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Structure—activity relationships can be directly
extracted from high-throughput crystallographic
evaluation of fragment elaborations in crude
reaction mixtures
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Fragment-based drug design offers multiple routes to advance from fragments. One approach is to build
structure—activity relationships (SAR) from analogue series in direct-to-biology workflows. Analogues can
be prepared by automated chemistry and tested as crude reaction mixtures (CRMs) without purification,
but assay noise often leads to hit resynthesis, potentially discarding false negatives and reducing SAR
dataset size. High-throughput (HT) X-ray crystallography has the potential to address these issues by
resolving hits directly from 100s-1000s of CRMs. However, no systematic analytics exist for extracting
SAR models from HT crystallographic evaluation of CRMs. Here, we demonstrate that crystallographic
SAR (xSAR) can be extracted from CRMs evaluated via HT X-ray crystallography. We developed a simple
rule-based ligand scoring scheme that identifies conserved chemical features associated with
crystallographic binding and non-binding. Applied to a crystallographic dataset of 957 fragment
elaborations in CRMs targeting PHIP(2), a therapeutically relevant bromodomain, our xSAR model
demonstrated effectiveness in two proof-of-concept experiments. First, it recovered 26 missed binders
in the initial dataset (false negatives), doubling the hit rate and denoising the dataset. Second, it enabled
a prospective virtual screen that identified novel hits with informative chemistries and measurable
binding affinities. This work establishes a proof-of-concept that xXSAR models can be directly extracted
from large-scale crystallographic readouts of CRMs, offering a valuable methodology to build SAR
models and accelerate design-make-test iterations without requiring CRM hit resynthesis and
confirmation. This invites future work to utilise advanced analytics and modelling techniques to further
strengthen purification-agnostic workflows.

(HT) screening libraries because a higher proportion of atoms
in the fragments form productive interactions with the target.>”

Fragment-based drug design (FBDD) is an effective approach for
designing compounds with activity against protein targets.">
Screening fragments (<18 heavy atoms) usually results in more
efficient binding than hits from traditional high-throughput
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Additionally, fragment screening libraries more effectively
sample chemical space than HT screening libraries,” resulting
in a diverse sampling of scaffolds that can be methodically
expanded.

Once the fragment hits have been identified, one aim is to
design molecules with higher binding affinity, which often
involves growing hits to form interactions with protein residues
in the binding site. One approach is to test close analogues of
the fragment hits to obtain structure-activity relationship (SAR)
studies.®® SAR studies attempt to build a dataset relating
chemical modifications to changes in binding. Although, the
SAR landscape can be highly discontinuous where molecules
with only a minor chemical difference have very different
activities (activity cliffs).”** Therefore, maximising the sampling
of the chemical space is important to understand and use the
underlying SAR landscape.
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A method to increase the sampling of compounds experi-
mentally tested within a resource limit is to test crude reaction
mixtures (CRMs). Testing CRMs has the advantage of bypassing
purification, which is a known resource intensive bottleneck.
However, hits identified from the direct evaluation of CRMs
such as DNA-encoded libraries,**'* surface plasmon resonance
(SPR),"»** and cell-based assays,’®” in so called “Direct-to-
Biology” (D2B) approaches, are typically resynthesised and
validated. This is because the initial readout can contain false
negatives and positives due to various artifacts,'®" including
compound aggregation®*** and metal impurities.?” For example,
Adams et al., screened 92 compounds in CRMs by SPR off-rate
screening and selected three compounds to resynthesize,
purify, and retest with SPR.™ In this work, we asked whether it is
possible to extract meaningful SAR directly from CRM readouts
without costly and restrictive revalidation, accepting that some
false signals will persist, but testing whether predictive models
can still be constructed in the presence of this noise. Indeed,
prior studies have explicitly characterized both the noise and
reproducibility of DEL readouts* and the robustness of SPR
applied to CRMs.">**

To explore this possibility, we used HT X-ray crystallography
which has shown to be useful in evaluating fragment follow-up
compounds in CRMs by measuring structural information for
100s-1000s of compounds.>**® This is enabled by crystal lattice
binding sites which selectively capture compounds within the
CRM and the associated binding modes can be unambiguously
resolved from electron density maps. Although this method is
not devoid of false signal, as the starting material might be
resolved over the preferred product® or, as is a problem with
any X-ray crystallography readout, the wrong ligand might be
fit.”® Despite these sources of false signal, we hypothesize due to
the HT nature of the experiment, the possible individual ligand
misassignments are diluted, allowing for robust trends to
emerge at the level of shared chemical features rather than
single measurements.

Such a large-scale crystallographic dataset of fragment
elaborations offers an opportunity to build a SAR model directly
from the evaluation of CRMs, precisely because the volume of
measurements might compensate for the inevitable experi-
mental noise. While the dataset is non-traditional in a SAR
context, since it is binary (hit or no hit) and typically, contin-
uous biochemical or biophysical data are used for SAR studies,
crystallographic SAR provides a structural understanding of
chemical modifications of a ligand and how that is favoured or
unfavoured by the crystal system to result in a binder. Here, we
exploit the fact that the dataset is large, so that noisy individual
labels can still potentially yield stable, statistically meaningful
SAR trends. This opportunity to directly build a SAR model from
the positive and negative crystallographic results of CRMs
(including the false signal) has not yet been explored.

Here we present a proof-of-concept for developing SAR
models directly from HT crystallographic evaluation of frag-
ment elaborations in CRMs, named “crystallographic SAR
(XxSAR) model”. Our xSAR modelling approach is a simple
ligand-based framework that evaluates chemical feature
conservation amongst crystallographic binders and non-
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binders to extract important features and score compounds
for predicted binding outcomes. We applied this ligand-based
xSAR model to fragment elaborations targeting the second
bromodomain of the Pleckstrin-homology domain interacting
protein (PHIP(2)), a potential oncology target, following an
initial X-ray crystallographic fragment screen. The initial frag-
ment was identified by the SAMPL7 challenge* and selected to
inspire further elaborations. The fragment elaborations were
experimentally carried out by robotic synthesis where CRMs of
1876 designs were screened by X-ray crystallography on the
PHIP(2) target resulting in 22 experimental binders.*® From this
set of 22 ligands, an initial XSAR model was created using
conserved ligand features of binders and non-binders and
applied in two ways. First, for validation purposes, the xSAR
model was used to recover 26 crystallographic binders not
originally identified from the initial evaluation of CRMs (false
negatives), doubling the original hit rate and effectively
denoising the initial dataset. Then prospectively, the xSAR
model was used in a virtual screening exercise that identified
novel hits with informative chemistries and up to a 10-fold
enhancement in binding affinity with respect to the repurified
hit identified from the original evaluation of CRMs.

Results

Here, we outline the development and application of the crys-
tallographic SAR (XxSAR) approach, developed from high-
throughput (HT) crystallographic data of fragment elabora-
tions in crude reaction mixtures (CRMs). This novel approach
leverages conserved chemical features among crystallographic
binders and non-binders to provide actionable insights into
SAR directly from crystallographic readouts, showing that, for
this PHIP(2) case study, useful SAR can be extracted without
additional CRM hit resynthesis for validation. The XSAR model
exemplifies how binding data from CRMs can guide both
retrospective and prospective analysis of fragment elaborations,
guiding follow-up hit identification and enabling the explora-
tion of a broader chemical space. We begin by describing the
ligand-based approach for the xSAR model construction. This is
followed by an experiment to evaluate the model's ability to
recover false negatives, denoising the initial dataset. Finally, we
demonstrate the prospective utility of the xXSAR model through
a virtual screening experiment.

