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Journal Name

Model based process optimization for nanoparticle pre-
cipitation
Andrea Gilch,⋆,a Adeel Muneer,⋆,b Jana Dienstbier,a and Lukas Pflugb

This study introduces a derivative-based optimization framework for the controlled synthesis of
nanoparticles, with a focus on achieving target particle size distributions via dynamic manipulation
of reactant inflow during precipitation. The key novel aspects of our approach include coupling
Population Balance Equations (PBE)-which accounts for nucleation and growth phenomena-with
a prior first-order reduction reaction formulated using the exact Method of Moments (eMoM), and
implementing a discretize-then-optimize approach for efficient computation of parameter sensitivities,
enabling effective optimization of the time-dependent inflow profile. The objective is to minimize
the variance in particle size while ensuring a prescribed mean diameter. Numerical case studies
explore the role of process constraints and regularization strategies in control performance. The
following quantitative results highlight the effectiveness of our approach: First, the optimized time-
varying inflow profiles significantly outperform constant-rate strategies. Within the size range µD ±
0.1µD, the optimal control yields nanoparticles with a purity exceeding 99%, compared with about
77% for the most effective constant control. Furthermore, the framework remains robust under
variations in process parameters, sustaining performance despite limits on maximum inflow rate and
total synthesis time. This framework offers a systematic and computationally tractable approach to
optimizing transient operating conditions in nanoparticle synthesis, with strong potential for industrial
application.

1 Introduction and problem definition
Nanoparticle research has received significant attention since the
last century because nanoparticles have many innovative appli-
cations, such as in biomedicine1, optics2, or agriculture3, where
small changes in the shape and structure of particles have a strong
influence on their properties. Quantum dots displays and solar
technologies are two prominent examples4,5 as their optical prop-
erties are strongly influenced by the size of embedded nanoparti-
cles6–10. The ability to produce nanoparticles with a desired size
and narrow particle size distribution is thus of great interest.

Consequently, optimizing process conditions to tailor particle
size distributions is essential to obtain high-quality products. For
predefined particle systems, chemical engineers often experimen-

⋆ These authors contributed equally to this manuscript
a Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Department of
Data Science (DDS), Professorship of Optimization under Uncertainty &
Data Analysis, Nürnberger Straße 74, 91052 Erlangen, Germany. E-mail:
{jana.dienstbier,andrea.gilch}@fau.de
b Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Department of Mathemat-
ics, Chair of Applied Mathematics (Continuous Optimization), Cauerstraße 11, 91058
Erlangen,Germany
Friedrich-Alexander Universität Erlangen-Nürnberg (FAU), Competence Center Scien-
tific Computing (FAU CSC), Martensstrasse 5a, 91058 Erlangen, Germany. E-mail:
{adeel.muneer,lukas.pflug}@fau.de

tally investigate process conditions using their domain knowl-
edge11. Furthermore, statistical methods such as the design of
experiment (DoE) can be incorporated to systematically investi-
gate the influence of multiple factors on the outcome of a pro-
cess12–14. However, these procedures require a predefined exper-
imental layout to explore the effects of multiple factors, which can
become impractical when the number of parameters increases.
This can lead to extensive experimental runs, especially in sys-
tems with many interacting variables, such as, e.g., in a syn-
thesis process. In addition, DoE is often static, relying on as-
sumptions about parameter interactions. Once experiments are
designed and conducted, adjustments require additional runs of
experimentation. Thus, a structured exploration of the space of
possible process conditions on a model basis, combined with the
knowledge of chemical engineers, might be suitable for a small
number of process parameters. Following this idea, derivative-
free optimization techniques can be a powerful tool to optimize
processes based on a small number of control parameters15. Fur-
thermore, multiple publications follow the idea of process opti-
mization as a closed-loop system directly on the basis of experi-
ments and measurements, in recent works mostly relying on tech-
niques from machine learning16–20. For these attempts, optimiz-
ing time-dependent controls in its full generality is not admissi-
ble due to the high-dimensional optimization space accompanied
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by time-consuming function evaluation, i.e., running experiments
and characterization procedures.

