, branching, and ring number/dot bond syntax, using
2-(aminomethyl)benzoic acid (CgHoNO,) as an example.

Recent advances have sought to overcome these limitations
by introducing alternative representations with improved

NCC1=CC=CC=C1C(=0)0
NCc1ccccc1C(=0)0
N(CCH=CC=0)0)C(=CC=CN)
c1cc(CN)c(C(=0)0)cct

c13c4cccc1.C4(=0)0.N2.C23

[

a t [

Fig. 1 2-Aminomethylbenzoic acid: (a) molecular model and (b)
selected SMILES strings representing the same molecule, illustrating
the standardization problem addressed by TokenSMILES.

© 2026 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d5sc05004a&domain=pdf&date_stamp=2026-01-20
http://orcid.org/0000-0002-2859-7633
http://orcid.org/0000-0003-1976-6199
http://orcid.org/0000-0002-8277-4434
http://orcid.org/0000-0003-1961-8321
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC017003

Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

Table 1 Syntactic variations in SMILES notation

View Article Online

Chemical Science

Syntax style

Representative SMILES

Kekulé syntax

Aromatic syntax

Branching syntax

Ring numbers and dot bond syntax

syntactic control. For instance, DeepSMILES simplifies paren-
thesis handling by adopting postfixed ring-numbering rules,”
while ¢-SMILES encodes functional groups explicitly, avoiding
parentheses and ring indices.® BigSMILES extends the notation
to polymers through the use of braces to denote stochastic
binding patterns,®® whereas CurlySMILES embeds annotations
within braces { } to describe noncovalent or coordinated struc-
tures, while preserving the core SMILES grammar."’

Beyond these structural adaptations, new languages such as
SELFIES," Group SELFIES," and JAM">'* have emerged. SELFIES
guarantees that every token sequence corresponds to a chemi-
cally valid structures, thereby minimizing parsing and valency
errors. Group SELFIES refines this idea by representing rings or

NCC1=CC=CC=C1C(=0)O
NCclceecec1C(=0)O
N(C(C1(=C(C(=0)O)(C(=C(C(=C1)))
c13c4ccccl.C4(=0)0.N2.C23

functional groups as single tokens, simplifying substructure
encoding. In contrast, JAM adapts SMILES-like syntax to
describe stacking sequences in crystalline or layered materials,
combining chemical and geometric information. Table 2
summarizes these languages using 2-(aminomethyl)benzoic
acid as an example, highlighting improvements in grammatical
clarity and robustness.

In this work, we introduce TokenSMILES, a grammatical and
graph-theoretical framework that formalizes the SMILES
language, together with SmilX, its open-source implementation.
SmilX applies the TokenSMILES grammar to generate and vali-
date molecular structures based on explicitly defined syntactic

Table 2 Grammatical representations of 2-(aminomethyl)benzoic acid in different notations

Notation Representation

SMILES NCclceecec1C(=0)O

DeepSMILES NCccecec6C=0)O

t-SMILES c1([1*])e([2*])ccec1N[1¥]C(=0)ON2*|CN

SELFIES [N][C][C][=C][C][=C][C][=C][Ring1][=Branch1][C][=Branch1][C][=0][O]

Group SELFIES

Fig. 2 General workflow diagram for the development of the TokenSMILES grammatical framework and the validation of the number of

structures.

© 2026 The Author(s). Published by the Royal Society of Chemistry

SMILES
language

A X @

Molgen SmilX MAYGEN

Completeness
validation

[:benzene][Branch][:CH2NH2][pop][Branch][:COOH][pop]

[Development of
[c|©1 production rules
[Cl©] @ P- Co@ GO [C(GI@[G|(G)] @ [Col(Ca)leCs
[C]©) O]
[Cl@[c|an

Development of

grammar constraints ﬁ
—

SmilX Programming

[CCCCIOC (LU0 [CLOCCC
[CCCCCC [CCO.LCO.L] [CCO.CCc

Canonical filtering TokenSMILES Production

Chem. Sci., 2026, 17, 1666-1675 | 1667

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a

Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

and semantic rules. Both the conceptual framework and its
software implementation are presented here for the first time.

The proposed grammar provides a standardized represen-
tation for organic molecules that retains the descriptive capacity
of SMILES while minimizing ambiguity. By treating molecular
strings as complete sentences governed by grammatical rules
rather than collections of discrete symbols, TokenSMILES
enables systematic computational analysis and exhaustive
isomer enumeration (Fig. 2). Implemented in SmilX, this
framework departs from matrix-based approaches (e.g., MOL-
GEN," MAYGEN"®) and block-based methods (e.g., SMILIB'"*®),
offering a more structured and linguistically consistent para-
digm for molecular representation.

Theoretical development
Kekulé syntax for SMILES generation

Let us start by constructing SMILES strings for saturated
hydrocarbons. The procedure defines transversal paths across
all atoms and bonds in a molecule, forming the basis for
grammatical constraints in the Kekulé SMILES syntax. Using
2,3-dimethylbutane as example (Fig. 3a), the process follows
these steps:

(1) Hydrogen removal. Generate a hydrogen-free molecular
graph (Fig. 3b).

(2) Atom labeling. Assign unique numerical labels to non-
hydrogen atoms (Fig. 3b).

(3) Path definition. Define an ordered set W representing the
transversal path. In Fig. 3¢, the path P = {(Cs, C,), (Cs, C4), (Cy4,
Cs)} corresponds to W = {Cs, C,, Cy, C}-

-

Fig. 3 (a) Molecular model for 2,3-dimethylbutane; (b) hydrogen-free
molecular graph with labeled carbon atoms; (c) traversal pathway
(orange and purple arrows) covering all atoms.