A simple, ligand-based approach for crystallographic SAR
(xSAR) model building

In our previous study,” a crystallographic fragment screen for
the second bromodomain of the target, PHIP2, resulted in 47
fragments bound to the pharmacologically relevant acetylated
lysine (Kac) binding site (Fig. 1a). From the output of the
SAMPL7 challenge, a fragment (F709, PDB: 5RKI) was selected
with vectors for automated chemistry elaborations (Fig. 1b and
¢).*® Elaborations were produced by automated synthesis routes
(as detailed in previous work®), resulting in 1876 designs in
CRMs screened with X-ray crystallography at XChem,**** a HT
fragment screening facility at Diamond Light Source. The

© 2026 The Author(s). Published by the Royal Society of Chemistry
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F709

Fig. 1 Structural representation of the PHIP(2) binding site, initial fragment hit, and elaboration vectors. (a) The crystal structure of unbound
PHIP(2) (PDB ID: 5RJl), in a C2 space group, centred on the acetylated lysine binding pocket with key binding site regions labelled, ZA-loop (ZA),
ZA-channel (ZA-C), hydrophobic void (HV), BC-loop (BC), and water cavity (WC). (b) The initial fragment hit, F709 is shown cocrystallised to the
pocket (PDB ID: 5RKI) with elaboration vectors (orange arrows) suitable for enhancing interactions with binding site regions. (c) The F709
fragment hit structure with key elaboration vectors (V4, V,, V3) annotated. (d) The six scaffolds of the elaboration series produced by robotic

synthesis with the modifications at various R groups highlighted.

chemistry dictating fragment modification was guided by the
availability of building blocks and reactions executable on the
robotic platform, ranging from simple one-step syntheses to
parallel reaction sequences of up to five steps (Fig. 1d). The
reactions were also designed to generate structure-activity
relationships. Additionally, deletions were imposed on the
parent fragment, and in some cases parts of the scaffold were
substituted, such as replacing the piperazine with a larger ring
or a methylpiperazine. From a structural perspective, elabora-
tion vectors were selected to sample unoccupied regions of the
binding site, including the ZA-channel (ZA-C), hydrophobic void
(HV), BC-loop (BC), and water cavity (WC) (Fig. 1a). A full
description of the design and chemistry is available in our
previous paper.*

The crystallographic outputs from the evaluation of CRMs
were curated according to (1) successful synthesis outcomes, as
measured by automated Liquid chromatography-mass spec-
trometry (LC-MS) analysis of CRMs, and (2) high quality X-ray
diffraction data, leading to a final subset of 957 fragment elab-
orations (Fig. 1c and d) hereafter referred to as the
OriginalRefined-957 dataset (Fig. 2). This implies that only data
points with measurable quality control traces and usable electron
densities were considered. All ligands were labelled with a binary
value based on their crystallographic outcome where “binder”
was defined as a compound resolved from the electron density,
and “non-binder” lacked crystallographic evidence of binding. To
help understand the spread of chemical space explored by the
ligands, t-Distributed Stochastic Neighbourhood Embedding (t-
SNE) based dimensionality mapping was employed, seen in
Fig. 2. Morgan Fingerprints*® were input into t-SNE. In this
scheme, RDKit enumerates atomic environments around atoms
and encodes their connectivity invariants (atomic number,

© 2026 The Author(s). Published by the Royal Society of Chemistry

valence, formal charge, aromaticity, ring membership, etc.),
setting the corresponding binary “bits” when those substructures
are present. These fingerprints therefore represent local atom-
bond environments as binary features capturing the presence or
absence of specific chemical motifs, within a given molecule, and
were used as input to t-SNE (Fig. 3).

The OriginalRefined-957 dataset was then divided into three
data subsets based on pose information, “All”, “Lateral” and
“Diving”. The All set aggregates hits from both poses (Fig. 2a).
The lateral pose corresponds to fragment F709 follow-up
compounds (Fig. 1) binding in a conserved orientation to the
original fragment, covering the binding site laterally hence not
interacting with the water cavity (Fig. 1a and 2b).** The diving
pose corresponds to fragment F709 follow-up compounds
(Fig. 1) binding in an alternative orientation, involving a 90°
rotation around the core piperazine ring compared to the lateral
pose and occurs with displacement of water molecules
composing the water cavity (Fig. 1a and 2c¢).** In our dataset
splits, diving poses are counted as non-binders in the Lateral
split and lateral poses are counted as non-binders in the Diving
split. A more detailed structural rationale for the observed
lateral-to-diving pose transition is available in our previous
work.*® Overall, the addition of a methyl substituent on the
piperazine appears to induce the rearrangement by providing
apparent favourable hydrophobic contacts within the binding
site while simultaneously destabilising the lateral orientation.
In addition, computational analysis indicated that the PHIP(2)
water network is relatively unstable,* so its displacement may
further enable the diving pose by releasing water molecules into
solvent leading to an entropic gain. However, we do not have
direct thermodynamic data for these PHIP(2) crystallographic
ligands, so this should be regarded as a qualitative hypothesis

Chem. Sci.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5sc04919a

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 23 December 2025. Downloaded on 1/14/2026 5:30:33 AM.

(cc)

Chemical Science

a Mo

40 o AP

Diving (“J/
Binder ™y

301 o
o~
S 201
s
& 10
w
g
s 0
=
©
< _10-
T
&
.80 -20 1 it & o,
| = s

-30 - °§—NC"'§0‘ =%

" Lateral
=40 A binder
-40 -20 0 20 40
Ligand features t-SNE 1
All| 22 crystal binders
19 crystal binders - i
Lateral| 25 fTvstal binde: Diving | 3 crvstal binde
« + VIiiI=N

rs

Ligand features t-SNE 2

ﬂ&

w
o

~N
=3

Ligand features t-SNE 2
3

o

|
=
15

'
~
=3

-30

0
Ligand features t-SNE 1

20

40 -40 -20 20

0
Ligand features t-SNE 1

40

View Article Online

Edge Article

Fig. 2 Visualisation of the chemical space and binding outcomes from robotic fragment elaboration via HT crystallographic evaluation of CRMs.
The three pose datasets are shown as: (a) All poses, (b) the Lateral pose subset, and (c) the Diving pose subset. The binding compounds are
coloured blue and circled in (b) and (c). The chemical space defined by the 957 ligands is projected into 2D by t-SNE dimensionality reduction of
the fingerprints. The structures in the bottom of (b) and (c) display the crystal binders for the corresponding pose subset.
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Identification of conserved binding bits (CBB) enables comparison of ligand features driving pose-specific binding. The CBB for (a) Lateral,

(b) All, and (c) Diving binders are compared, highlighting pose specific binding features. As indicated by red arrows in (c), 90% of the CBB of the
diving binders contain a methylpiperazine moiety. Atoms and bonds belonging to the substructure that turns on the corresponding fingerprint bit
are drawn with bold bonds; atoms in that substructure are colour-coded, with the source atom highlighted in blue, aromatic atoms in yellow, and
aliphatic atoms in grey. Lighter bonds and atoms marked with an asterisk are not part of the bit but are shown to provide visual context. The Venn
diagram illustrates pose-specific and pose-unspecific bit ensembles: CBB only of the diving pose are shown in blue, CBB across all poses are
shown in green, and CBB only of the lateral poses are shown in orange. This shows how there are bits within each of the CBB sets that are only
found in pose-specific ensembles and are also pose-unspecific. (d) Shows the most chemically similar pair of crystallographic hits with varying
poses, along with PDB codes, illustrating how CBB map onto actual molecules.
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that would require dedicated experiments to test. This can be
achieved via a combination of isothermal titration calorim-
etry,* crystallography and simulations® which extends beyond
the scope of this study.

Most lateral binders cluster together in the central region of
the chemical space, as seen in the central blue circle in Fig. 2b,
reflecting similar chemical features for those compounds. In
contrast, diving binders are more dispersed, with two hits in the
top-left and one hit in the bottom-left clusters of the chemical
space (Fig. 2¢). This dispersion highlights the difficulty, here, of
capturing subtle chemical influences on binding outcome and
pose. Specifically, the methyl addition to the piperazine ring,
a small chemical modification, was hypothetised to drive the
switch from lateral to diving poses (Fig. 3).** Although direct
matched pairs were not previously resolved, two compounds
with high chemical similarity were observed in the lateral and
diving poses, seen in Fig. 3d, with the methyl addition
appearing to be the most relevant difference, as indicated by
electron density. However, a single methyl group change did not
create a distinct clustering pattern highlighting that capturing
the nuanced relationship between small chemical modifica-
tions and xSAR may require a different approach (Fig. 2). Some
clusters also completely lack crystallographic binders, such as
the centre-bottom cluster in Fig. 2a, which is populated with
sulphonamide-containing compounds seen as one elaboration
series in Fig. 1d. Similarly, the absence of binders for this series
presents an opportunity to identify chemical features associated
with non-binding behaviour. These observations suggested that
a ligand-based feature method could recover chemical features
associated with binding and non-binding crystallographic
readouts of fragment elaborations.

To address this, we created a crystallographic-SAR (XSAR)
model, where activity, or lack thereof, was defined as the binary
crystallographic binding outcome and is used to rationalise
pose-specific crystallographic binding of a given compound
based on conserved binding and non-binding features. To build
the xSAR model, binding and non-binding features (hereafter
referred to as bits) were extracted from the Morgan finger-
prints®” of the compounds in the OriginalRefined-957 dataset.
Conserved binding bits (CBB) were those found in all binding
compounds, seen in Fig. 3 for each pose set. Conserved non-
binding bits (CNB) were bits only found within the non-
binding compounds. We identified these bits for the All,
Lateral, and Diving datasets (Fig. S1) to isolate pose-specific
conserved bits (Lateral or Diving) and have a more general
metric where all poses are considered (All). The association
between the methylpiperazine modification and the diving pose
can be seen as this moiety is present in 90% of the diving pose
specific CBB (Fig. 3c¢).