To achieve higher precision in process control, time-dependent
control strategies become relevant. So far, these have been out
of reach for synthesis processes, as previously mentioned ap-
proaches cannot be applied effectively. To close this gap, this
study develops a derivative-based framework for optimizing con-
trolled nanoparticle synthesis. Our objective is to achieve target
particle size distributions by dynamically controlling reactant in-
flow during precipitation, minimizing size variance while ensur-
ing a prescribed mean diameter.

The key contributions of our approach include coupling Pop-
ulation Balance Equations (PBE) with a prior first-order reduc-
tion reaction to extend the model’s applicability, formulating the
problem using the exact Method of Moments (eMoM) to achieve
high precision and computational efficiency and implementing a
discretize-then-optimize approach to efficiently compute param-
eter sensitivities. A key technical challenge has been the numer-
ical formulation itself. Traditional finite-volume methods (FVM)
are inherently non-differentiable with respect to control variables
when flux limiting schemes are employed to suppress numerical
diffusion. This non-differentiability prevents the direct computa-
tion of gradients, making gradient-based optimization infeasible.
The new approach overcomes this limitation by enabling accurate
gradient evaluation, allowing control strategies to be optimized in
ways that were previously impractical.

A significant advantage, in addition to its novelty in time-
dependent control, is the scheme’s broad applicability for opti-
mizing diverse process conditions, such as temperature21–24 and
pH value25,26, offering strong potential for industrial application
by improving product quality and process efficiency.

In a nutshell, we present a derivative-based optimization
framework based on the idea of eMoM as introduced in Pflug
et al. 27 . The scheme follows the concept of first discretize, then
optimize, see, for instance, Hinze and Rösch 28 . We thus state
an efficient discretization scheme based on eMoM adapted from
Pflug et al. 27 as well as Bänsch et al. 29 and then compute the
sensitivities of the discretized version. We study the process op-
timization strategy using an academic example closely related to
the model derived in Wang et al. 30 for indium phosphide quan-
tum dot (InP QD) synthesis.

As examples, we are aiming to find the rate u of adding new
precursor to the system during the synthesis process, which min-
imizes at the final time T > 0, i.e., after the precipitation approx-
imately stops, the variance of the resulting particle size distribu-
tion while matching the desired mean diameter µD:

min
u∈Uad

Var[q(T, ·)]

s.t. E[q(T, ·)] = µD,

(1)

where q solves the PBE describing nucleation (N ) and size-
dependent growth (G) of nanoparticles (NPs), including a first-
order reduction reaction model. The first-order reaction is deter-

mined by the following equations:

ċ0(t) = u(t) − krc0(t) ∀t ∈ [0,T ] (2)

c0(0) = 0 (3)

˙̄c(t) = krc0(t) ∀t ∈ [0,T ] (4)

c̄(0) = 0. (5)

Furthermore, the PBE read as follows:

q(t,x)t = −(G(c(t),x)q(t,x))x ∀t ∈ [0,T ],x > xn (6)

q(t,xn) = N (c(t))
G(c(t),xn) ∀t ∈ [0,T ] (7)

q(0,x) = 0 ∀x > xn, (8)

with inflow rate of precursor u ≧ 0, reduction constant kr > 0
and nucleation size xn > 0. Together with the equation for con-
servation of mass, which couples the concentration of the relevant
species c, the total concentration c̄ of this species in the precipita-
tor, and the volume of the precipitated NPs, we obtain the follow-
ing relation:

c(t) = c̄(t) − πρ
6MP

∫ ∞

xn

x3q(t,x)dx ∀t ∈ [0,T ], (9)

with MP describing the molar mass and ρ the particle density29.
It is worth mentioning that (9) underlies nonlocal balance laws,
which means that the observed kinetics depend nonlocally on the
solution q. An overview of recent advances of nonlocal balance
laws is provided by Keimer and Pflug 31 , Coclite et al. 32,33 . Obvi-
ously, a truly narrow particle size distribution (PSD) with mean at
µD and standard deviation approximately 0 minimizes this func-
tional. We aim to tackle this optimization problem with a time-
dependent control variable by reformulating the PBE in terms of
eMoM. The idea is capable of handling any objective functional
consisting of a nonlinear but differentiable combination of scalar
products of the solution q, the control u, and functions in Lp for
p ∈ (1,∞). For the sake of simplicity, we restrict ourselves to the
objective functional stated in (1).