1668 | Chem. Sci, 2026, 17, 1666-1675

View Article Online

Edge Article

(4) Branch identification. Identify branches B,,, where each
branch contains the maximum possible number of connected
atoms. The ordered set of branches is B ={By, By,..., B,;}. For the
system in Fig. 3¢, By = {C,, Cs} and B; = {C,, C4}.

(5) Branch insertion. Insert the branches B = {B,, B;} into W,
omitting the first atom of each branch since it already appears
in W. Parentheses mark the branch boundaries:

{C3a C23 (a Cla)a C4a (a CSa)a CG} (1)

(6) Symbol replacement and concatenation. Replace the
atomic labels in (1) with the corresponding atomic symbols and
concatenate them to obtain the string CC(C)C(C)C.

The resulting SMILES string, CC(C)C(C)C, represents 2,3-di-
methylbutane with implicit hydrogen atoms. Since SMILES
grammar is non-commutative, the steps must be performed in
the specified order.

Tokenization of SMILES into TokenSMILES

Our method transforms the Kekulé syntax into a standardized
form that equalizes string lengths and isolates chemical infor-
mation by assigning individual tokens to each atom and
symbol. For example, the SMILES representation of 2,3-di-
methylbutane, CC(C)C(C)C, can be rewritten as [C, C, (C), C, (C),
C], where “(“ and “)” denote the beginning and end of branches,
respectively. So, in this tokenized form, branches occur at
positions 1 and 3 (zero-indexed). The resulting sequence of
tokens constitutes a standardized-length representation
referred to as TokenSMILES.

This tokenization follows two sequential rules: First, the
original string is parsed into individual characters, each
enclosed in square brackets. For CC(C)C(C)C, this yields [C, C, (,
G,), G, (, C,), C], maintaining the exact order of symbols in the
original notation. In this representation, all symbols are
enclosed within square brackets to form an ordered sequence.
Although conventional set notation implies unique elements,
here repeated tokens are intentionally preserved to retain
positional information.

Second, the tokens are categorized according to their
syntactic context. Left-context symbols, [, (, =, and #, are placed
immediately before atomic symbols, while right-context
symbols, @,), %,], and a digit n, are placed immediately
after them. Applying these rules to the example yields the
standardized TokenSMILES form [C, C, (C), C, (C), C].

Grammar constraints for TokenSMILES

The production rules used to generate SMILES strings from
molecular paths allow multiple valid representations for
a single structure, making exhaustive SMILES enumeration
a non-deterministic polynomial-time hard (NP-hard)
problem.”™?® To mitigate this redundancy, and following
previous work on grammatical constraints in formal
languages,® we introduce five grammar rules to reduce the
number of equivalent strings representing organic isomers.
Constraint 1. For a molecular model G without ring number
and dot bonds, TokenSMILES strings are constructed from

© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a

Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

traversal paths W that include all non-hydrogen atoms and
bonds:
W= {a()a ay,

EERY an—l} or W= [a07 ag, .oy an—l]:

where each a; € W denotes a non-hydrogen atom.

Constraint 2. Branch symbols “(” and “)” are not permitted at
terminal positions (ay, @i, and a, ;) since these locations
cannot generate new expressions.

Constraint 3. To control branching, the second and penul-
timate atoms (a, and a, ,) may optionally include branch
symbols, i.e. [a,|(a,)] and [a,_|(a,_,)]- These optional insertions
produce distinct yet grammatically valid SMILES variants.

Constraint 4. Parentheses introduced between a; and a,_3
must remain balance, with every opening parenthesis “(”
matched by a corresponding closing parenthesis “)”. Valid
expressions include [a;|(a;|a;)|(a;)], ensuring structural consis-
tency across the entire sequence.

Constraint 5. Aromaticity symbols (c, n, b, p, s, and o) are
excluded to retain the grammar to uppercase atomic symbols
(C,N, B, P, S, and O).

Production rules for alkane TokenSMILES

This section presents a systematic procedure for generating
TokenSMILES representations of alkanes under the grammatical
constraints defined previously. Using the alphabet {C, ()},
a token dictionary is defined as 7 = {C, (C), (C, C)}. To construct
SMILES for all C,H,,., isomers, we define a molecular path W =
[ao, a4, ..., ay_1], where each a; € Wis replaced by tokens from 7
via the production rule P:

P— ay®a,®...0a, ,Da,_ (2)
Here, the concatenation operator (&) joints the strings in W,
and the arrow (—) indicates the production process.

Applying Constraint 2, a,, a; and a,_, are replaced by “C”
without branch symbols, resulting in:

P— COCO® a, ®...9a, ,0C (3)

eiceiel ey [€.c(C)C)
[ciececl [cecee) [CC.CLC)C] [C.CCLeNe) [cc(c)ccl [C.C(C)C.O)
[cecceccl [ceceloc] [cceloccl [C.CCeNO)C] cerecel [c.c(e)CC)C]
Fig. 4

in the SMILES.

© 2026 The Author(s). Published by the Royal Society of Chemistry

CeE)======-

T~

View Article Online

Chemical Science

Next, Constraint 3 specifies that a, and a,_, may take the forms
[C|(C)], yielding:

P— COCO[C|(C)|@5:6..04,30[C|(C)]6C. (4)

For simplify, the inner sequence a; ® ...®a,—_; is replaced
with a variable Q, rewriting (4) as:

P—CaCa[C|(C)]®2a[C|(C)eC (5)

To define the instances in Q, Constraint 4 is applied. Each
element in {as, ..., a,_ 3} has four possible forms: [C|(C|C)|(C)].
Balanced parentheses are maintained through recursive rules.