We then used the CBB and CNB sets to calculate the Positive
Binding Score (PBS) (eqn (2)) and Negative Binding Score (NBS)
(eqn (3)) for individual compounds. These scores quantify the
recovery rate of conserved binding and non-binding bits for
a given compound and are defined in the Methods. The PBS of
a compound is the number of activated bits in the compound
that are found in the CBB set, divided by the total CBB count. A
PBS of 1 indicates that a compound recovers all conserved
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binding bits. The NBS of a compound is the complement of the
number of activated bits in the compound that are found in the
CNB set, divided by the total CNB count. A NBS of 1 indicates
that a compound does not recover any conserved non-binding
bits. A compound with both high PBS and NBS values should
in theory have a greater propensity of binding, as it contains
many conserved binding bits while lacking non-binding bits
(Fig. 4a). The exact definitions for these categorisations can be
seen in the method whilst the computational implementation,
with exemplar calculations, are available in the GitHub
repository.

The chemical space of the OriginalRefined-957 dataset pro-
jected into 2D by t-SNE dimensionality reduction of the finger-
prints and coloured by PBS or NBS values is visualized in Fig. 4b,
also called the xSAR landscape. The PBS and NBS values were
calculated using the All, Lateral and Diving bit sets resulting in
three sets of two scores or six xSAR landscapes in total. The
analysis presented here is for the Lateral bit set and the full
analysis for all three datasets is shown in Fig. S2. These xSAR
landscapes provides a quantitative method to link ligand features
to crystallographic binding outcomes for the chemical space
defined in the HT evaluation of robotically generated CRMs.

In Fig. 4b, the PBS and NBS landscapes are overall in
agreement, especially where both scores are high. The lower
right cluster seen at the landscape coordinates of Ligand
features t-SNE 1: 20 and Ligand features t-SNE 2: —10 shows the
experimental binders and similar compounds where most have
PBS and NBS scores around one. However, some clusters can
show divergent PBS and NBS scores, such as the cluster around
landscape coordinates of ligand features t-SNE 1: 30 and Ligand
features t-SNE 2: 0, where data points have low PBSs and high
NBSs. This is due to the absence of the amide and 5-membered
ring essential for binding whilst not bearing any groups asso-
ciated with non-binding (Fig. 3). Reversibly, compounds with
a high PBS and slightly low NBS are seen near landscape coor-
dinates of Ligand features t-SNE 1: —30 and Ligand features t-
SNE 2: 5. These sulphonamide compounds (Fig. 1d) were all
part of the same elaboration series containing an extension at
the furane ring which repeatedly led to non-binding while also
containing many conserved binding bits (Fig. 3). This illustrates
the ability of this approach at mapping positive and negative
crystallographic SAR.

The range of PBS and NBS values differs significantly. PBS
ranges from 0.20 to 1.00, while NBS is much more constrained,
ranging from 0.95 to 1.00. This shallower NBS gradient arises
from the larger total CNB count, as non-binders outnumber
binders (935 vs. 22). Additionally, the congeneric nature of those
elaborations implies a relatively focused chemical space,
leading to lower structural diversity across the dataset. As
a result, fewer unique bits are activated throughout the dataset,
increasing the proportion of CNB. Consequently, NBS values
tend to be higher than PBS (Fig. S4).

This xSAR method offers a simple yet rigorous quantitative
approach for extracting binding and non-binding signal from
HT crystallographic readouts, using ligand features. In the
following sections, we evaluate the predictive power of these

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig.4 xSAR landscapes quantified by the Positive Binding Score (PBS) and Negative Binding Score (NBS) metrics reveal binding trends within the
robotically defined chemical space. (a) Schematic representation of the PBS and NBS and their link to propensity of binding. A high PBS indicates
the presence of conserved binding bits, whereas a high NBS indicates the absence of non-binding bits. Conversely, a low NBS indicates the
compound contains features associated with non-binding, suggesting a non-binder. (b) Visualisation of the chemical space projected onto 2D
from t-SNE dimensionality reduction of the fingerprints. The left panel displays the PBS landscape (coloured from low (orange) to high (green)
PBS), and the right panel displays the NBS landscape (coloured from low (red) to high (blue) NBS). Crystallographic binders from the Origi-
nalRefined-957 dataset are indicated with black crosses. (c) Chemical structures of highlighted compounds, with their corresponding PBS and
NBS values for the lateral pose. Compound 1 has a maximum PBS and high NBS, making it a strong binder candidate. Compound 2 has low a PBS
and moderate NBS, indicating weaker binding features. Compound 3 has high a PBS but lower NBS, suggesting the presence of both binding and
some non-binding characteristics. The numbering of the molecules in panel b relates to the molecules displayed in panel c.

PBS and NBS metrics through both retrospective and prospec-
tive tests, which will help establish their practical utility.

XSAR significantly recovers false negatives from initial
crystallographic evaluation of CRMs

Visual inspection of the individual datasets revealed
compounds initially identified to be non-binding with PBS and
NBS of 1 (Fig. S3) indicating that may well be binders (false
negatives). In the context of HT crystallographic evaluation of

© 2026 The Author(s). Published by the Royal Society of Chemistry

CRMs, there is an increased combination of experimental
factors that increase the risk of not measuring binding
compounds, such as defective quality control for synthetic
reactions, poor relative crystal tolerance to ligands in CRMs, low
compound solubility-concentration,® inaccurate dispensing,
and as well as crystal pathologies.?*?**** 1t is also possible that
CRMs contain unstable or reactive products, side products,
implying that degradation between quality control (QC) analysis
and crystallographic evaluation may have taken place.”®
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Given the potential presence of false negatives, we decided to
test if the xSAR model could identify false negatives from the
OriginalRefined-957 dataset. We selected and tested a subset of
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the OriginalRefined-957 dataset based on budget constraints
and compound availability in pure form from Enamine
(Fig. S5). We applied log sampling across PBS and NBS metrics

Fig. 5 The PBS significantly enriches false negative identification in crystallographic re-evaluation of pure fragment follow-up compounds. The
left panel (a) shows the distribution of PBS and NBS values of the Retrospective-97 set as histograms on the top. The 2D t-SNE dimensionality
reduced plot of the fingerprints of the OriginalRefined-957 dataset is shown on the bottom, coloured by presence in the Retrospective-97 set
(blue) and binding compounds represented by black crosses. The right panel (b) presents the distribution of PBS values of the Retrospective-97
set in box plots depending on the pose set and grouped into the true or false crystallographic rescreening binding outcome. The points are
coloured by NBS value (from low (red) to high (blue)). Purple dotted lines show the average PBS values for each class and the resulting difference
(APBS) between binders (True) and non-binders (False). The p-values (in bold) from the Mann—-Whitney U tests, indicate the significance of the
PBS in discriminating binders from non-binders.
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for all three pose datasets (All, Diving, Lateral) with increased
sampling density at higher scores (see Methods for the exact
resampling procedure). This process yielded 97 compounds,
which comprise our Retrospective-97 set. Each compound in
this set was evaluated using all six possible scoring schemes
regardless of which ensemble originally selected it (Fig. 4).

The selection process yielded varying score distributions for
the 97 compounds depending on which pose-based data subset
they were calculated from (Fig. 5a). The All set had score
distributions shifted to high values for both PBS and NBS
because the underlying conserved positive and negative binding
bits are less specific, for example aliphatic and aromatic
carbons (Fig. 3), and more likely to be activated in selected
compounds, overlapping between the Lateral and Diving
subsets (Fig. S4). This implies that the log sampling strategy for
the Lateral and Diving data subsets also selected for high-
scoring compounds for the All set. The Lateral subset had the
second most shifted distribution to high values for both scores
because more compounds with Lateral-like features were
generated in the initial robotic synthesis (Fig. 5a). Conversely,
few compounds had a methylpiperazine group, resulting in the
least high value shifted score distribution for the Diving subset.
As shown in the 2D t-SNE plot in Fig. 5a, the sampled
compounds were drawn from across the chemical space of the
OriginalRefined-957 set with a focus around the clusters of
known binders as expected since higher PBS and NBS values
were prioritised. The selection was also partially limited due to
the availability of compounds (Fig. S5) but the score distribu-
tions for selected compounds (Fig. 5a) is similar to the distri-
butions for the OriginalRefined-957 set (Fig. S4). The large top-
right cluster was not sampled since these compounds had low
PBS and NBS values due to the replacement of the essential 5-
membered di-heterocyclic ring with various groups and are
therefore not expected to bind (Fig. 1d).

