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Improving the univariate calibration approach
with Bayesian modeling for IR reaction monitoring

Jiayu Zhanga and Jason E. Hein *abc

Infrared (IR) spectroscopy is a powerful tool for real-time reaction monitoring in chemical synthesis. For

applications that require tracking concentration profiles of reactive species, univariate linear calibration

models are commonly used to relate IR signals to analyte concentrations. Despite their simplicity, the

accuracy of these models can be limited by spectral overlap and other effects that distort the linear

relationship between concentration and signal. To address this limitation, chemometric models are often

employed, typically without further examination of opportunities to improve univariate calibration

performance itself. Here, we present a novel workflow based on Bayesian statistics to enhance univariate

calibration for IR reaction monitoring. The central feature of this workflow is the use of three diagnostic

Bayesian probabilistic models, combined with data-preprocessing selection, to screen for IR signals that

can potentially improve univariate calibration performance when non-linear effects are present. We applied

the workflow to a test reaction system and identified an IR signal in the fingerprint region, along with an

uncommon preprocessing strategy, that reduced prediction error by more than 50% compared with the

univariate model using the original preprocessing steps. Overall, our workflow aims to improve the usability

of univariate calibration approaches and expand the toolbox available to chemists for IR monitoring of

complex chemical processes.

1 Introduction

Smart sensors integrated with a variety of geometric probes are
a suite of tools that enable rapid, automated, and robust
measurements of chemical systems in real time.1,2 These
technologies provide continuous and real-time measurements
of key species throughout the course of a chemical process. For
kinetic studies, the ability to track concentration changes in situ
allows researchers to capture transient phenomena, directly
observe rate-limiting steps, and construct mechanistic models
with higher fidelity.3,4 In process development and
manufacturing, these technologies enable both manual and
automated control for product quality and process
performance.5 This is especially valuable for maintaining
product consistency, improving safety, and increasing overall
process efficiency.

Infrared (IR) spectroscopy has become a mainstay among
analytical techniques for real-time reaction monitoring. The in
situ nature of IR spectroscopy allows direct analysis of the
reaction medium, avoiding delays and artifacts associated with

offline sample handling or transfer. In its simplest use, unique
IR signals are first identified, and key process information, such
as conversion is obtained by tracking the evolution of these
signals throughout the reaction.6 For more quantitative
analysis, offline samples are collected simultaneously via
complementary techniques to obtain analyte concentrations.
These concentration values are then linked back to the
corresponding IR signals to construct a univariate linear
regression model based on Beer–Lambert's law.7,8

Despite the straightforward nature of the univariate linear
regression approach, recent studies8,9 cautioned against its use,
even when a distinct spectroscopic feature can be assigned to the
analyte of interest. Chemical reactions often exhibit higher-order
effects. The changes in the observed spectroscopic response are
influenced not only by analyte concentration but also by
additional factors such as pH, temperature, or the presence of
other components in the reaction medium. When such effects
arise, chemometric models10 are frequently employed to address
the complex dynamics in the data. Very few works, however, have
been done to improve the univariate model in the case of higher-
order effects. For example, spectral preprocessing optimization is
often used to improve chemometric modeling accuracy,11,12 but
such optimization is rarely applied in the development of
univariate calibration models.

Bayesian models have gained increasing attention in recent
years for diverse applications in chemistry, including reaction

React. Chem. Eng.This journal is © The Royal Society of Chemistry 2026

a Department of Chemistry, The University of British Columbia, Vancouver, BC V6T

1Z1, Canada. E-mail: jhein@chem.ubc.ca
bDepartment of Chemistry, University of Bergen, Norway
c Acceleration Consortium, University of Toronto, Toronto, ON, Canada

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

6 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
3/

20
26

 9
:1

0:
23

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal

http://crossmark.crossref.org/dialog/?doi=10.1039/d5re00400d&domain=pdf&date_stamp=2026-01-08
http://orcid.org/0000-0002-4345-3005
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5re00400d
https://pubs.rsc.org/en/journals/journal/RE