The first rule, g, — C|Cq,, generates chains such as “CC”,
“CCC”, and “CCCC”. The second, g; — (C)|(C)q,, introduces
terminal branches represented by parentheses. Combinations
of the two are obtained using ¢, — ¢o|91|9091/9190, allowing
permutations of linear and branched fragments. Nested
branches are introduced through g; — (CC)|(Cq3C)|(Cq.C),
which ensures balanced parentheses within multiple levels of
branching. Finally, the general case is described by g, —
4219319293193, encompassing all possible balanced expressions
in [C|(C|C)|(C)]. Substituting g, into (5) gives:

P—C®C[C|(O)®[as]®[C|(O)]&C (6)

Using (6), the number of SMILES representations for C,H, .+,
isomers decreases drastically. For example, Fig. 4 shows the
construction of SMILES for C¢H,, using (6) with [g,] = [C|(C)]:

PoCaCB[C|(C)®[C(C)]®[C|(C)|®C (7)

However, (7) does not account for atomic equivalence or
valence restrictions, which may result in redundant (e.g., [C, C,
(C), G, C, CI=C, C, C, C, (C), C]) or chemically invalid strings
(e.g, [C, C, (C), (C), (C), C]). To address these limitations, the
next section introduces the semantic parsing of TokenSMILES,
which filters out chemically inconsistent structures and
enforces the octet rule.

OO == mmm == m = > CHCDICIONDICIO)]

b N

ceo@a Ee@Oe ==+ €@ C B [C|(C)] D [CI(C)] @ [CI(C)]

' .

ke@@es LeROO8 -5 €@ C [CI(0)] @ [CI(O) @ [CI(C)) & ¢

(a) A generator tree for the SMILES strings of the CgH14 system and (b) the progress of the production rule (7) to obtain the atomic symbols

Chem. Sci., 2026, 17, 1666-1675 | 1669

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a

Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

Chemical context definition

Semantic parsing®*** was applied to determine the connectivity
encoded in each TokenSMILES string. Following the conven-
tions of Weininger et al., each atom (a) is represented by its
atomic symbol, and the symbol is linked to a set of chemical
properties collectively referred to as the context of the atom,
Context(a). For our analysis, the context is defined as:

Context(a) = (po, p1, P2)

where p, is the atomic symbol, p; corresponds to the valence,
and p, is the atomic connectivity.

As an example, the TokenSMILES [C, C, (C), C, (C), C] can be
indexed as [Cy, C4, (Cs), C3, (C4), Cs]. The chemical context for
each substring is summarized in Table 3, where the first
element identifies the atomic symbol (“C”), the second indi-
cates the valence (4), and the third lists the corresponding
connectivity set.

Connectivity extraction from TokenSMILES

In SMILES notation, connectivity is often implicit and must be
derived through semantic parsing to reconstruct chemical
relationships. Fig. 5 shows the procedure used to extract
connectivity from the TokenSMILES sequence [Co, Cy, (Cy), Cs,
(C4), G5l

(a) “Cy” is not concatenated with any other token, so its
connectivity set remains empty.

(b) “C;” is concatenated with “C,”, creating a new bond
represented by the tuple (0, 1).

(c) The same procedure is applied to the remaining tokens.
Fig. 5¢ shows how (C,) is concatenated, using parentheses to
indicate the start and end of a branch emerging from “C,”,
adding the tuple (1, 2).

(d) “C5” is then concatenated, forming the tuple (1, 3) rather
than (2, 3), since “(C,)” is a closed branch.

(e) “(C4)” is concatenated next, adding the tuple (3, 4).

(f) Finally, “C5” is concatenated, producing the tuple (3, 5).

After processing all tokens, the resulting bond set is {(0, 1),
(1, 2), (1, 3), (3, 4), (3, 5)}, corresponding to [C, C, (C), C, (C), C].
Each tuple represents the connectivity in the TokenSMILES
notation.

As shown in Fig. 5a, the bond contexts initially consist of
empty sets. As the strings are concatenated according to the
SMILES grammar and defined constraints, their contexts
expands as new bonds are introduced. From this stage onward,
the strings listed in Table 3 are treated as context-free strings or

Table 3 Chemical context of [Cg, Cy, (Cy), C3, (Cy), Csl

String Chemical context

CO (C7 4r {(0!1)})

C (G 4,{(0,1), (1,2), (1,3)})
(C2) (G 4,{(1,2)p

Cs (G, 4,{(1,3), (3,4), 3,5)})
(Cd) (G 4,{34)

CS (Cy 4y {(3y5)})

1670 | Chem. Sci,, 2026, 17, 1666-1675

View Article Online

Edge Article

[CO] « Concatenate C,

« No bonds
« Concatenate C,
== Add bond
« Concatenate (C,)
== Add bond

= concatenate C,
== ~dd bond
= concatenate (C,)
= Add bond
[CO,C1 (C) C3,(C4)CJ« Concatenate Cg
= ~ad bond

Fig. 5 Procedure for extracting bonds from the TokenSMILES of 2,3-
dimethylbutane. (a)-(f) Depict the sequential steps of the method.

[C07C1]

[Co,C4(C2)]

[CO,C1,(C2),C3]

[Co,C44(C2).C4(C,)]

simply words.”* These words lack explicit connectivity to other
atoms, excluding hydrogen. Consequently, a TokenSMILES can
be interpreted as a sequence of such words forming a chemi-
cally meaningful sentence.