The Retrospective-97 compound set was purchased in pure
form from Enamine and evaluated with X-ray crystallography,
resulting in 26 novel binders at the Kac binding site (23 Lateral
and three Diving). This doubled the initial hit rates for both
poses: Lateral increased from 1.99% (19/957) to 4.39% (42/957),
and Diving from 0.31% (3/957) to 0.63% (6/957) (Fig. 5 and S6).
Therefore, the xSAR model could successfully identify false
negatives, effectively denoising the outcome of the initial
experiment.

In one instance, a hit was resolved outside the Kac binding
site, at a site located between a-helices Z and C which has been
previously described during the SAMPL7 challenge® where
seven fragments were resolved there (PDBs: 5R]J, 5RJK, 5RJL,
5R]JQ, 5RKR, 5RKV, 5RKX) (Fig. S8).

The PBS metrics can recover binders over non-binders with
statistical significance. The PBS values calculated using the All,
Lateral and Diving binding bits discriminate between true
(binding) and false (non-binding) crystallographic evaluation of
the Retrospective-97 set (p-values below 0.05 from the Mann-
Whitney U Test). The difference in average PBS between true
and false binding outcomes was largest for Diving binding bits
(0.28 PBS), compared to Lateral (0.20 PBS) and All (0.11 PBS)
(Fig. 5b). This larger difference for Diving binding bits stems

© 2026 The Author(s). Published by the Royal Society of Chemistry
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from the methylpiperazine moiety being present in 90% of
conserved Diving binding bits, while only 11.3% (11/97) of
compounds in the Retrospective-97 set contain this feature.
Since most non-binding compounds lack the methylpiperazine,
their Diving PBS scores are correspondingly lower (Fig. 3).
Comparatively, 65 compounds contained a piperazine and 21
had neither piperazine nor methylpiperazine moieties in the
Retrospective-97 set.

The PBS and NBS metrics were benchmarked against other
common ligand-based classification methods (Fig. S11) on the
Retrospective-97 set, with results showing that the PBS metric
outperformed the NBS and Tanimoto similarity metrics.** For
comprehensive comparison, we included a random forest
classifier, which is widely used in ligand-based prediction tasks
including bio-availability, bioactivity and toxicity**** (see SI
Methods). We also evaluated two Tanimoto similarity scoring
approaches*>**™*” that calculated either the mean or maximum
Tanimoto coefficient value of a test Retrospective-97 compound
against known binding compounds in the OriginalRefined-957
set. Our benchmark revealed that PBS outperformed the
random forest classifier on the Diving bit set (PR-AUC: 0.56 vs.
0.17). The random forest's poor performance likely reflects the
highly unbalanced Retrospective-97 dataset, which contains
only 3.09% (3/97) binders versus 96.91% (94/97) non-binders for
the Diving set, a challenging scenario for this classifier (Fig. S10
and S11). In contrast, the PBS achieved PR-AUC values compa-
rable to the random forest for the All and Lateral bit sets while
being an order of magnitude faster to compute (Fig. S12). The
random forest's hyper parameters were also optimised against
for that task (trained on the OriginalRefined-957 with
Retrospective-97 datapoints removed and tested on the
Retrospective-97) likely leading to better performance than in
a blinded scenario (see SI Methods). In contrast, the Tanimoto-
based metrics consistently showed weaker performance across
all evaluated bit sets (Fig. S11) hence also demonstrating that
our scoring schemes behaves differently than these methods.

Within the Retrospective-97 set, there were 21 and three non-
binders with maximal PBS for the lateral and diving poses,
respectively (Fig. 6). Features such as five-membered tri-
heterocyclic rings, six-membered rings, nitro and sulphona-
mide groups for the lateral pose, and trifluoromethyl for the
diving pose, repeatedly led to non-binding events. By updating
these features in the appropriate binding data subset for future
PBS and NBS calculations, this would further refine the xSAR
model (Fig. 3). Additionally, there were 10 non-binders that had
no non-binding features (maximal NBS) that could explain the
lack of crystallographic binding (nine scored for the lateral pose
and one scored for the diving pose) (Fig. 6 and S7). Possible
explanations of not resolving these compounds could include
unpredictable mechanical failures, data processing errors* or
degradation of crystals in soaking conditions.* Indeed there is
even disagreement between repeats of screening pure
compounds.” Solubility limitations in ethylene glycol could
also lead to aggregation and reduced effective compound
concentration.”® Here ethylene glycol was used as solvent,
instead of DMSO as DMSO has intrinsic affinity for bromo-
domains.* Crystal conditions can likewise affect solubility;
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Fig. 6 Crystallographic rescreening of pure compounds further identifies features leading to non-binding. (a) Non-binders with a lateral PBS of 1
are boxed in orange and (b) non-binders with a diving PBS of 1 are boxed in blue. Each compound is labelled with features hypothesized to cause
non-binding and NBS values. In some instances, compounds with maximum PBS and near maximum NBS have no obvious non-binding features.

high-salt mother liquors are known to promote precipitation of
less-soluble, hydrophobic fragments during soaking, thereby
lowering the effective ligand concentration.”® In addition,
kinetic or diffusion factors may play a role, where binding
events occur too slowly to be captured under our soaking
protocol. Longer soaking or higher-temperature conditions
might increase hit rates, although this may be limited by crystal
fragility.*®

Our xSAR model was able to double the initial hit rates for
both poses (Fig. 5) and provides easily interpretable metrics for
explaining most non-binders. Altogether, our scoring method is

Chem. Sci.

tractable and easily updateable with new measurements, add-
ing to the toolkit of SAR approaches.

Prospective usage of the xSAR model via virtual screening
identifies more potent and informative binders

We next use our xSAR model prospectively in a drug discovery
scenario and explore a chemical space of commercially avail-
able compounds. This experiment was carried out simulta-
neously with the retrospective study. Hence, the xXSAR model
used in this experiment was the one directly extracted from the
OriginalRefined-957 set (see Data availability).

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig.7 xSAR binding scores and structures measured from initial crystallographic evaluation of CRMs enable integrative virtual screening. (a) First,
a ligand-based virtual screening of the Enamine REAL® database was performed using the PBS and NBS metrics. (b) Then, a 3D structure-based
screening was performed using predicted conformations and energy values carried out by the tool Fragmenstein.®® Finally, the selected set,
Prospective-93, totalled 93 compounds (47 scored by the lateral pose and 46 scored by the diving pose) for (c) experimental evaluation by HT X-

ray crystallography (XRC) and Grating-coupled interferometry (GCI).

A virtual screening procedure of the Enamine REAL© data-
base®-** was performed resulting in the purchase of pure lead-
like compounds®®* that were tested as described in the
Methods. First 2D ligand-based filters were applied utilising the
PBS and NBS xSAR binding scores. Then binding poses for
selected compounds were computed, using the previously
resolved high resolution structures, to further filter based on
predicted energy values using the Rosetta All-Atom Energy
Function® (Fig. 7). The final selection included 47 compounds
for the lateral pose (Fig. S13) and 46 for the diving pose
(Fig. S14), totalling 93 compounds (hereafter referred to as the
Prospective-93 set) bought from Enamine in pure form for
crystallographic and kinetic evaluation at XChem. The kinetic
evaluation was performed using a grated-coupled interferom-
etry (GCI) assay®®™ that evaluates mass accumulation on
a biosensor chip similarly to surface plasmon resonance (SPR).
Only the Prospective-93 compounds purchased in pure form
tested by GCI and crystallography whereas, the
Retrospective-97 compounds were evaluated, solely by crystal-
lography in pure form.