The uniqueness of solutions to the PBE was shown in Keimer
and Pflug 34 and Keimer et al. 35 , the differentiability of the PBE
and the objective functional with respect to the control was shown
in Spinola 36 .

Structure of the paper Section 2 presents the model’s founda-
tion, its validation based on InP QD synthesis, its applicability to
other industrial processes, and its inherent limitations. In Sec-
tion 3 we reformulate the optimization problems in terms of the
exact Method of Moments and discretize the resulting fixed-point
problem (FPP). In Section 4, we introduce a range of possible con-
straints and regularizations, followed by the sensitivity analysis,
i.e., the computation of derivatives of the discretized FPP and ob-
jective functionals in Section 5. Numerical examples illustrating
the performance of the proposed scheme are provided in Section
6, and a conclusion in Section 7.
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2 Applicability of the Model
For this study, our approach is based on the model investigated
by Wang et al. 30 , who adopted the underlying nucleation and
growth kinetics from established models by Mersmann et al. 37

which are also used e.g., in Schikarski et al. 38 . Wang et al. 30

rigorously validated the model against experimental data for InP
QD synthesis and demonstrated that it accurately predicts par-
ticle size distributions over process time. We adapt this well-
established model to an academic case that closely parallels the
InP QD synthesis process, incorporating similar nucleation and
growth kinetics within a generalized optimization framework. To
maintain experimental verification, the admissible ranges for the
process controls are taken from30.
Moreover, the model’s ability to accommodate a variety of pro-
cess conditions (see Section 6) further highlights its robustness.
Despite its robustness, our model is subject to certain inherent
limitations:
Nucleation and Growth Kinetics: Although the framework is based
on a validated model for InP QDs, it employs widely applicable
nucleation and growth kinetics37. More generally, there are only
two key requirements for these kinetics: they must be differen-
tiable with respect to concentration and, if relevant, the control
variable; and the growth kinetics must be expressible as the prod-
uct of a function depending solely on concentration (and possibly
the control variable) and a monomial in the particle size. The lat-
ter condition is trivially satisfied for the classically used diffusion-
or reaction-limited kinetics.
Precursor Chemistry: In this work, we assumed that the precursor
chemistry can be represented by a first-order reduction reaction
(2)- (5). However, this formulation is flexible, thus c̄(t) from (9)
can be replaced by any precursor chemistry that is analytically
solvable and the corresponding derivative is available.
Although our study is based on a model validated for InP QD syn-
thesis, the proposed optimization framework is broadly applicable
to other industrial processes, including the anti-solvent precipita-
tion of active pharmaceutical ingredients (APIs). For poorly sol-
uble drugs such as ibuprofen, precise control of particle size and
distribution is essential for tuning dissolution rates and bioavail-
ability. Our derivative-based framework offers a systematic alter-
native to experimental trial-and-error by enabling the design of
time-dependent inflow profiles for ibuprofen solutions into anti-
solvents. By adapting nucleation and growth kinetics to the spe-
cific chemistry of ibuprofen crystallization39–41, the framework
can identify optimal feeding strategies that produce nanoparti-
cles with the desired mean size and minimal variance, thereby
enhancing both product quality and process efficiency.

3 Exact method of moments
The basic idea of eMoM is – as prescribed in27 – to reformulate
the PBE in terms of the concentration only. The important advan-
tages of this method are on the one hand: high precision due to
non-smoothing and less run time as compared to the well-known
Finite Volume Scheme (FVS). In addition, eMoM gives access to
the full particle size distribution and not only to its moments.
However, most importantly for this contribution, the numerical

approximations of eMoM are, by construction, differentiable.