To show this process, we return to the example of the C¢H;4
isomers. Using production rule (7), connectivity was assigned to
each TokenSMILES string, and those that violated the octet rule
were removed, yielding seven valid SMILES candidates (Fig. 6).
To eliminate duplicates, each TokenSMILES was converted to
a canonical SMILES form using the canonicalization algorithm
implemented in the RDkit module.** Strings sharing the same
canonical form were identified, and only unique SMILES were
retained. After filtering, five distinct SMILES remained, corre-
sponding precisely to the five constitutional isomers of C¢Hy,.

Integrating grammatical constraints into the Kekulé syntax
transforms variable-length isomer strings into standardized,
fixed-length representations, reducing redundancy and
ensuring syntactic coherence. For example, classical SMILES
enumeration of C¢H,, yields 125 valid strings, whereas Token-
SMILES generates only seven normalized candidates: [C, C, C, C,
¢, cl,[c, ¢, ¢, ¢, (C), Cl,[c, ¢, ¢, (C), C,Cl,[C, C, C, (C), (C), Cl,
[c, ¢, (C), ¢, ¢, Cl, [C, ¢, (C), C, (C), C, and [C, C, (C), (C), C, C],
each conforming to a consistent six-word structure (Table 4).

Modifying TokenSMILES stoichiometry

This section defines the rules for modifying TokenSMILES syntax
to change stoichiometry and to generate SMILES for systems
beyond C,H,,.,. Three operations are introduced: two insertion
operations, which add new symbols into a word, and one
replacement operation, which alters atomic symbols. Each
operation produces a copy of the entire sentence while
recording the applied modifications. This procedure enables
the systematic generation of isomers with stoichiometries
different from those of alkanes.

© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a

Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

View Article Online

Chemical Science

[C]
0

[C.C]
{1}

-

Edge Article
[CIC.C]
/ ((0,111.2))
[cc.c.ol [C.C.CC)]
(0,1),(1,2),(2.3)} {(0,1),(1,2)(2,3%
{e{ei{e ole) [CE.CE©)] [C.E.CHO)E]

{(0,1),(1,2),(2,3),(3,4)} (0,1),(1,2),(2,3)(3,4)} {0,1),(1,2),(2,3),(2,4)}

[C.cc.CcCC]
(0,2),(1,2),(2,3),(3,4)(4.5)}

[c.C.C.C.(C).C]
(0:1),(1,2),(2.3),(3,4),(3,5)}

[C.c.c(C)Cc.C]
(0,1),(1,2),(2,3),(2,4)(4,5)}

[C.C.C,(C)(C)]
{0)(1.2)(23)(2.4)

l ' L

[C.C.C,(C)(C).C]
(0.1)(12),2,3)2.41(25)

[C.C.C)]
{(0,1),(1,2)}

[C.C.(C).C]
{(0.1),(1,2),(1,3)

[C.C.(C).(C)]
(0.4)(1.2(1.3)

[C.C.(C),C,C]
{(0,1)(1,2),(1,3)(3,4)}

[C.C.(C).C.C) [C.C,(C).(O).C]
{0)(1.2)(1,3)(3.4) (012,231}

l '

[C.C.(C).C.(C).C] [C.C.(C).(C)Cc.C]
(0,1),(1,2),(1,3),(3,4)(3,5)} (0,1),(1,2),(1,3)(1,4),(4,5)}

[C.C{C).c.C.Cl
((0,1),(1,2),(1,3),(3,4)(4,5)}

Fig. 6 Production of valid SMILES for the CgHy4 isomers. Unlike Fig. 5, the invalid TokenSMILES [C, C, (C), (C), (C), C] is omitted here because it

does not satisfy the octet rule.

Table 4 TokenSMILES and SMILES for CgHq4 isomers

TokenSMILES

String lengths normalized to 6 words

SMILES

String length varies from 6 to 14 symbols

[C,C,C,C,C.C]

[c,c,c,c,(C),C] [C,C,(C),C,C,C]

[c,c,c,(0),C,C)

[C,C,(C),6(0),C]

[C,C,(C),(C),C,CT [C,C,6,(C),(O),C]

The modification of TokenSMILES stoichiometry is achieved
through the analysis of nesting levels and adjacency sets, which
describe the implicit connectivities within a string. Each word
in a TokenSMILES carries a grammar-based index that defines

© 2026 The Author(s). Published by the Royal Society of Chemistry

CCCCCC, CCCCC(C), CCCC(CC), CCC(CCC), C(CC)CCC, C(CC)(CCO),
C(CC)CC(C), C(CC)C(CC), C(CCC)(CC), C(CCC)CC, C(CCC)C(C), C(CCCC)
C, C(CCCC)(C), G(CCCCC), C(C)(CCCC), C(C)CCC(C), C(C)CC(CC), C(C)
CCCC, CC(CCCC), C(C)C(CCC)

CCCC(C)C, CCCC(C)(C), CCC(C(C)C), CC(C)CCC, CC(C)CC(C),
€(cc)(c(C)a), c(c(c)e)(ca), c(c(ecc)e), C(c(C)caa), C(c(C)C)c(C),
c(c(c)c)ee, C(Cee(C)C), C(CCC)(C)C, C(CCC)(C)(C), C(CC(C)C)C,
€(cc(Q)e)(€), c(c)(cee)(c), c(c)(caa)c, c(C)(c)(cca), C(C)(C)C(ca),
C(C)ce(C)(@), c(c)(C)ee(C), G(C)c(c(C)e), C(C)ec(Q)C, c(e)(C)ecc,
CC(CCC)C, CC(CC(C)C), CC(CCC)(C), CC(C)(CCC), cc(c)c(cc) c(ce)
c(c)c, c(c)(cc(c)o)
CCC(C)CC, CCC(C)C(C), CCC(C)(C
CC, ¢(Ca)(cC)e, C(CT)(Cc)(C), C
¢(c(c)cc)e, ¢(c(c)ce)(C), G(Ce
€(Q)(c(ca)a), ¢(C)(ce)eg, e
CC(CC)c(), €(c)e(c)(ca), c(c)c