Crystallographic evaluation of the pure -catalogue
compounds yielded nine binders, achieving a hit rate of 9.68%
(9/93) (Fig. 8a). Only compounds scored using the lateral pose-
specific PBS and NBS were crystal binders, resulting in hit rates
of 19.15% (9/47) and 0.0% (0/46) for the lateral and diving
poses, respectively. Although not all bound compounds had
a lateral pose, six had a conserved lateral pose while three did
not (Fig. 8a). Among the six binders with a conserved lateral
pose, three had a similar molecular structure to previously
resolved compounds, while the other three presented novel

were

© 2026 The Author(s). Published by the Royal Society of Chemistry

groups. Seen in Fig. 8a of the binders with the lateral pose
conserved, one binder had a 1,2-diformylhydrazine bond
forming new hydrogen bonds (7FUW, LAT6), another had an
unobserved bicyclic thieno[3,2-b]thiophene ring system that
made amplified hydrophobic contacts with neighbouring
amino acids (7FVD, LAT22), and the third had an anisole
extension to the furan that bound in a previously unproductive
(i.e. sulfonamide extensions) vector (7FV6, LAT33). The
remaining three binders exhibited modified conformations
with respect to the lateral pose used for template fitting,
including one with a phenol ring that displaced water mole-
cules, similarly, to diving compounds (Fig. 2), with an unaltered
piperazine ring occupying the central cavity (7FVL, LAT3). Two
compounds flipped and translated without displacing the water
network and had long extensions towards the solvent (7FV8,
LAT25 and 7FUZ, LAT39) (Fig. 8a).

The absence of crystal hits scored by the diving binding pose
(0.0% hit rate) highlights a suspected limitation for the Diving
PBS and NBS metrics' ability to distinguish between binding
and non-binding compounds, during virtual screening. This
low hit rate compared to the lateral pose hit rate (12.77% (6/47))
may stem from the limited chemical diversity and number of
compounds associated with the diving pose versus lateral pose
in the OriginalRefined-957 set (3 vs. 19 binders). In the
OriginalRefined-957 set, most diving compounds contained
a methylpiperazine moiety (Fig. 3). This feature likely influ-
enced the adoption of the diving pose. However, the small
number of confirmed binders limits confidence in the
conserved binding features identified for this pose. In addition,
the relatively sparse sampling of methylpiperazine-containing
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Fig. 8 Experimental validation of selected virtual screening compounds reveals informative poses and more potent hits. The top panel (a) shows
the results from the crystallographic evaluation of virtual screening compounds (Prospective-93). Overall, nine compounds were resolved,
where six maintained the initial lateral pose (left panel). Among the lateral binders, three displayed novel features (left panel with black arrows
pointing to the features), whereas three exhibited modified binding (right panel) compared to the lateral pose. The middle panel (b) shows results
for the kinetic evaluation of virtual screening compounds with GCI where experimentally determined dissociation rate (kq) and association rate
(k,) values are showed with associated errors, in st and, M~ s7%, respectively. The reference binder, resolved from CRMs in the previous work,*
is represented by a red dot and shaded regions indicating k5 and kq values and errors. GCI hits resolved in crystals are marked by points and
unresolved hits are marked by crosses. The 2D structures for each GCI hit are shown on the bottom panel (c), ordered by increasing dissociation
rate (Kp) (upper and lower error ranges calculated from k, and kq errors noted in parentheses) with integer identifiers corresponding to the kinetic
parameters scatterplot (b). The ligand efficiency is also noted for each compound using the number of non-hydrogen heavy atoms.
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compounds likely introduces uncertainty into the resulting
scores. Hence, broadening the underlying sampling, in future
experiments, could help enhance the resolution of pose-specific
metrics in future iterations.

GCI kinetic measurements identified 13 binding events
(Fig. S15) based on the hit-calling criteria (k, error < 25% and kq
error < 25% and R, > 10), demonstrating an application of
using xSAR to identify binding compounds from a distinct
chemical space. While there is no universally accepted standard
for kinetic hit calling, we applied more stringent cutoffs than
reported elsewhere to ensure as robust as possible hits were
selected.” Overall, 61.54% (8/13) of these new hits showed an
apparent increased ligand efficiency (LE) compared to the
reference compound, with 92.31% (12/13) also indicating an
improved Kp, which further exemplify the usage of the xSAR-
based virtual screening to prioritise compounds for kinetic
validation.

As seen in SI Fig. 15, the absolute response levels and fitted
Rumax values may vary substantially between ligands. For an ideal
1:1 interaction, the theoretical R« on a given surface is set
mainly by the amount of immobilised receptor, its molecular
weight (here ~17,6 KDa), and the analyte molecular weight (and
refractive index).®® Using the PHIP(2) loading (6554 pg mm?)
and ligand molecular weights, the expected R, values are
~130.1 pg mm > for DIV6 and ~127.9 pg mm > for LAT33. The
fitted R,,ax fOor DIV6 is at about 99% its theoretical R,,,,x, Whereas
LAT33 reaches only 9% of its theoretical R,,y, indicating that
the >10-fold difference arises from a lower fraction of binding-
competent PHIP(2) for LAT33. Because all ligands were injec-
ted back-to-back on the same chip in a rapid screening mode,
fitted Ryax values can also capture non-idealities such as base-
line drifts, variations in bulk refractive index/DMSO content,
protein degradation and non-specific binding. The apparent
steady-state plateau observed for LAT33 at the highest concen-
tration may reflect equilibrium binding to this smaller active
subpopulation rather than saturation of the entire immobilised
protein layer, consistent with the possible impact of random
amine coupling, orientation-dependent epitope accessibility®*
and gradual loss of activity during extended back-to-back
injections on the fraction of active ligand.®> Here, we use Rpax
primarily as a qualitative QC metric, to remove binding events
with low signal, and base our comparisons using k,, k4, Kp and
ligand efficiency. More elaborate kinetic triaging or alternative
models would likely refine individual fits but were beyond the
scope of this fast, high-throughput experiment.

Nevertheless, Two compounds (DIV38 and DIV6 in Fig. 8c)
showed an approximate order of magnitude improvement in Kp,
compared to the original assay binder identified previously,*
seen as the red labelled compound in Fig. 8b. Additionally, the
LE of the best new hits, 0.30 and 0.29, appeared increased
compared to the LE of the original assay binder, 0.23.>° This
indicates that these compounds make more productive inter-
actions with the target, rather than contributing affinity
through nonspecific hydrophobic bulk.®® There is an opposite
trend of pose-specific hit rates between the GCI assay compared
to crystallography hits. The pose-specific hit rates from the GCI
assay are 6.38% (3/47) and 21.74% (10/46) for compounds

© 2026 The Author(s). Published by the Royal Society of Chemistry
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selected from lateral and diving scored sets (Fig. S13-S15).
Whereas there are more lateral binders and no diving binders
from crystallography. Most of the GCI hits (76.92%, 10/13)
contained a methylpiperazine ring which was a feature
initially associated with the diving pose and known to be
resolved in crystals at a lower rate than lateral poses (Fig. 8a).
Binder three (7FV6, LAT33) was selected from the lateral scored
set and was a hit in both crystals and the GCI assay. To visualise
where the prospective compounds lie relative to the robot-
defined chemical space, we recomputed a t-SNE map
including the OriginalRefined-957 together with the
Prospective-93 (SI Fig. 16). Although absolute positions differ
from Fig. 2 (different dataset and stochastic embedding), the
lateral-scored prospective compounds cluster near the region
that contains the known lateral crystallographic binders,
whereas the diving-scored prospective compounds occupy
a more peripheral region. Consistent with the experimental
outcomes, GCI hits are enriched among the diving-scored
compounds, and the diving-scored GCI hits themselves
cluster together, indicating a kinetically active and distinct
chemotype within this region.

Overall, we exemplified how the xXSAR model can be applied
in a prospective manner, integrating both ligand- and structure-
based information, resulting in nine compounds resolved in
crystal structures, along with poses and previously unresolved
chemical groups. In the GCI assay, out of 13 binding events, two
hits were identified with a measured >10 times improvement in
Kp compared to the original assay binder.** With the acquired
structural information, further optimisation of binding affinity
can be pursued using structure-based computational methods.
However, full kinetic profiling and orthogonal assays of these
GCI hits, would be required for detailed characterisation and
confirmation, before optimisation or SAR driven decision
making, but was beyond the scope of this proof-of-concept. The
aim of this experiment was to show how the xSAR model can be
used to rapidly select catalogue compounds.

Discussion

Here, we introduce a simple methodology for directly extracting
a tractable XSAR model from a HT crystallographic experiment
of fragment elaboration series in robotically generated CRMs
(Fig. 2) using a ligand-based framework (Fig. 4).