By solving the reduction reaction differential (2)-(5) analyti-
cally, we obtain the following.

c̄(t) =
∫ t

0

(
1 − e−kr(t−τ)

)
u(τ)dτ. (10)

As derived in35 and used in27, instead of solving the PBE (6)-(8)
together with the mass balance equation (9), we can solve the
following fixed point problem:

c(t) = γ1c̄(t) − πρ
6MP

∫ t

0

(
ξc[τ,xn](t)

)3N (c(τ))dτ, (11)

along with the characteristics ξc solving:

∂3ξc[t,x](τ) = G(c(τ), ξc[t,x](τ)) (12)

ξc[t,x](t) = x, (13)

for all t,τ ∈ [0,T ] and x ≥ xn where the index c for ξ emphasizes
the concentration dependence of the characteristics. The FPP pre-
sented in (11) is always an exact reformulation of the PBE and the
mass balance equation. However, from a computational point of
view, it is beneficial to the original PBE if the equation for the
characteristics, i.e., (12)-(13) can be solved analytically.

In the case of G being a product of a solely concentration-
dependent non-negative function and a monomial of the size, i.e.,
there exist n ∈ N and G0 s.t.

G(c,x) = xnG0(c) ∀ x ≥ xn, (14)

the following analytical solution of (12)-(13) is obtained for
n ̸= 1 by:

ξc[t,x](τ) =
(

x1−n + (1 − n)
∫ τ

t

G0(c(s))ds

) 1
1−n

. (15)

While for n = 1, we get the following:

ξc[t,x](τ) = xexp
(∫ τ

t

G0(c(s))ds

)
. (16)

This is in line with (15) when passing n → 1 by the definition
of the exponential function42. We omit the special case n = 1
since—to the author’s knowledge—this is of no practical rele-
vance in nanoparticle synthesis. Substituting (15) into (11) for
the case n ̸= 1, we obtain the following FPP solely in terms of the
concentration c.

c(t) = c̄(t) − πρ
6MP

∫ t

0
N (c(τ))

(
x1−n

n + (1 − n)
∫ t

τ

G0(c(s))ds

) 3
1−n

dτ. (17)

3.1 Moment Analysis

In order to evaluate the stated objective functional given by (1)
and, in general, all objective functionals formulated with mo-
ments of the PSD at the final time, we derive a formula for the
mth moment of the number density distribution q(T, ·) as a func-
tion of the concentration. Considering the solution formula27

Journal Name, [year], [vol.],1–9 | 3

Page 3 of 10 Reaction Chemistry & Engineering

R
ea

ct
io

n
C

he
m

is
tr

y
&

E
ng

in
ee

ri
ng

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

3 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
4/

20
26

 3
:4

3:
23

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
DOI: 10.1039/D5RE00333D

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5re00333d


Thm. 2.2. with α = 0, and q0 = 0, we obtain

q(t,x) =

{
N (c(τ))∂2ξc[t,x](τ)

xn
n G0(c(τ)) for xn ≤ x ≤ ξc[0,xn](t),

0 else,
(18)

where τ = τt,x satisfies ξc[t,x](τt,x) = xn.

The mth moment ym of the solution at the final time T satisfies:

ym =
∫ ∞

xn

q(T,x) xm dx (19)

=
∫ ξc[0,xn](T )

xn

N (c(τ))∂2ξc[T,x](τ)
xnnG0(c(τ)) xm dx. (20)

Moreover, by substitution of x = ξc[τ,xn](T ) as a function of τ ,
by integration of it’s derivative ∂1ξc[τ,xn](T ), and by using the
following property of the characteristics, see35 Lem. 2.7. Eq 2.11.
∂2ξc[T,ξc[τ,xn](T )](τ) = (∂2ξc[τ,xn](T ))−1, we obtain:

=
∫ 0

T

N (c(τ))
xnnG0(c(τ))

(
ξc[τ,xn](T )

)m ∂1ξc[τ,xn](T )
∂2ξc[τ,xn](T )dτ. (21)

Eventually, by using the identity, see34 Lem. 2.6. Item 1.:

∂1ξc[T,xn](τ) + xn
nG0(c(τ))∂2ξc[T,xn](τ) = 0 , we get the final

result for ym:

=
∫ T

0
N (c(τ))

(
ξc[τ,xn](T )

)m dτ. (22)

3.2 Discretization

Subsequently, we approximate the reduction reaction solution
(10), the FPP (17), and the mth moment (22) to derive a suit-
able numerical scheme. For this, we assume a discretization of
the time-horizon [0,T ] by tk ∈ [0,T ] ∀k ∈ {1, . . . ,Nt} with Nt ∈ N
being the number of time discretization points and

0 = t1 < t2 < .. . < tNt
= T.

For the sake of simplicity, we define

δk := tk+1 − tk ∀k ∈ {1, . . . ,Nt − 1}.

For the reduction reaction, we derive the following approxima-
tion:

C̄k =
k−1∑
ℓ=1

Uℓ

(
δℓ + 1−ekrδℓ

krekr(tk−tℓ)

)
, (23)

with C̄k ≈ c̄(tk), and Uℓ ≈ u(tℓ). Especially, in the case of a piece-
wise constant control u on each interval [tk, tk+1) ∀k, equation
(23) is exact. Next, we obtain the following discretization for the

FPP (compare27 and29):

Ck+1 = Ck +
(
C̄k+1 − C̄k

)
− πρ

6MP
N (Ck)δkG3

k,k

− πρ
6MP

k−1∑
ℓ=1

N (Cℓ)δℓ

(
G3

ℓ,k − G3
ℓ,k−1

)
, (24)

C1 = C̄1, (25)

with Ck ≈ c(tk) ∀k ∈ {1, . . . ,Nt}. Furthermore, the approximated
characteristics are defined as:

Gℓ,k :=
(

x1−n
n + (1 − n)

k∑
m=ℓ

G0(Cm)δm

) 1
1−n

. (26)

Combining all Nt equations (24) and (25) (for k = 1, . . . ,Nt), the
latter can be written in a compact form as:

F (C̄,C) = 0, (27)

with the mapping F : RNt ×RNt 7→ RNt . The full function F and
its derivative is defined in the supporting information (SI), see
Section S1 and S2.

Lastly, the mth moment ym can be approximated as follows:

Ym =
Nt−1∑
ℓ=1

N (Cℓ)δℓGm
ℓ,Nt−1. (28)

4 Regularization and admissible controls
In order to be able to implement the optimized conditions in a
process setup, a set of constraints might be needed. For this, we
introduce a range of constraints and regularization possibilities,
which are then also numerically studied in Section 6.

4.1 Admissible controls

The set of admissible controls Uad (see (1)) can incorporate var-
ious constraints, e.g., due to technical reasons of the precipita-
tion process setup. Canonically, these are given by a desired total
educt mass, limits on the inflow rate, as well as limited changes
of the inflow rate. All these have in common that they can be
formalized as linear constraints in terms of the process control
variable.

Desired total educt mass: A desired total mass mtot can be pre-
scribed by the integral over the control u, which results in
the discretized manner as the following linear equality con-
straint:

Nt−1∑
i=1

Uiδi = mtot, (29)

or if only a lower bound on the product mass has to be en-
sured, this can be postulated as an inequality constraint.

Limits on the inflow rate: To implement limitations on the flow
rate, i.e., bounds on u, the discretized version of u has to be
bounded from above, i.e., we obtain Nt −1 linear inequality
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constraints:

Uk ≤ umax ∀k ∈ {1, . . . ,Nt − 1}, (30)

with umax > 0 as the upper bound on the flow rate.