React. Chem. Eng. This journal is © The Royal Society of Chemistry 2026

and process optimization,13,14 kinetic parameter estimation,
model selection,15,16 and development of spectroscopic
calibration models.17,18 Their ability to incorporate prior
knowledge (e.g., assumptions about measurement noise) and to
treat model parameters and predictions probabilistically makes
them especially valuable for data analysis in low-data regimes.16

Here, we present a workflow based on Bayesian modeling
to more deeply interrogate the use of the univariate linear
regression approach for IR reaction monitoring. The central
idea is to perform Bayesian model criticism. Rather than
immediately discarding the univariate model following an
initial lack of fit, we employ a Bayesian hierarchical linear
regression model to assess the potential for performance
improvement through optimization of preprocessing steps.
When such opportunities are identified, a grid-search
optimization campaign is used to locate the optimal
preprocessing pipeline. Finally, the improvements in model
performance are evaluated using Bayesian posterior
predictive checks. The aim of this work is to provide a
practical roadmap for improving univariate calibration
approaches for IR reaction monitoring, thereby expanding
the set of tools available to chemists when working with
challenging and dynamic reaction mixtures.

2 Methods
2.1 Materials and reaction details

(S)-(−)-1-Phenylehtanol (1, 97%), isobutyric anhydride (2,
97%), triethylamine (Et3N, 99.5%) and dichloromethane
(DCM) were purchased from Sigma Aldrich and used as
received. (−)-Benzotetramisole (btm, 98%) was purchased
from TCL America and used as received. The reaction scheme
(Fig. 1a) was adapted from the referenced work.19 The

selected concentration ranges for the reactants reflect those
typically used in kinetic experiments aimed at elucidating
reaction mechanisms.20

2.2 In situ IR and online HPLC

IR spectroscopy were performed on a ReactIR 702L Infrared
spectrometer with a 6.3 mm AgX DiComp diamond probe
(Mettler Toledo). Spectra acquisition was achieved by
averaging 64 scans between 4000–650 cm−1 with a resolution
of 8 wavenumber per data point (the interval between each
spectrum is 1 minute). Automated on-line HPLC analyses
were conducted on a 1290 infinity HPLC system (Agilent), a
EasySampler 210 probe (Mettler Toledo), and a Directinject-
LC system (Telescope Innovations). Details regarding the
calibration and operation of this automated online HPLC
reaction-monitoring platform are provided in this work21 and
in the SI (Fig. S3).

2.3 Orthogonal reaction monitoring with IR and online HPLC

All reactions monitored with the in situ Infrared spectrometer
and on-line HPLC reaction monitoring platform were performed
in a 25 ml 3-neck round-bottom flask (RBF) on a magnetic stir
plate. The IR probe was initially inserted into the empty RBF,
and an air background spectrum was taken. The flask was then
filled with 10 ml of DCM. A solvent background spectrum was
recorded, followed by the sequential addition of alcohol 1,
triethylamine, and s-benzotetramisole. The IR spectrum
acquired at this stage was designated as the T0 data point for
the product concentration in the IR data stream.
Simultaneously, an HPLC sample was collected through the on-
line sampling setup to set the T0 data point for the product
concentration in the LC data stream. Subsequently, the desired
amount of anhydride 2 was added to the flask to initiate the
reaction, after which the HPLC and IR sampling sequence were
initiated simultaneously to generate the orthogonal reaction
monitoring dataset.

A separate nuclear magnetic resonance (NMR) reaction
monitoring experiment (Fig. S4) was conducted to confirm
the mass balance between starting material 1 and the
product (i.e., 1 was converted exclusively to products in this
reaction). With this information, the method introduced in
this work22 was used to convert the HPLC peak area for 1
and products into concentrations without requiring an
external calibration curve (Fig. S4).