The PBS and NBS, used in the xSAR model offer comple-
mentary insights into the binding propensity of compounds by
quantifying the presence of conserved binding and non-binding
features, respectively (Fig. 4). A high PBS indicates that
a compound shares many features with known binders and
therefore has a higher propensity to exhibit a particular binding
pose. Conversely, the NBS captures the extent to which
a compound contains features associated with non-binding. A
high NBS indicates that a compound does not contain these
non-binding features, increasing the potential of it being a true
binder. Our xSAR approach differs from, and outperforms,
classical Tanimoto-based similarity metrics at recovering false
negatives (Fig. S11).
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In our experiments, the PBS was more effective than the NBS
in discriminating binders from non-binders (Fig. 5, S7 and S11).
However, the NBS can identify compounds with features
repeatedly leading to non-binding, providing useful and
complementary SAR information (Fig. 4). The lower perfor-
mance of the NBS compared to the PBS is likely due to the
difficulty in categorising non-binding bits as they address an
unobserved signal with multiple and potentially additive causes
including solubility, thermodynamics, protonation and other
chemical and physical factors affecting binding outcomes that
our method is agnostic of.** Additionally, the greater number of
non-binding features resulted in a narrower NBS range
(minimum 0.95) compared to PBS (minimum 0.20) for the
OriginalRefined-957, possibly limiting its discriminatory power.
Although non-binding features are more numerous in total
(Fig. S1), each individual non-binding feature appears infre-
quently across compounds, this creates a diffuse negative class
with greater variability attributing to the challenging classifi-
cation problem. These limitations suggest potential for
advanced analytics, such as consensus scoring schemes® that
account for both binding and non-binding features together
rather than separately, or machine learning approaches
although dataset size and imbalance may be limiting here
(Fig. $10). Leveraging negative binding outcomes is routine for
classifying active versus inactive compounds for solution
assays,’>®” but has yet to be explored in the crystallographic
context. In this work, while not only was extracting a SAR model
from HT crystallographic data novel, additionally new was
scoring the negative binding outcomes into a separate score,
NBS.

After establishing the PBS and NBS as metrics for evaluating
binding potential, we applied these scores to analyse the
OriginalRefined-957 set (Fig. 5). This analysis revealed several
important findings, particularly related to the identification of
26 false negatives (instances that were a positive readout within
the Retrospective-97 dataset but resulted in an initial negative
readout in the OriginalRefined-957 dataset, Fig. S9). Although
the compounds selected in this study from the initial evaluation
of CRMs by X-ray crystallography had positive QC traces and
interpretable electron density (i.e. a diffraction dataset that can
be successfully processed for PanDDA analysis®®), some still
failed to yield crystallographic complexes. Given these positive
quality-control gates and the multiple possible sources of crys-
tallographic noise, it is difficult to rationalise the precise origin
of each false negative. Our focus here was not to resolve these
causes exhaustively, but to demonstrate that false negatives
exist and can be systematically recovered through xSAR-guided
follow-up experiments. Determining their specific origins
would require more advanced analytical studies, which lies
beyond the scope of this proof-of-concept.

With any classification procedure, especially on the HT level,
there will always be misclassification due to noisy data. Noise
analysis is already being addressed in DNA-encoded library
approaches, for example, Satz found that activity readout
patterns arose from formation of truncates rather than true
activity.®® Other X-ray studies of CRMs did not, to the best of our
knowledge, address false negatives in the context of SAR model
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building, and likely have missed interesting binders,” although
their aim may have been to rapidly generate data. Overall, our
approach has proven effective in retrospectively identifying
false negatives, effectively denoising the initial CRM readout
(Fig. 2) through follow-up experiments (Fig. 5) resulting in
a more thorough xSAR model. The recovery of false negatives
highlights the intrinsic noise of HT crystallographic evaluation
of CRMs. Although this does not directly accelerate the identi-
fication of new hit-like matter, it has the potential to improve
dataset quality by correcting labels, hence reducing misclassi-
fication noise. This increase in performance of an RF model
before and after the updating of labels of the OriginalRefined-
957 set from the Retrospective-97 results is seen in Fig. S10
where the PR AUC values of the RF model for any data subset
increased significantly. In this context, denoising and exclusion
of clear outliers are best viewed as steps that may improve xXSAR
model calibration and interpretability, providing greater confi-
dence in feature-outcome associations and potentially
strengthening guidance for compound prioritisation. However,
such steps require an additional round of experiments, which
ultimately slows the Design-Make-Test cycle, whose aim in
early hit-expansion phases is often to improve potency rapidly
and efficiently.”

While this method is tractable and conceptually intuitive
(Fig. 3), it likely simplifies complex causal networks between
chemical features and binding pose outcome. One interesting
finding was that methylpiperazine containing compounds were,
initially, associated with the diving pose and yet resolved later in
the lateral pose (Fig. 5 and S9). Similarly, virtual screening
compounds were resolved in new unpredicted poses (Fig. 8). As
larger and more complex crystallographic datasets emerge,
thanks to technological advancements,*”* the application of
more sophisticated analytical methods will be useful to extract
more complex XSAR models. Indeed, such analytics, which are
often machine learning-based, have already been developed
and applied to DEL screenings of billions of compounds.*

One difficulty, here, is associating relevant chemical features
to binding outcomes and poses from an incomplete combina-
torial experiment of R groups. Not all R group combinations
were initially enumerated, successfully synthesised and put
forward in the crystallographic assay, as expected with any HT
experiment. This challenge is exemplified by the unequal frac-
tion of the methylpiperazine group present in the original
robotic synthesis chemical space compared to the piperazine
group (Fig. 1d). Indeed, there were 282 compounds with a m-
ethylpiperazine, 510 with a simple piperazine and 165 with
neither. Since the methylpiperazines were present at a lower
rate and introduced a new binding pose (diving), there are fewer
measurements to enable a confident association between the
chemical feature, methylpiperazine, and binding outcome
compared to the lateral pose (Fig. 5). This is highlighted by the
lower PR-AUC values for both diving PBS and NBS in the
retrospective experiment (Fig. S11) and likely explains the lack
of crystallographic diving binders identified in the prospective
virtual screening exercise (Fig. 7). This limitation in combina-
torial exploration also creates uncertainty, here, when trying to
link chemical features to binding outcomes. The dataset and
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current analytics capture sets of features that consistently
appear together or are absent together. This makes it difficult to
isolate the impact of any single feature. It's important to
remember that just because features are correlated does not
mean they cause the same binding outcome. In fact, one feature
in the correlated set may be a more prominent driver of
a binding or non-binding event and corresponding pose, such
as the methyl group off the piperazine potentially driving the
adoption of the diving pose. Hence, this study also highlights
the importance of systematic compound design to thoroughly
and homogeneously cover chemical spaces from which
analytics can build robust SAR models, and indeed there are
algorithmic tools to support this systematic design for HT
synthesis.””*

In the prospective virtual screening experiment, there were
differing hit rates for each pose scored sets between X-ray
crystallography and the kinetic assay (Fig. 8). In the crystallo-
graphic experiments, there were more binders resolved from
the lateral pose scoring whereas stronger kinetic binders were
selected by the diving pose scores. This difference could be due
to varying conformations of protein in solution versus crystal.”
Compounds with features associated with the diving pose could
have higher affinity with conformations in solution whereas the
crystal system may be more tolerant to the lateral pose. Addi-
tionally, our xSAR model, built solely on crystallographic data,
inherently predicts crystallisation success rather than solution-
phase binding, with stronger predictive power for the
Prospective-93 set for lateral poses possibly due to their higher
representation in the OriginalRefined-957 set (19 vs. 3 binders).

Performing co-crystallisation experiments could result in
a higher rate of agreement between kinetic and structural hits,”
but was beyond the aim of this study. Here, we refer specifically to
co-crystallisation using pure compounds, as the prospective
experiment employed purchased, purified compounds rather than
CRMs. Although co-crystallisation with CRMs could in principle be
attempted, their inconsistent composition makes them unsuitable
for reproducible crystallisation in the same space groups required
for PanDDa analysis.®® These findings highlight the potential
discrepancies between crystallographic and kinetic assay SAR,
a known area of divergence.”® Having both kinetic and structural
readouts on the same CRMs would enable a more direct
comparison between binding affinity and pose. While our proof-of-
concept kept these modalities separate, integrating them in future
studies could further enhance the robustness of XSAR analyses and
improve compound prioritisation.

This xSAR methodology can be applied to any other protein
crystal system with examples of binder and non-binder ligand
data, although an understanding of the limits of the ligands
and system must be considered. Some scaffold conservation is
required which is this method is particularly suited to fragment
expansions. Hence, xSAR modelling may also be suited for
fragment linking or merging strategies but were not addressed
here. If applying to a project with less systematic ligand R-group
exploration, there would be larger chemical differences between
binders and non-binders, and therefore it would be more
difficult to draw confident conclusions about the exact chemical
modifications that resulted in the opposite crystallographic
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outcome. The R-group exploration could be augmented
synthetically with a compound set with the R-groups explored,
and then binders identified with established template-based
docking procedures using resolved holo-conformation struc-
tures to update the CBB and CNB sets.”” Additionally, if applying
to a protein crystal system with greater conformational flexi-
bility, scores could be grouped for each conformational state
(such as the grouping of diving and lateral poses in this work
which saw a conformational change in the protein), then
a consensus scoring scheme would be used to output the final
score value.