Limited changes of the inflow rate: For prescribing restrictions
on the change of the inflow rate u, |u̇| has to be bounded.
In discretized form, this results in 2(Nt −2) linear inequality
constraints, i.e.

|Uk − Uk+1| ≤ δkBu̇ ∀k ∈ {1, . . . ,Nt − 2}. (31)

with Bu̇ > 0 as an upper bound on the change of the inflow
rate.

4.2 Regularization

To ensure a desired smoothness of the optimal control u, penaliz-
ing its L2-norm or the L2-norm of its derivative — i.e., the H1-
semi-norm — is the canonical way. For this, we describe and
later study the impact of these two penalizations on the opti-
mized process control. In a discretized form, one has to add for
α0,α1 ∈ R>0 the following to the objective functional:

α0

Nt−1∑
i=1

δiU
2
i + α1

Nt−2∑
i=1

δ−1
i (Ui − Ui+1)2. (32)

5 Sensitivity analysis
For an efficient optimization of the time-dependent inflow rate of
new precursor in the nucleation and growth process, we calculate
the derivative of the objective functional and the nonlinear con-
straint (1) with respect to the control U . For this, we consider a
generic functional J:

∂Uk
J(C(C̄(U))) = ∂CJ(C)∂C̄C(C̄)∂Uk

C̄(U). (33)

with a slight abuse of notation, i.e. C := C(C̄(U)), C̄ := C̄(U).
For instance, for an objective functional defined as a nonlinear
function of a range of moments of the final PSD, i.e.

J(C) = Ĵ(Y1(C), . . . ,Ym(C)), (34)

its derivative is calculated by the chain rule, i.e.

∇J(C) =
m∑

i=1
∂iĴ(Y1(C), . . . ,Ym(C))∇Yi(C). (35)

As example, the objective functional (i.e., the variance of the PSD
at final time) as well as the constraint (i.e., a desired mean size at
final time) as defined in (1) and its derivatives are stated in the
SI, see Section S3 and S4. For the derivative of the moments (see
(28)), we obtain the following formula:

∂Ci
Ym =

N ′
i δiGm

i,k−1 + mG′
iδi

i∑
ℓ=1

NℓδℓGm+n−1
ℓ,k−1 if i < k,

0 else.

(36)

The derivative of the concentration w.r.t. the total concentration
C̄ is a bit more involved as C is a function of C̄ as it is the solution

of the FPP, F (C̄,C(C̄)) = 0 as defined in (27). Thus ∂C̄C(C̄) is
given by the implicit function theorem (see, for instance,43):

∂C̄C(C̄) = −
(
∂CF (C̄,C)

)−1
∂M F (C̄,C), (37)

with F (C̄,C(C̄)) = 0 (for the sake of simplicity, we omit the de-
pendencies). For the derivative of the FPP mapping with respect
to the first argument, we obtain the following.

∂C̄i
Fk(C̄,C) =


− 1 for i = k,

1 for i = k − 1,

0 else.

(38)

While the formula for the derivative with respect to the second
argument, i.e. ∂Ci

F (C̄,C), is due to readability stated in the SI
(S3). Lastly, for the derivative of C̄ w.r.t. U , i.e. the reduction
reaction, we thus obtain:

∂Ui
C̄k =

{
δi + 1−ekrδi

krekr(tk−ti) for i < k,

0 else.
(39)

The derivatives of the regularizations proposed in Section 4 are
straightforward and thus not discussed here.

6 Numerical examples
For studying the proposed method, as well as the effect of process
parameters, we consider the following growth and nucleation ki-
netics, which were inspired by38 and37.