C
C
C

C), CCC(CC)C, CCC(CC)(C), C(CC)(C)
c(ce)ee), c(co)(€)(ca), c(e(ca)e)e,
)CC), C(CC(CC)C), C(C)(CC)(CCT),
€)c(c), c(e)(c(c)ce), ce(ca)cc,
C)CG, C(C)C(C)C(0), C(O)C(CC)G, €(C)
c(ce)(c), cc c(c(ce)c), €e(ce)(ca), ca(c(C)(C)C), C(CC)(©)

o (c(©)c), ¢
C
a(c(CE)C)e), C(CEO)(C)C, C(C)C)C)(T), CC(C)CC)C), C(C)(C(C)
€)(©), COC(C)CIC, COC)(CC)T), CCCCC)O),CCCI(C)C,
Ce(C(O)0)(©), Ce(CC)C)C, Ce(C)C(T)C, Ca(C)(C(T)C), Ce(C)C(C)(C)
cee(©)C)e, coe(C)(C)(C), CCO)C)(C)C, C(C(CT)(C)C), C(CO)C)(C)(T),
C(C(©)C)CC), C(COC)CIC, CEO)(C)C(C), CC(C)(CT), CCC(C)(C)T),
c(e(OC)C)(©), COICC)O)(C), CC)CO(C)C, CC)CC)C),
c(e)(O)ce)(©), CCC)(C)CS, C(O)T)(C)(CT), CC)(C)CT)C, CC)(C)(C)
€C, CE)C)CIC(C), COCONCIC, COC(C)CC, CEICC)C)C),
ca(CO)C)(C), ce(C)(ea (©(C)(cC)

08*‘\

O,—~

)C, ce(C)(c)(c), cC

its nesting depth and adjacency relations. By editing these
relations while preserving valence consistency, the algorithm
modifies molecular topology in a rule-based manner. This
approach allows direct structural transformations, such as the

Chem. Sci., 2026, 17, 1666-1675 | 1671

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a

Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

insertion of rings or double bonds, from the TokenSMILES
representation without relying on ITUPAC nomenclature or pre-
defined templates (see SI for details).

To illustrate the process, we begin with 2,3-dimethylbutane
(CeH14) and modify it to generate 1-cyclopropylideneethanol
(CsHgO, Fig. 7). First, the connectivity set is extracted as {(0, 1),
(1, 2), (1, 3), (3, 4), (3, 5)}. Using these bonds, the algorithm
identifies adjacent words representing bonds in TokenSMILES.
Words at positions 1 and 3 (Fig. 7a) are selected for double-bond
insertion. To evaluate feasibility, the valence excess (A) is
computed for each atom, defined as the difference between its
valence and its degree (the number of incident bonds). When A
= 1, a “ = ” symbol is inserted into the word at the higher
position in the sentences (Fig. 7b).

To prevent excessive “ = ” insertions, the hydrogen defi-
ciency index (HDI) of the initial system (C¢Hi4) is used as
a control variable. Each additional double bond increases the
HDI by one, ensuring that the connectivity modifications
remain chemically valid and stoichiometrically consistent.

Next, to insert a cycle, two non-adjacent words are selected
based on the same connectivity {(0, 1), (1, 2), (1, 3), (3, 4), (3, 5)}-
If no bond exists between the chosen positions, the algorithm
proceeds with cycle insertion. For the example in Fig. 7b, words
at positions 0 and 2 are chosen, and the absence of bond (0, 2) is
confirmed. The valence excess for both atoms in then evaluated;
if A > 0 for each, cycle symbols are inserted (Fig. 7c). A random
ring number between 1 and 9 is assigned and placed to the right
of the atomic symbol (e.g., “C1”). For numbers 10-99, the cycle
symbol is prefixed with “%” (e.g., “C%10”). Each cycle insertion
increases the HDI by one (Fig. 7c).

Finally, to substitute a carbon atom with oxygen, the condi-
tion degree(C) < valence(O) must be satisfied before replace-
ment. The operation reduces the carbon and hydrogen count by
one and two, respectively (Fig. 7d). For heteroatoms, the allowed
are B, Br, C, F, I, N, O, P, and S. This approach generates all
structural isomers of Cs;HgO (Table SI1). Once all trans-
formations are complete, equivalent SMILES are filtered using
the canonicalization algorithm in RDKit.

SmilX software

To automate the generation of SMILES under grammatical
constraints, the SmilX program was developed as an open-

= 11
cc(cyc(cc =1 CC(C)=C(0)C
Insert Insert
symbol "=" cycle "1"

DN

) X
[€.C.()6.)C] [€.C.(C),=C(C).C]
CeH14 CeH1z
HDI=0 HDI =1

View Article Online

Edge Article

source Python tool, available at https://github.com/LuisOrz/
SmilX.git. SmilX constructs SMILES representations of isomers
while maintaining compliance with the specified
stoichiometry. A user-oriented web interface was also imple-
mented using Streamlit, which provides both interactive func-
tionality and server infrastructure. The interface is included
with the package and accessible at https://smilx-
isogenerator.streamlit.app/.