2.4 Bayesian inference

All Bayesian analysis were performed in Python using the
probabilistic programming package PyMC.23

3 Results and discussions
3.1 Likelihood function selection for Bayesian inference

The key step in Bayesian modeling is to calculate posterior
distributions p(θ|D) of model parameters θ based on observed
data D. According to Bayes' theorem:

Fig. 1 Top: Reaction scheme for the BTM-catalyzed acylation.
Bottom: Reaction conditions used in the training and validation
experiments.
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p θjDð Þ ¼ p Djθð Þp θð Þ
p Dð Þ (1)

the numerator on the right-hand side comprises the
likelihood, p(D|θ), and the prior distribution, p(θ). The
likelihood represents the probability of observing data under
the assumption of the current model, and the prior encodes
existing knowledge or assumptions about the parameters
before the data are considered.

The Gaussian likelihood is widely used in chemistry
applications,17,18 based on the assumption that measurement
noise is normally distributed and independent of the
magnitude of the measurement. In this work, concentration
measurements were obtained from an online HPLC reaction
monitoring platform. Because the fluidics transfer and dilution
steps may introduce noise that scales with signal magnitude, we
also evaluated an alternative likelihood function: the lognormal
distribution. To assess which likelihood better reflects the
measurement process, a double exponential decay function was
fitted to the observed concentration profiles of 1 to approximate
the mean signal behavior. These mean estimates were then
used to infer the noise parameter for each candidate likelihood.
The resulting log-likelihood values were similar for both models
(Fig. S6), indicating that the current dataset does not provide
sufficient evidence to favor one likelihood function over the
other. Consequently, we selected the Gaussian likelihood for the
remainder of the analysis due to its computational simplicity.

3.2 Diagnostic model and model comparison metric
descriptions

Three models were considered in the subsequent Bayesian
model comparison. All three models include a noise
parameter inferred from the entire training dataset. The first
model (M1) is a univariate linear regression model. It
contains one additional parameter: the response factor. The
second model (M2) is a hierarchical linear regression model.
In this model, each experiment in the dataset has a unique
response factor. These response factors are related through a
common parent distribution, reflecting the assumption that
all experiments are influenced by a shared higher-order
effect. The third model (M3) is a multivariate linear
regression model. This model includes multiple weight
parameters corresponding to the number of features in the
input IR spectrum. An additional regularization parameter is
incorporated to prevent overfitting.

Model performance was assessed using Bayesian leave-
one-out (BayesLOO) scores. BayesLOO is calculated by
training the model on all but one data point, followed by
validation on the left-out point. This procedure is repeated
until each data point in the training set has been left out
once. The BayesLOO score of M3 was used as a reference
(best-case scenario) for subsequent comparisons, as the
interpretability of BayesLOO scores is more meaningful when
used in relative comparisons.

3.3 Workflow overview

The workflow (Fig. 2) begins at the validation reaction data
collection stage. Ideally, more than two validation experiments
should be conducted, covering variations in reaction conditions.
An initial IR signal is selected according to chemical intuition
(e.g., signal around 1600–1900 cm−1 should be selected for
analytes with carbonyl function groups) for building M1 and
M2. If no such signal can be identified, then the IR signal in the
fingerprint region (400–1500 cm−1) that shows a positive
correlation with the reactant of interest should be considered
next. The full IR spectra is used to build M3. Posterior
distributions and BayesLOO scores are then computed for all
three models.

In the first scenario, both M1 and M2 exhibit much lower
BayesLOO scores than M3. This indicates that higher-order
effects are present at the individual level (within each
experiment) for the selected IR wavenumber region. In this
case, chemometric models should be employed to address
these complex effects, or an alternative IR signal can be
selected to re-enter the model comparison.