G0(c) :=

{
kg(c − ceq) for c > ceq,

0 else,

N (c) :=

{
k

(1)
c

(
c

ceq

) 7
3 exp

(
−k

(2)
c log

(
c

ceq

)−2
)

for c > ceq,

0 else,

with the coefficients stated in table 1.
To showcase the impact of a time-dependent process control,

i.e., the time-dependent inflow rate of precursor solution, we
compare the obtained result to any constant control, i.e., a con-
stant inflow over a given time-horizon. In formulas, we compare
the obtained final PSD for the optimized control to the final PSD
obtained by constant controls parametrized by their total amount
m̄ ∈ R>0 and time horizon t̄ ∈ (0,T ]

ut̄,m̄(t) := m̄
t̄

χ(0,t̄)(t). (40)

In this study, two types of constant control were considered.
The first constant control, corresponds to the maximum inflow
rate umax applied over the time required to add the full mass;
here, no optimization is applicable, as both the inflow rate and
total addition time are fixed. The second constant control, refers
to a constant inflow rate chosen to achieve the target mean par-
ticle size µD. This rate was determined via a parameter sweep
over possible inflow rates. Once selected, the resulting variance
of the particle size distribution is fixed, since the inflow rate and
total addition time are fully determined by the target mean size
and total mass.
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Table 1 Coefficients for the numerical example. The magnitude of the coefficients are inspired by the formation of indium-phosphate quantum dots
( 30).

symbol ceq kg k
(1)
c k

(2)
c

πρ
6MP

kr µD κ Tc umax MP ρ

value 10−13 10−7 2 · 10−22 104 2 · 101 5 − 20 3 10−2 − 100 10 − 30 0.03 − 0.04 233.38 4500

unit mol
l

m·l
s·mol

1
s − mol

m3·l − n · m − s m3

s
kg·k
mol

kg
m3

Fig. 1 Comparison of two constant controls (red and purple) with the
optimized control (black). The constant controls are chosen in red: such
that the final PSD possesses the desired mean size µD = 3 and in purple:
to showcase a shorter injection time, showing that reducing the injection
time reduces the mean size. This highlights the benefit of the time-
dependent control, which clearly shows a smaller standard deviation of
the final PSD.

Both choices lead to significantly broader size distributions
compared to the time-dependent optimal control and, in the case
of a maximal inflow rate for short times, not even satisfying the
desired mean size (compare Fig. 1, bottom figure, purple)

When comparing the quality of the resulting product, the dif-
ference becomes even more prominent. We compare in Fig. 2
the mass percentage of NPs in a defined size range around the
desired size; in other words, we analyze the product purity for
the resulting PSD for different purity thresholds. In formulas, we
visualize:

Q(a) :=

∫ µD(1+a)
µD(1−a) x3q(T,x)dx∫ ∞

xn
x3q(T,x)dx

. (41)

For example, by computing the percentage of the mass of
nanoparticles in the size range of µD ±0.1µD, the optimal control
results in NPs with a purity of above 99% while the best constant
control results in NPs with a purity of approximately 77%. This
clearly shows the huge impact of time-dependent process controls

Fig. 2 Comparison of the product quality as defined in Eq. (41) for
different inflow rate profiles as described in Fig. 1. The best constant
control possesses, e.g., a 10% relative standard deviation, a product
quality of only approximately 77%, whereas the product quality for the
optimized control reaches above 99%.

on the resulting product quality.

Fig. 3 Variation of final inflow time Tc from 10 to 30 while the upper
bound umax = 0.04 and regularization parameter κ = 10−1 is chosen
constant. There is a clear influence of shorter times, i.e. Tc = 10 on the
width of the final PSD (red, lower figure) as the nucleation phase and
growth phase cannot be “separated´´ as needed, whereas there is only a
minor gain when increasing Tc from 20 to 30.

In the following paragraphs, we discuss the effect of a range of

6 | 1–9Journal Name, [year], [vol.],
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constraints and parameters in the proposed optimization frame-
work.

Fig. 4 Limiting the maximal inflow rate u(t) ≤ umax ∀t ∈ [0,T ]. The
effect on the final PSD (lower figure) is only minor and there is for
decreasing umax only a slight widening of the PSD visible. The final
inflow time Tc = 20 and regularization parameter κ = 10−1 are chosen
to be constant.