Conclusion and future directions

Here, we present a proof-of-concept for extracting crystallo-
graphic structure-activity relationships (xSAR), a systematic
approach to analyse both positive and negative binding
outcomes from HT crystallographic evaluation of CRMs. This
method demonstrates the direct utilisation of comprehensive
crystallographic data by calculating conservation scores of
chemical features to distinguish binders from non-binders
across different poses. Within purification-agnostic and other
direct-to-biology workflows, our xSAR framework illustrates how
HT crystallography datasets can be exploited more fully by
integrating both binding and non-binding CRM outcomes into
a crystallographic SAR model. We demonstrated this proof-of-
concept by retrospectively identifying 26 false negatives and
prospectively discovering novel crystallographic and kinetic
binders through virtual screening, showcasing how large-scaled
structural readouts can be directly leveraged without purifica-
tion steps.

Looking forward, the xSAR model could be enhanced by
integrating different bit weighting schemes such as down-
weighting frequently occurring bits (e.g., bits corresponding to
aliphatic carbons) (eqn (S1) and (S2)) or assigning weights
based on predicted relative binding free energy values (eqn
(S8)). Utilising more advanced analytics, such as consensus
scoring or machine learning approaches, to better capture the
complex relationships between chemical features and binding
outcomes could also be explored. This improved workflow could
help prioritise compounds for robotic synthesis, with subse-
quent CRMs evaluated through both X-ray crystallography and
GCI. Similarly, the combination of high-quality crystallographic
information and simulated dynamic data could allow for off-
rate predictions,”® providing orthogonal validation to off-rate
crudes evaluation by GCI, hence also providing an opportu-
nity for rationalising and denoising solution assays. The joint
validation of CRMs via X-ray crystallography and GCI would
provide complementary and mutually validating datasets to
better guide design decisions. The current computational
approach presented here establishes a baseline for subsequent
method development, with additional formalisms for bit and
score weighting available for future implementation seen in the
SI.

Overall, this combination of using the xSAR from HT crys-
tallography combined with kinetic methods, physics-based
modelling and machine learning have the potential to further
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streamline Design-Make-Test cycles, accelerating the transi-
tion to the next design stage and confidently expediting early hit
optimisation workflows.

Methods

Small molecule fingerprinting and dimensionality reduction

Feature-based invariant Morgan fingerprints were generated
using a length of 2048 and a radius of six with RDKit
(v2022.03.3).” Fingerprints were used as input for bit scoring
and feature extraction for t-Distributed Stochastic Neighbour-
hood Embedding using scikit-learn.* The fingerprint bit vectors
were embedded in two dimensions allowing for visualisation
using the Jaccard distance metric with a perplexity of 30.
Chemical similarity calculations of molecule pairs were per-
formed using RDKit (v2022.03.3).”

Bit and compound scoring methodology

The ligand dataset (D) was divided into two disjoint subsets:
binders (B) and non-binders (NB), where:

D=BUNB,BNNB=g

Each compound (x;), where x;. € D was encoded as a binary
fingerprint x; = (by, by, ..., by) of length M, with b, € {0, 1},
indicating the activation status of bit, b, at index, m.

The Binding Bit Conservation Score (Sm®) for a bit by, is
calculated based across binder (B):

ZBbm(xi)

B xe

S =g @
where |B| is the total number of binders, and >’ by (x;) repre-
sents the number of binders in which the bit, 5%<Fis active. The
Bit Conservation Scores (Sy,), range between 0 and 1, where S,
= 1 denotes perfect conservation of activation across binders,
and S, = 0, denotes a complete lack of bit activation across
binders, for a given bit, b,.

Each bit, by,, was assigned to one of four mutually exclusive
categories based on its corresponding Bit Conservation Score
and activation status in non-binders (NB):

Conserved Binding Bits (CBB) are defined as:

bm€ CNB < Sm® =1

meaning that the bit, by, is fully conserved (always active)
across binders (B) independently of its activation status in non-
binders.

Conserved Non-binding Bits (CNB) are defined as:

bm € CNB < Sm® =0 and Jx; e NB, by(x) =1

meaning that bit, by, is never active in binders Sm® = 0 but is
active in at least one non-binder compound (3x;).
Unconserved Bits (UCB) are defined as:

bme UCB < 0<SmB <1
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meaning that bit, b,,,, is partially conserved, meaning it is active
in some binders but not all 0 <Sm® < 1.
Unsampled Bits (USB) are defined as:

bm e USB « 0 <Sm® < 0 and Vx, € D, by(x) =0

meaning that bit, by, is never active in both binders and non-
binders, implying a total deactivation across all compounds
(bm(x;) = 0 Yx € D).

Therefore, the sum of all categorised bits equals the finger-
print length:

|CBB| + [CNB| + |UCB| + [USB| = M

Then, the Conserved Binding Bits set |[CBB| was used to define
the Positive Binding Score for a compound x;(PBS(x)):

b ZCBBbm (Xk)
PBS(x) = =2 CBB| (2)

where Y bn(xx) represents the number of activated bits

bme CBB

within the conserved binding bit set for compound x;, and
|CBB] is the total number of bits in the conserved binding bit
set. This score measures the degree to which a compound
activates conserved binding bits.

Similarly, the Conserved Non-binding Bits set |CNB| was
used to define the Negative Binding Score for a compound x;
(NBS(xz)):

b, ECNBbm(Xk)
NBS(x) = 1 — “ToNB] (3)

where " by(xx) represents the number of activated bits

bme CNB

within the conserved non-binding bit set for compound x;, and
|CNB] is the total number of bits in the conserved non-binding
bit set. This score measures the degree to which a compound
lacks activated conserved non-binding bits.

Finally non-binding or external compounds were classified
based on their positive (PBS) and negative (NBS) binding scores:

e PBS(x;) = 1: compound x; is a predicted a binder (i.e.
a binder).

e PBS(x;) < 1: compound x; is not a predicted binder (i.e.
a non-binder).

e NBS(x;) = 1: compound x; is not a predicted non-binder
(i.e. a binder).

e NBS(xz) < 1: compound x; is a predicted non-binder (i.e.
a non-binder).

Retrospective set selection

A subset of the OriginalRefined-957 dataset was selected by the
following scoring process leading to the Retrospective-97
dataset. This process was applied to the three pose datasets
(All, Diving, Lateral) for each score (PBS and NBS), separately.
(1) Filter out compounds that are not available in Enamine
(Fig. S5); (2) select compounds with score equal to 1 to buy; (3)
rank remaining compounds (with scores less than 1); (4) split
the ranked compound gradients into 25 bins, with log
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ordering of increased sampling towards higher scores; (5) for
each bin, select the cheapest compound, and if prices are the
same, choose the one with the score closest to the bin's
average.

This process resulted in selecting 150 total compounds (25
compounds per ensemble, i.e. all PBS, all NBS, diving PBS,
diving NBS, lateral PBS, lateral NBS), with 97 compounds being
purchased as there was overlap between ensemble selections,
referred to as the Retrospective-97 set. Hence, the compounds
in the Retrospective-97 dataset were scored using the 6 possible
scoring schemes (3 pose-based binding bits by 2 scores)
resulting in all compounds being used to evaluate the scores
regardless of which ensemble they were selected from (Fig. 4).

Virtual screening

The following virtual screening procedure was performed twice,
once using the lateral pose scoring metrics and once using the
diving pose scoring metrics (Fig. 7). The filtering criteria were
chosen to produce a manageable set for analysis.

The screening was performed using a subset of the Enamine
REAL© database®®* downloaded in early 2021, totalling
approximately 1.7 billion compounds. First, the catalogue was
filtered to retrieve the top 45000 compounds based on PBS,
excluding those which violated the Rule of Five to select lead-
like compounds.®** Then compounds with a NBS greater
than or equal to the average were removed to exclude
compounds containing non-binding features. The tool, CoPri-
Net** was used for price prediction and the 15000 cheapest
scoring compounds were selected for further processing. A
diversity selection was performed to select the 10000 most
diverse compounds, based on the Tanimoto distance, using the
lazy MaxMin diversity picker implemented in RDKit. This
process resulted in the selection of 10 000 compounds per pose.