The workflow begins with a molecular formula provided as
a string, such as C,H,,.,. Based on this input, SmilX generates
all possible TokenSMILES corresponding to the defined stoi-
chiometry and adjusts their syntax accordingly. The resulting
words in each TokenSMILES are concatenated to form complete
SMILES strings, which are then processed using a canon-
icalization algorithm to eliminate duplicates and retain unique
structures. Finally, the software uses the RDKit module to
generate stereoisomeric variants, returning a curated list of
SMILES strings that satisfy the input molecular formula.

Results and discussion

Two experiments were performed to evaluate the isomer-
generation capabilities of SmilX and to validate the Token-
SMILES framework. The first reproduced the data reported by
Elyashberg et al.*® for C-H systems (Fig. 7), which serve as
reference structures for more complex compositions. The
resulting isomer counts from SmilX were compared with those
obtained using MOLGEN (a matrix-based generator) and MAY-
GEN (an open-source, Java-based tool). The second experiment
assessed SmilX's performance in systems containing heavier
elements (O, N, Cl) across a range of HDI and atom counts.

First experiment

Isomer enumeration followed the molecular formulas reported
by Elyashberg et al.,* to allow direct comparison between SmilX
and MAYGEN. Systems containing at least two hydrogen atoms
were prioritized, while hydrogen-free cases (Cs or Cyo) were
excluded by omitting the “C = n” notation.

SmilX reproduced Elyashberg's isomer counts for most
systems (Fig. 8). Minor deviations occurred when the HDI
approached the total heavy-atom count: SmilX occasionally
yielded one missing structure (false negative, e.g., CsH,) or 1-7

OH

L}
\ c-0
\
L}

.
Y o

Replace
+ the symbol
. “C".
v
[C1,C,(C1),=C,(C),C]
CeH1o
HDI=2

[C1,C,(C1),=C,(C),0]
CsHgO
HDI =2

Fig. 7 Syntax transformation from 2,3-dimethylbutane TokenSMILES to 1-cyclopropylideneethanol TokenSMILES. (a)—(d) Show the sequential
operations: double-bond insertion, cycle formation, and heteroatom substitution. Changes are highlighted in red, and dotted arrows indicate the

modified word.

1672 | Chem. Sci., 2026, 17, 1666-1675

© 2026 The Author(s). Published by the Royal Society of Chemistry

https://github.com/LuisOrz/SmilX.git
https://github.com/LuisOrz/SmilX.git
https://smilx-isogenerator.streamlit.app/
https://smilx-isogenerator.streamlit.app/
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a

Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

[{ec

Edge Article

SmilX1.0©

e s ez 724 roeso sotos 71 soasr [S866R] ooes]
75 e e 2uss stoos zonsre EEERE ERNE Heeaie eeiend| lseal
H 22 20 18 16 14 12 10 8 6 4 2

MOLGEN 5.0 ©
Q3

Fig. 8

© ® N o 0 & w N

-
o

N ®w A N © O

View Article Online

Chemical Science

Elyashberg et al.

MAYGEN ©
Q4

Isomers composed of carbon and hydrogen as reported by Elyashberg et al. (Quadrant 1) compared with those obtained using SmilX (Q2),

MOLGEN (Q3), and MAYGEN (Q4). Green cells indicate matching isomers; blue cells represent false positives; red cells correspond to false
negatives; and white cells denote missing data due to resource limitations. All results are shown relative to the reference data from Elyashberg

etal

additional isomers (false positives) in systems as CgH,, CoH,,
C10H,, CoHy, C1oHy, C1oHg, CoHg, and CyoHy, (Fig. 8).

MOLGEN accurately enumerated isomers at low HDI values
but showed decreased accuracy as HDI increased (Fig. 8). In
contrast, MAYGEN's online version encountered memory satu-
ration in larger systems (CoHs, CoHg, CoHyg, C10Hz, CioHa,
Cy0Hs, C1oHs, CioHig, C10H12, C1oHis, and CyoH;6) but repro-
duced Elyashberg's data for smaller, computationally feasible
cases.

MAYGEN employs a canonicalization procedure distinct
from RDKit's implementation of the Weininger algorithm."
Consequently, canonical SMILES can struggle to distinguish
equivalent atoms in molecules containing multiple nested
rings, particularly when HDI is equal to or greater than half the
number of heavy atoms. SmilX's reliance on RDKit likely
accounts for the few observed false positives and negatives.

Second experiment

Building on these results, the second experiment examined
SmilX's robustness in systems of increasing compositional
complexity: (C, H, O), (C, H, O, N), and (C, H, O, N, Cl). These
compositions typically produce more isomers than pure C-H
systems. For each composition, six molecular formulas were
generated for HDI values ranging from 0 to 5, and the number
of heavy atoms was limited to 3-10 to avoid cases where HDI =
half the heavy-atom count, previously associated with enumer-
ation errors. Results are summarized in Tables SI1-SI3.

SmilX showed efficient performance, aided by disk-caching
optimization. All three tools produced identical isomer counts

© 2026 The Author(s). Published by the Royal Society of Chemistry

for HDI = 4, with small discrepancies emerging at higher HDI
values. These deviations further support the hypothesis that
RDKit's canonicalization algorithm faces difficulties in handling
highly nested ring topologies.

The TokenSMILES framework effectively reduced both string
redundancy and computational overhead through grammatical
constraints and caching. While SmilX correctly enumerated the
majority of organic systems, boundary cases where HDI
approached the heavy-atom count remained problematic. These
discrepancies are consistent with the theoretical limitations of
canonicalization algorithms in systems containing high
symmetry or multiple fused rings, rather than with specific
software errors. Despite these edge-case issues, SmilX main-
tained low execution times, and the reuse of cached structures
enabled scalable exploration of extensive chemical spaces.