In the second scenario, M1 shows a low BayesLOO score, but
M2 performs reasonably well relative to M3. This suggests that
the linear relationship between concentration and IR response is
maintained within each individual experiment. But higher-order
effects, which likely originate from the variation in different

Fig. 2 Flowchart illustrating the decision steps in the proposed
workflow. The key step is the comparison of BayesLOO scores
between the hierarchical linear model (M2) and the multivariate linear
model (M3). The outcome of this comparison indicates whether
preprocessing optimization is likely to have a meaningful impact on
improving the performance of the univariate linear regression model.
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experimental conditions, still influence the analyte IR responses.
In this scenario, applying data preprocessing optimization will
have a considerably higher chance of mitigating the higher-order
effects compared to the first scenario. After such a scenario is
identified, principal component analysis (PCA) is applied to
understand the nature of the variations. This step will inform us
which preprocessing categories we should consider for the
subsequent optimization. Then, a grid search is performed on all
possible combinations of preprocessing steps to identify an
optimal pipeline that will enhance the M1 performance. Finally,
Bayesian posterior predictive checks are performed to assess the
quality of the improvements.

In the third scenario, M1 performs comparably to M3.
This suggests that higher-order effects are negligible in the
current application, and the univariate model can be reliably
used for reaction monitoring.

3.4 Workflow validation on the BTM-catalyzed acylation reaction

For the following analysis, three validation experiments
(Fig. 1 experiment 1, 4, and 7) were selected. The reactive species
of interest was the acylation product, which contains a carbonyl
stretch signal at 1730 cm−1 (Fig. 3a). Using this IR signal,
BayesLOO scores were computed for the three diagnostic models.

The results showed that M1 and M2 both yielded substantially
lower BayesLOO scores than M3 (Fig. 3b), indicating that this IR

region is affected by higher-order effects at the individual
experiment level. As a result, the univariate linear regression
model is not suitable for calibration in this spectral region. This
behavior may arise from the overlap between the product
carbonyl stretch and the carbonyl signal of the byproduct
isobutyric acid.

Next, two IR signals (1156 cm−1 and 1178 cm−1) that
showed strong correlation with the product concentration
were identified in the IR fingerprint region. These features
likely originate from carbon–oxygen single-bond stretching or
bending of the product. Recalculation of the BayesLOO scores
using these newly selected IR signals showed substantial
improvement in the performance of M2 (Fig. 3b), whereas
M1 continued to perform poorly relative to M3 (Table 1, entry
3). These results suggest that the selected fingerprint-region
signals, particularly the one at 1156 cm−1, exhibit a strong
linear relationship with product concentration. But as the
experimental condition changed, a common higher-order
emerged and altered the nature of this linear relationship.

3.5 Investigation of higher-order effects and preprocessing
step optimization

Principal component analysis (PCA) was applied to the
wavenumber region around the peak at 1156 cm−1 to investigate
the origin of the higher-order effects. The first principal

Fig. 3 (a) Overlay of reaction IR spectra, with greener colors indicating later reaction times. “Valleys” denote the a different set of endpoints used
in this work for IR peak area integration. (b) Comparison of Bayesian leave-one-out (BayesLOO) scores for different models and preprocessing
strategies. Higher scores indicate better model performance. The BayesLOO score of M3 is used as a best-case scenario to assess the performance
of the remaining models.

Table 1 Overview of the eight preprocessing pipelines evaluated in the optimization campaign. The optimal preprocessing pipeline (bold entry)
demonstrated a significant improvement in M1 performance over the original preprocessing pipelines, as indicated by the BayesLOO scores

Index IR signals Baseline correction IR peak range elpd_loo

1 Peak height First derivative Zero 250.7 ± 5.9
2 Peak height First derivative Valley 259.7 ± 3.4
3 Peak height Second derivative Zero 218.0 ± 4.2
4 Peak height Second derivative Valley 223.4 ± 4.1
5 Peak area First derivative Zero 84.1 ± 1.5
6 Peak area First derivative Valley 292.8 ± 3.6
7 Peak area Second derivative Zero 148.5 ± 3.8
8 Peak area Second derivative Valley 240.5 ± 3.0
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component accounted for the majority of variance (∼91%). The
PC-1 transformed IR data (Fig. 4c, black solid circle), also
referred to as the PC-1 scores, closely resembled the product
concentration profiles, indicating the largest variation in this IR
region is dominated by the product formation.