Binding pose predictions were then performed to further
filter this set using the previously resolved high-resolution
protein crystal structures bound with reaction products from
CRMs.* All water molecules were removed and crystalised
reaction product ligands were extracted with MDAnalysis.*>**
Missing protein heavy atoms and hydrogens were added with
PDB2PQR®**** using PARSE as force field,*® PROPKA®* for
protonation an assuming physiological pH of 7.4. Crystalised
template ligands were protonated with Quacpac Toolkit (Op-
enEye).* These prepared crystallised ligand and protein
templates are used in the following steps.

Compound poses were calculated using the tool Fragmen-
stein® with default parameters. For each compound, a crystal-
lised ligand structure and protein template chosen to place each
compound was selected by the highest Tanimoto similarity to
a crystallised ligand. Then, compounds were filtered based on
values of the ligand energy ratio to the crystallised ligand
structure as described in Wills et al.®® From this filtered set,
AAG values were calculated using the protein template and
compounds in the top 3% (lowest AAG values) were selected.

Finally, the same diversity selection applied previously was
performed, resulting in 47 compounds chosen scored by the
lateral pose and 46 chosen and scored by the diving pose.
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Protein expression, purification and crystallisation

BL21 cells containing a pNIC28-Bsa4 vector coding for PHIP2
(UniProt ID: Q8WWQO) were taken from a glycerol stock. 2 mL
of Luria Broth pre-culture with 50 pM kanamycin were inocu-
lated into 1 L Terrific Broth media with 2% glycerol (v/v), 0.01%
(v/v) of 10% (v/v) sigma Antifoam 204 in ethanol, 50 uM FeCls,
20 uM CaCl,, 10 uM MnCl,, 10 uM ZnSO, and 2 pM of CoCl,,
CuCl,, NiCl,, Na,Mo0O,, Na,SeO; and H;BO;, 2 mM CacCl,, 25
mM(NH,),SO,, 2.77 mM glucose and 50 uM kanamycin. The
cultures were grown for 6 h at 37 °C at 250 rpm. PHIP(2)
expression was induced overnight at 18 °C with 0.1 mM IPTG.
Cultures were centrifuged at 4000 g for 30 minutes at 4 °C.

Pellets were resuspended in lysis buffer (10 mM HEPES,
500 mM NaCl, 5% glycerol, 0.5 mM TCEP, 0.5 mg mL ™" Lyso-
zyme, 1 ug mL ™' Benzonase, pH 7.5). The solution was vortexed
and left at room temperature for 30 min before. 2% (v/v) triton-
X- and 20 mM imidazole finale concentrations were added to
the mixture before being centrifuged at 4000 g for 30 min at 4 ©
C. The supernatant was applied onto a 1 mL His GraviTrap
columns (GE healthcare) fitted with a LabMate extender. The
columns were washed twice with wash buffer (10 mM HEPES,
500 mM NacCl, 5% Glycerol, 0.5 mM TCEP, 20 mM imidazole,
pH 7.5). The columns were slotted PD10 columns fitted with
LabMate extenders. The proteins were eluted by applying
2.5 mL of elution buffer (10 mM HEPES, 500 mM NaCl, 5%
glycerol (v/v), 0.5 mM TCEP, 500 mM Imidazole, pH 7.5) onto
each GraviTrap column. 3.5 mL of wash buffer was applied onto
each PD10 column and elutions were collected. 1 OD,g, unit of
TEV protease per PHIP(2) 10 OD,g, units was added to the
elutions and incubated at 4 °C. The solutions were run back
over His GraviTrap columns as mentioned above. The fractions
were concentrated by 20-fold and applied onto a Yarra SEC 2000
pre-equilibrated with wash buffer. The fractions containing the
protein were collected using either a biorad C-9 or a Cytiva
ALIAS. The fractions were concentrated to about 15 mg mL ™" of
protein and flash-frozen in liquid nitrogen.

PHIP(2) was crystallised in space group C2 at 4 °C by vapour
diffusion in 230 nL sitting drops, by mixing 100 nL protein in
wash buffer with 100 nL reservoir buffer (20% PEG8000 and
40 mM potassium phosphate) and 30 nL seeds of the same
composition than reservoir with final pH measured to be about
5.6.

Crystallographic evaluation

All compounds used for the retrospective (Retrospective-97) and
prospective (Prospective-93) evaluation were purchased from
Enamine and stored in ethylene glycol at a concentration of
40 mM.

Small molecule crystallographic screening was performed at
XChem in Diamond Light Source (Harwell, UK).****> Crystals
suitable for soaking were located in the plates with TexRank.**
Suitable crystals were targeted with compounds with acoustic
liquid dispensing using an ECHO.** The crystals were incubated
for 24 hours, at 4 °C, at a final compound concentration of
8 mM resulting in a 20% (v/v) ethylene glycol final concentration
in the drops. The XChemXplorer®* was used for crystallographic
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workflow management and paralleling. Molecular replace-
ments and initial refinements were performed with DIMPLE.
PanDDA® was used to identify low occupancy binding events.
Ligands were fit in Coot and the structures refined with Buster®*
and/or Refmac® before deposition on the Protein Data Bank
(PDB). Structural models and crystallographic statistics can be
retrieved from the PDB deposition ID: G_1002265.%¢

Grating-coupled interferometry assay

Pulsed single-concentration  surface-based  biophysical
measurements of binding kinetics were performed using
a Creoptix® WAVE system (Creoptix®, AG).*® A sensor chip was
conditioned using injections of borate buffer (10 mM sodium
tetraborate pH 9, 1 M NacCl). The sensor chip was activated
using 1: 1 mixture of 400 mM EDC/100 mM NHS for 420 s at 10
uL min~'. PHIP(2) was diluted in sodium acetate buffer (10 mM,
pH 5.0) in to 5 ug mL ™" and injected over the active surface at
a flow rate of 10 pL min~* for immobilisation to a final level of
6554 surface mass (pg mm >) corresponding to an injection
time of 420 s. The surface was then deactivated with
ethanolamine-HCI (1.0 M pH 8.5) for 420 s.

Kinetic analysis for PHIP(2) and small molecules was per-
formed using a pulsed injection scheme (waveRAPID®)** at 25 °©
C with a 5 s association and 20 s dissociation at a top concen-
tration of 200 uM for all compounds. Blank samples of the
running buffer were injected during the measurements every
fifth cycle. The running buffer was composed of 20 mM HEPES,
pH 7.5, 50 mM NaCl, 0.5% (v/v) Tween-20, and 0.5% (v/v)
ethylene glycol. Compounds were applied to the immobilised
surface and a reference channel. Data analysis and visualisation
were performed using the WAVEcontrol® software 4.5.13
(correction applied: X and Y offset; DMSO calibration; and
double referencing). Kinetic parameters were calculated using
the Direct Kinetics fitting engine with 1:1 kinetic binding
model. This fitting approach can lead to suboptimal fits in some
cases, but more complex fitting or parameter optimisation was
deliberately avoided to enable rapid evaluation.

The WaveRapid® GCI analysis method quantifies the error
associated with both k, and k4 values, expressing them as
a percentage relative to the measured values. Consequently,
these must be manually propagated to estimate Ky, error value
to properly estimate the affinity range of a particular compound
for the target. The errors were propagated using root-sum-
square method. The equilibrium constant error is calculated as:

B kaX6ka 2 kd><5kd 2
S = N

where Kg and Kq__ are the equilibrium dissociation constant and
associated error, respectively. k, and d;_ are the association rate
and, associated error expressed in percent, respectively. kq and
0, are the dissociation rate and, associated error expressed in
percent, respectively.

Binding events were further considered if both the 6;_and 6,
were lower than 25% and paired with a maximum observed
binding signal (Rpnax) value greater than 10. Although no
universally accepted hit-calling criteria exist, the thresholds
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mentioned above are relatively stringent and applied to poten-
tially minimise the likelihood of false positives.

Ligand efficiency (LE) was computed to assess the efficiency
of molecular interactions relative to the number of heavy atoms
in each compound. LE values were calculated according as
follows:

_RT In(Ky)

LE = ~ )

where R is the gas constant and equals to 1.987 x 10> keal/
(mol K). T is the temperature and equals 298 kelvin. Ky is the
equilibrium dissociation constant, measured via GCI, and
expressed in molar (M). N is the number of heavy atoms as was
determined from the SMILES representation of each molecule
using RDKit. The final ligand efficiency (LE) has units of kcal/
(mol x heavy atom).
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