Classical SMILES representations provide a foundation for
cheminformatics but suffer from significant redundancy, as
shown in Table 4. To overcome this limitation, the present work
redefines SMILES not merely as atomic sequences but as
grammatically structured sentences, a conceptual framework
rooted in formal language theory. The TokenSMILES approach
implements this through hierarchical syntax (word- and
sentence-level organization), enforced grammatical constraints,
and standardized string lengths. This reformulation reduces
redundancy, ensures systematic chemical-space coverage, and
facilitates new computational applications.

Unlike conventional structure generators such as MOLGEN
or MAYGEN, TokenSMILES emphasizes formal representation
rather than speed or memory efficiency, which justifies the

Chem. Sci., 2026, 17, 1666-1675 | 1673

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a

Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Chemical Science

omission of runtime benchmarks. Similarly, unlike chem-
informatics toolkits such as RDKit, it augments rather than
replaces SMILES syntax by operating on grammatical
constructs. This strategy enables dynamic programming,
partial-solution reuse, and exploration beyond the limitations
of purely graph-based methods, while remaining compatible
with evolutionary and machine-learning algorithms.

Conclusions

This study presents TokenSMILES as a grammatical framework
that redefines the SMILES language through explicit syntactic
rules. By interpreting SMILES as structured sentences composed
of context-free words, TokenSMILES minimizes redundancy and
enforces grammatical consistency. Constraints on branching,
parentheses balance, and aromaticity reduce the number of
valid SMILES variants for C,H,,,, isomers. This structured
representation facilitates systematic chemical-space explora-
tion while ensuring valence and octet compliance through
semantic parsing. Integrated within SmilX, TokenSMILES
performs comparably to MOLGEN and MAYGEN in generating
isomers for systems with low hydrogen deficiency (HDI =< 4),
demonstrating reliable canonical SMILES generation.

Beyond alkanes, TokenSMILES enables stoichiometric
modifications such as bond insertion, cyclization, and hetero-
atom substitution, extending its applicability to broader organic
systems. In high-HDI cases, minor misidentifications arise from
RDKit's canonicalization limitations, suggesting the need for
improved feasibility checks.

Currently, TokenSMILES prioritizes grammatical complete-
ness and semantic accuracy over computational efficiency.
Although benchmarking was not the focus of this work, future
versions could adopt optimization strategies inspired by alge-
braic isomer generators. The framework is inherently compat-
ible with machine learning due to its discrete syntax, fixed-
length representations, and reusable grammatical compo-
nents, which enable hybrid symbolic-neural modeling and
grammatical evolution.

Treating SMILES as grammatically structured sentences
introduces a new paradigm for cheminformatics, linking
linguistic theory with chemical representation. This approach
supports machine-learning-based molecular design and
systematic chemical-space mapping. Future extensions to
polymers, organometallics, and crystalline systems may open
new applications in materials and drug discovery.

Conflicts of interest

There are no conflicts to declare.

Data availability

The data supporting this article have been included as part of the
supplementary information (SI). Supplementary information: the
comparison of the results obtained with SmilX, MOLGEN, and
MAYGEN. 1t also provides an explanation of the nesting concept

1674 | Chem. Sci, 2026, 17, 1666-1675

View Article Online

Edge Article

in a TokenSMILES string. See DOI: https://doi.org/10.1039/
d5sc05004a.

Acknowledgements

This work was supported by Cinvestav. A. G.-O. thank Secihti for
their PhD fellowship. L. N. thanks Secihti for the postdoctoral
fellowship.

References

1 D. Weininger, J. Chem. Inf. Comput. Sci., 1988, 28, 31-36, DOI:
10.1021/ci000572a005.

2 D. Weininger, A. Weininger and J. L. Weininger, J. Chem. Inf.
Comput. Sci., 1989, 29, 97-101, DOI: 10.1021/c¢i00062a008.

3 D. Weininger, J. Chem. Inf. Comput. Sci., 1990, 30, 237-243,
DOLI: 10.1021/¢i00067a005.

4 H. Kim, J. Na and W. B. Lee, J. Chem. Inf. Model., 2021, 61,
5804-5814, DOI: 10.1021/acs.jcim.1c01289.

5 M. Quir6s, S. Grazulis, S. Girdzijauskaité, A. Merkys and
A. Vaitkus, J. Cheminf.,, 2018, 10, 1-17, DOI: 10.1186/
$13321-018-0279-6.

6 C. A. James, R. Apodaca, N. O'Boyle, A. Dalke, J. van Drie,
P. Ertl, G. Hutchison, G. Landrum, C. Morley,
E. Willighagen, H. De Winter, T. Vandermeersch and
J. May, OpenSMILES specification, Version 1.0, 2016-05-15,
http://opensmiles.org/opensmiles.html, accessed 14
February 2025.

7 N. O'Boyle and A. Dalke, DeepSMILES: An Adaptation of
SMILES for Use in Machine-Learning of Chemical
Structures, ChemRxiv, 2018, DOI: 10.26434/
chemrxiv.7097960.v1.

8 J.-N. Wu, T. Wang, Y. Chen, L.-J. Tang, H.-L. Wu and R.-Q. Yu,
Nat. Commun., 2024, 15, 4993, DOIL: 10.1038/s41467-024-
49388-6.

9 T.-S. Lin, C. W. Coley, H. Mochigase, H. K. Beech, W. Wang,
Z. Wang, E. Woods, S. L. Craig, J. A. Johnson, J. A. Kalow,
K. F. Jensen and B. D. Olsen, ACS Cent. Sci., 2019, 5, 1523—
1531, DOI: 10.1021/acscentsci.9b00476.