PC-2 captured a smaller (∼9%) but still meaningful
portion of variance. The PC-2 scores (Fig. 4c, gray hollow cycle)
for exp 1 exhibited an upward trend, whereas those for
experiment 4 and 7 exhibited downward trends. We therefore
reasoned that the variation in the second PC was not directly
associated with the change of the major reactive species
shown in Fig. 1. This is because such changes would be
expected to produce consistent trends across different
experiments. We also compared PC-2 scores with the
temperature profiles (measured by the in situ IR probe), but
did not observe any meaningful correlation. We speculate
that the varying amounts of triethylamine used in these
experiments may influence the protonation states and
hydrogen bonding interactions among reaction species,
thereby giving rise to the variations observed in PC-2. In
future studies, a pH probe could be incorporated to track pH
changes across different experiments. Comparing the pH
profiles with the PC scores will provide additional evidence
to support or refute the current hypothesis.

PC-2 loading plot showed that the wavenumbers at 1140
and 1164 cm−1 were the two strongest contributors to PC-2
(Fig. 4b). Conventionally, after baseline correction, the
maximum peak height of the identified IR peak is used as
the IR signal. Based on the observation in PC-2 analysis, we
reasoned that incorporating additional information from the
surrounding spectral region into the IR signal calculation
might help mitigate the higher-order effects. To test this idea,
peak area integration was introduced as an alternative way
for IR signal calculation, and the integration bounds were
extended from a zero-point baseline to the neighboring valley
points (Fig. 3a).

To this end, eight different preprocessing pipelines (Table 1)
were constructed by permuting three design choices: first vs.

second derivative (for baseline correction), peak area vs.
maximum peak height (for IR signal calculation), and zero vs.
valley (for IR peak bounds definition). Scattering corrections were
not included in this optimization. This is because the
experimental setup minimized scattering effects through careful
control of the IR probe position and the homogeneous nature of
the reaction mixture. Normalization and scaling, commonly used
to equalize the variation of important and less important
variables for multivariate model development,11 were also not
considered. BayesLOO scores were calculated for M1 with all
eight preprocessing pipelines. The combination of “first
derivative + peak area + valley” (Table 1 entry 6) showed
substantial improvement relative to the original pipeline (entry
3). These results support our hypothesis that incorporating
additional spectral information around the peak maximum in
the IR signal calculation helps mitigate higher-order effects,
thereby improving the performance of the univariate model (M1).

3.6 Model performance assessment with Bayesian posterior
predictive checks

Despite the significant improvements achieved after
optimizing the preprocessing steps, a substantial BayesLOO
gap remained between M1 and M3 (compare 1 entry 6 and 3
dashed line). We therefore sought to determine whether this
gap is detrimental to the practical performance of the
univariate model, or whether the current version of M1 is
already “good enough”. Bayesian analysis provides an
additional tool for assessing model quality: posterior
predictive checks (PPCs). One application of PPCs is to
visually compare the observed data distribution with the
distributions of simulated data generated from the model.
This comparison reveals the extent to which model
predictions deviate from the observed data, and offers a more
nuanced assessment of model adequacy than just a single
numerical metric. For better visualization, kernel density
estimation was used to approximate probability density
functions for all distributions.

Fig. 4 Loading plots for (a) the first and (b) the second principal components of the IR spectra. The magnitude of the y-axis denotes the
contribution of each wavenumber to the overall variance. (c) PC-1 (dark solid circles) and PC-2 (gray hollow circles) scores plotted as a function of
reaction time. Comparing PC scores with measured process variable trends enables identification of the sources of variation captured by each
principal component.
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The results showed that, as expected, the simulated data
distributions from M3 (Fig. 5a, green shaded area) closely
resembledtheobserveddatadistribution(Fig.5a,blackdashedline).
Due to pronounced higher-order effects, the simulated data
distributions from M1 using the original preprocessing pipeline
(Fig. 5a, blue shaded area) failed to reproduce the observed
distribution. However, the simulated data from M1 using the
optimized preprocessing pipeline (Fig. 5a, orange shaded area),
though displaying slightly greater uncertainty, successfully
captured all salient features of the observed distribution.