Final time: The effect of the final time of the control Tc is shown
in Fig. 3 where Tc ranges from Tc = 10 to Tc = 30. By ad-
justing the final time, which is the moment when the inflow
must cease, the ’structure’ of the control is preserved. This
structure consists of an initial short injection pulse to stimu-
late nucleation, followed by a brief pause before an almost
linear increase in the injection rate that promotes growth.
However, because of the limited time available to inject a
predefined mass, the injection rate during the growth phase
becomes too high, resulting in additional nucleation. This
leads to a larger ’tail’ of the PSD (particle size distribution)
on the left. This effect is particularly pronounced for Tc = 10.
Furthermore, increasing the final time from Tc = 20 (black)
to Tc = 30 (purple) hardly reduces the standard deviation of
the final PSD.

Bounds on u: The requirement for a restricted inflow rate could
be linked to the experimental setup. In Fig. 4 the impact of a
limited umax ranging from 0.03 to 0.05 is illustrated. Within
the selected range of bounds, the effect on the final PSD is
minimal, exhibiting only a slight widening of the PSD as the
upper bound decreases.

Reduction rate kr: The reduction rate kr (see (2)) governs the
rate at which the total concentration c̄ (see (4)) can rise

Fig. 5 The reduction rate was varied as kr ∈ {5,10,20}. At lower
reduction rates, the inflow rate is controlled more indirectly, leading to
a sub-optimal reactant concentration profile and, as a result, a broader
PSD.

and subsequently be depleted during particle formation. In-
creasing kr enhances the controllability of the NP synthesis
process by the addition of precursor solution and therefore
results in a narrower PSD (Fig. 5).

H1 penalization: Penalizing the H1-norm of the control in the
optimization setting regularizes the optimal control ob-
tained. The effect can be seen in Fig. 6, where, with increas-
ing penalization factor κ, the control becomes increasingly
regularized.

7 Conclusion and Outlook
The possibility of optimizing NP synthesis, including nanoparti-
cle nucleation and size-dependent growth based on eMoM, was
demonstrated. In addition to the PBE, a first-order reduction reac-
tion is included to enlarge the applicability of the stated results.
The derived sensitivities to efficiently optimize time-dependent
process controls strongly rely on the differentiability of the dis-
cretization of the fixed-point problem derived by eMoM. Based
on an academic setting, inspired by commonly used nucleation
and growth kinetics, the effects of the involved model parame-
ters, regularizations, constraints, and discretization are studied
in detail, demonstrating the suitability of the presented approach
for optimizing nanoparticle precipitation processes.

Although this study focuses on optimizing the inflow rate for
nanoparticle synthesis, the underlying framework is more general
and can be adapted to optimize other time-dependent processes.
In particular, the PBE and eMoM used in this study are broadly
applicable to other nanoparticle systems. By tailoring the growth

Journal Name, [year], [vol.],1–9 | 7
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Fig. 6 Increasing the H1-regularization from κ = 10−2 to 100 results in a
control with increasing regularity (left plot) and causes an increase in the
standard deviation of the resulting PSD (lower figure). The final inflow
time Tc = 20 and upper bound umax = 0.04 are chosen to be constant.

and nucleation kinetics to the specific chemistry, this framework
can optimize the synthesis of a wide range of nanoparticle ma-
terials. In addition, process conditions such as temperature21–24

and pH25,26 play a critical role in nanoparticle synthesis, as they
directly influence nucleation and growth kinetics. By extending
the kinetic equations to incorporate both temperature and pH de-
pendences, the framework can be adapted to optimize the time-
dependent profiles of these variables. For pH-sensitive systems,
this may require further additional equations to model pH dy-
namics within the reaction environment. Lastly, the flexibility of
the framework enables the simultaneous optimization of multiple
process variables. For example, both the inflow rate and the tem-
perature profiles can be optimized at the same time, potentially
providing even better control over the final particle size distribu-
tion. In future work, we aim to further investigate the generality
of the proposed framework by applying it to different nanoparti-
cle systems and extending it towards the optimization of multiple
process variables.
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