10 A. Drefahl, . Cheminf., 2011, 3, 1-7, DOI: 10.1186/1758-2946-
3-1.

11 M. Krenn, F. Hase, A. Nigam, P. Friederich and A. Aspuru-
Guzik, Mach. Learn. Sci. Technol., 2020, 1, 045024, DOI:
10.1088/2632-2153/aba947.

12 A. H. Cheng, A. Cai, S. Miret, G. Malkomes, M. Phielipp and
A. Aspuru-Guzik, Digital Discovery, 2023, 2, 748-758, DOI:
10.1039/d3dd00012e.

13 J. Arcudia, F. Ortiz-Chi, A. Sanchez-Valenzuela, A. Aspuru-
Guzik and G. Merino, Matter, 2023, 6, 1503-1513, DOI:
10.1016/j.matt.2023.02.014.

14 J. Arcudia, F. Ortiz-Chi, J. Barroso and G. Merino, Nanoscale,
2025, 17, 2215-2223, DOI: 10.1039/D4NR03696D.

15 C. Benecke, T. Griiner, A. Kerber, R. Laue and T. Wieland,
Fresenius. J. Anal. Chem., 1997, 359, 23-32, DOI: 10.1007/
$002160050530.

16 M. A. Yirik, M. Sorokina and C. Steinbeck, J. Cheminf., 2021,
13, 1-14, DOI: 10.1186/s13321-021-00529-9.

© 2026 The Author(s). Published by the Royal Society of Chemistry

https://doi.org/10.1039/d5sc05004a
https://doi.org/10.1039/d5sc05004a
https://doi.org/10.1021/ci00057a005
https://doi.org/10.1021/ci00062a008
https://doi.org/10.1021/ci00067a005
https://doi.org/10.1021/acs.jcim.1c01289
https://doi.org/10.1186/s13321-018-0279-6
https://doi.org/10.1186/s13321-018-0279-6
http://opensmiles.org/opensmiles.html
https://doi.org/10.26434/chemrxiv.7097960.v1
https://doi.org/10.26434/chemrxiv.7097960.v1
https://doi.org/10.1038/s41467-024-49388-6
https://doi.org/10.1038/s41467-024-49388-6
https://doi.org/10.1021/acscentsci.9b00476
https://doi.org/10.1186/1758-2946-3-1
https://doi.org/10.1186/1758-2946-3-1
https://doi.org/10.1088/2632-2153/aba947
https://doi.org/10.1039/d3dd00012e
https://doi.org/10.1016/j.matt.2023.02.014
https://doi.org/10.1039/D4NR03696D
https://doi.org/10.1007/s002160050530
https://doi.org/10.1007/s002160050530
https://doi.org/10.1186/s13321-021-00529-9
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a

Open Access Article. Published on 13 November 2025. Downloaded on 1/25/2026 5:43:28 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

17 A. Schiiller, G. Schneider and E. Byvatov, QSAR Comb. Sci.,
2003, 22, 719-721, DOI: 10.1002/qsar.200310008.

18 A. Schiiller, V. Hihnke and G. Schneider, QSAR Comb. Sci.,
2007, 26, 407-410, DOI: 10.1002/qsar.200630101.

19 D. S. Hochbaum, Approximation Algorithms for NP-hard
Problems, ACM Sigact News, 1997, vol. 28, pp. 447-476,
ISBN 978-0534949681.

20 R. M. Wharton, Inf. Contr., 1977, 33, 253-272, DOI: 10.1016/
30019-9958(77)80005-3.

21 S.Kadioglu and M. Sellmann, Constraints, 2010, 15, 117-144,
DOI: 10.1007/s10601-009-9073-4.

22 S. L. Graham and M. A. Harrison, in Advances in Computers,
ed. M. Rubinoff and M. C. Yovits, Elsevier, 1976, vol. 14, pp.
77-185, DOL: 10.1016/50065-2458(08)60451-9.

© 2026 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

23 D.-Q. Zhang, K. Zhang and J. Cao, Comput. J., 2001, 44, 186-
200, DOI: 10.1093/comjnl/44.3.186.

24 G. Landrum, P. Tosco, B. Kelley, R. Rodriguez, D. Cosgrove,
R. Vianello, Sriniker, P. Gedeck, G. Jones, N. Schneider,
E. Kawashima, D. Nealschneider, A. Dalke, M. Swain,
B. Cole, S. Turk, A. Savelev, T. Hurst, A. Vaucher,
M. Wojcikowski, I. Take, V. F. Scalfani, R. Walker,
K. Ujihara, D. Probst, J. Lehtivarjo, H. Faara, G. Godin,
A. Pahl and J. Monat, rdkit/rdkit: 2024 09_5 (Q3 2024)
Release, Zenodo, 2025, DOI: 10.5281/zenodo0.28640.

25 M. Elyashberg, A. Williams and K. Blinov, Contemporary
Computer-assisted ~ Approaches to Molecular Structure
Elucidation, Royal Society of Chemistry, Cambridge, U.K,
2012, vol. 1, pp. 28-30, ISBN 978-1-84973-432-5.

Chem. Sci., 2026, 17, 1666-1675 | 1675

https://doi.org/10.1002/qsar.200310008
https://doi.org/10.1002/qsar.200630101
https://doi.org/10.1016/S0019-9958(77)80005-3
https://doi.org/10.1016/S0019-9958(77)80005-3
https://doi.org/10.1007/s10601-009-9073-4
https://doi.org/10.1016/S0065-2458(08)60451-9
https://doi.org/10.1093/comjnl/44.3.186
https://doi.org/10.5281/zenodo.28640
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5sc05004a

	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES

	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES

	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES
	Grammar-driven SMILES standardization with TokenSMILES