Based on these observations, we concluded that the
univariate linear regression model with the optimized
preprocessing pipeline could be used for reaction monitoring,
and we applied it to four additional test experiments. The
results showed that, except for experiment 3, the new model
accurately predicted product concentrations, as indicated by the
close agreement between observed and predicted values in
Fig. 5b. It also produced an average 70% decrease in the root
mean square error of prediction (RMSEP) relative to the original
model, and yielded an RMSEP comparable to that of M3 (Fig.
S7). We attribute the discrepancy observed in experiment 3 to
the inaccurate calculation of the IR signal using the optimized
preprocessing pipeline. This is caused by the uncertainty in
identifying the correct valley positions in its IR spectra. This
limitation could be mitigated in future studies by increasing the
spectral resolution of the IR measurements (e.g., from eight to
four wavenumbers per data point), which would facilitate more
reliable identification of valley points.

4 Conclusions

In this work, we presented a novel workflow based on Bayesian
modeling to improve the univariate linear regression approach
for IR reaction monitoring. A key feature of the workflow is the
use of a Bayesian hierarchical linear model during the model
comparison stage. This allowed us to distinguish between
individual-level and experiment-level higher-order effects.
Identifying the latter is particularly valuable, as these effects are

more amenable to correction through preprocessing strategies.
Applying the workflow to a BTM-catalyzed acylation reaction
system, we identified an IR signal in the fingerprint region that
exhibited minimal individual-level but substantial experiment-
level higher-order effects. A subsequent grid-search
optimization uncovered a combination of less common
preprocessing steps that significantly reduced the prediction
error by more than 50% for the univariate model. An important
consideration during calibration model development is that not
all applications demand the same level of accuracy. Recognizing
when a model is “good enough” can prevent unnecessary
optimization efforts. Bayesian posterior predictive checks
informed this decision by enabling direct visual comparison
between the observed data distribution and model simulated
distributions. These checks indicated that the optimized
preprocessing pipeline with the univariate model was
sufficiently accurate for reaction monitoring. Together, we
demonstrated how the proposed workflow provides a systematic
way to improve univariate calibration approaches for reaction
monitoring.

The use of Bayesian models is central to the proposed
workflow, as they allow measurement noise to be incorporated
directly into the models and provide uncertainty estimates for
all inferred parameters. These features are particularly valuable
when analyzing reaction time-course data, where datasets are
typically limited in size and affected by measurement noise.
With advances in computing power, programming languages,
open-source software, and high-quality online documentation,
Bayesian approaches have become increasingly accessible to
practitioners without formal training in statistics or computer
science. As a result, we anticipate that the proposed workflow
can be readily adopted and adapted to other applications with
little additional effort.

One limitation of the current study is that only a single
reaction system was investigated. For new reaction systems,
the current preprocessing optimization strategy may not yield
meaningful improvements, even when scenario two is
identified. In future work, we aim to apply this workflow to a

Fig. 5 (a) Visual comparison of posterior predictive checks among three different models. The model-simulated data distribution from M1 with
the optimized preprocessing strategy (orange shaded region) accurately captures the main features of the observed data distribution, indicating
good predictive performance. (b) Validation of the univariate model with the optimized preprocessing strategy on four unseen experiments.
Accurate predictions were obtained for all experiments except experiment 3.
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broader range of reaction systems and to incorporate
multivariate curve resolution (MCR) analysis into the
workflow. MCR can provide more chemically meaningful
interpretations of IR spectra than PCA.10 This added insight
will enable the design of more tailored and effective
preprocessing strategies, and ultimately enhance the
generalizability of the workflow for improving univariate
calibration approaches across a wide range of chemical
applications.
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