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We investigate the potential of artificial neural networks (ANNs) to approximate the equilibrium gas-phase

composition and carbon yield in methane pyrolysis (MP), dry reforming of methane (DRM), steam methane

reforming (SMR), and partial oxidation of methane (POM). Unlike the conventional thermodynamic

approach, which relies on the Gibbs free energy minimization, the ANN-based method provides a data-

driven alternative. Using supervised learning, the model captures the complex, nonlinear relationships

between process parameters, such as temperature, pressure, and reactant ratios, and the resulting

equilibrium product compositions. This approach not only circumvents the computationally intensive

nature of Gibbs energy minimization but also enables rapid predictions across a broad range of operating

conditions. The study evaluates the performance of a representative ANN architecture and compares its

predictions with conventional thermodynamic calculations to assess the method's accuracy and

generalization capability. The results demonstrate that the trained ANN predicts the gas-phase

compositions and carbon yields very well, even when all input variables are interpolated. Moreover, the

ANN performs the same task several thousand times faster than the conventional method. Overall, the

results demonstrate the potential of ANNs as efficient tools for accelerating equilibrium calculations in

methane conversion processes. The developed and validated approach can be considered a useful tool for

predicting the equilibrium gas composition and carbon yield in methane pyrolysis and reforming processes.

The SI provides the synaptic weights necessary for the practical application of ANNs to calculate the

equilibrium gas composition and carbon yield in MP, DRM, SMR, and POM over a wide range of

temperatures, pressures, and initial reactant compositions.

1. Introduction

Methane, the primary component of natural gas, plays a
critical role in the global energy and chemical industries due
to its high hydrogen-to-carbon ratio, the highest of any
hydrocarbon. As the demand for low-carbon and hydrogen-
based energy carriers continues to rise, the development of
efficient and cleaner methods of methane utilization has
attracted significant attention.

Table 1 summarizes the reactions occurring in various
process alternatives for hydrogen generation from methane.
To date, steam methane reforming (SMR) has been
established as the leading industrial process for hydrogen
generation, accounting for approx. 62% of global H2

production.1 Given that the SMR reaction (eqn (1) in Table 1)
is usually carried out along with the water–gas shift reaction
(WGS reaction, eqn (5)), the SMR process yields 4 moles of

H2 per mole of CH4. Basic calculations based on this
stoichiometry indicate that CO2 emissions amount to 5.5 kg
CO2 per kg H2. When life cycle emissions are considered,
about 9 kilograms CO2-equivalent per kilogram of H2 is
reported for a non-CCS process.1 When additional methane
emissions (e.g., venting, leakages) and associated CO2

emissions (e.g. methane flaring) are considered, total
emissions can reach 11 kg CO2-eq/kg H2 for SMR-based
hydrogen production from natural gas without CCS.2

In response to the need for decarbonized H2 production,
several promising alternative methods have emerged,
including dry reforming of methane (DRM, eqn (2)), methane
pyrolysis (MP, eqn (3)) and partial oxidation of methane
(POM, eqn (4)). Please note that similar to the SMR process
(eqn (1) and (5)), both DRM and POM can also be coupled
with the WGS reaction (eqn (5)) to improve the H2/CH4 molar
ratio.

DRM (eqn (2)) is considered an environmentally friendly
alternative to SMR, as it converts CH4 and CO2, two primary
greenhouse gases, into syngas (a mixture of H2 and CO).
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Under appropriate process conditions, an equimolar mixture
of H2 and CO can be obtained, which is ideal for Fischer–
Tropsch synthesis3 and the production of long-chain
hydrocarbons and oxo-alcohols.4 This equimolar ratio is also
favourable for the synthesis of dimethyl ether, a compound
regarded as a promising green fuel of the future.

The most significant benefit of MP (eqn (3)) is that it
produces H2 without emitting CO2. Instead, solid carbon is
generated in large quantities (3 kg of C per 1 kg of H2), which
can be utilized as a raw material in the production of rubber,
tires, printers, and plastics, or safely sequestrated. As a result,
MP is frequently considered a bridge technology in
transitioning from fossil to renewable fuels.5

Unlike the methods above, POM is exothermic, which
makes it energy-efficient; however, it is more prone to hot-
spot formation and catalyst sintering. Additionally, pure
oxygen is required instead of air, which increases CAPEX due
to the need for an oxygen production facility.

The performance of above methane conversion methods
strongly depends on operational parameters such as
temperature, pressure and feed composition. Accurate
prediction of equilibrium gas composition and solid carbon
yield under different conditions is central for process
optimization, scale-up and environmental impact
assessment. Conventional modelling approach using the
Gibbs minimization method requires knowledge of
thermodynamics. On the other hand, replacing this classical
modelling approach with artificial neural networks (ANNs)
shifts the problem from a physics-oriented to a data-driven
one. While the Gibbs minimization method relies on detailed
thermodynamics and minimizes the system's Gibbs free
energy to determine equilibrium compositions, an ANN
builds input–output relationships using only data, without
prior knowledge of the underlying thermodynamic laws. This
makes ANNs particularly attractive in scenarios where quick
predictions are needed. Significantly, unlike the Gibbs
minimization method, ANNs may suffer from extrapolation
beyond the training data. Therefore, while ANNs can
complement or even replace traditional methods in certain
contexts, careful validation and consideration of their
limitations are essential.

A few studies have investigated thermodynamic
equilibrium using the Gibbs free energy minimization
method for SMR,6–10 DRM,6–8,10,11 POM,6,7,12 MP.6,7,13

Additionally, several articles have addressed steam reforming
of various liquid fuels such as methanol,9,14 ethanol,9,15,16

glycerol,9,15,17,18 as well as coal gasification.6,19

To the best of our knowledge, there are very limited
literature on an application of ANNs to predict
thermodynamic equilibrium in such systems. However, some
successful attempts at modeling liquid–liquid and vapor–
liquid equilibria using ANNs can be found in the relevant
literature.20–24

Da Silva Pimentel et al.25 developed an ANN to predict
syngas composition. They considered various types of
biomass, gasification agents and gasifiers using data
collected from the literature. A total number of 33 ANN
topologies with different activation functions were tested,
each comprising 10 input neurons and 4 output neurons.
The best topology showed R2 values ranging from 0.88 to
0.98 for training, and from about 0.70 to 0.91 for testing. The
authors recommended an ANN architecture with a maximum
of two hidden layers and the use of either the Bayesian
regularization backpropagation algorithm or the Levenberg–
Marquardt backpropagation algorithm. A comparison
between the ANN model within a reliable prediction range
and the results from the minimization of Gibbs free energy
was also performed confirming the consistency of the ANN
model.

Igwegbe et al.26 used ANNs to model the steam reforming
of naphthalene. The training dataset was generated using the
Gibbs free energy minimisation method. They investigated
the effect of temperature and steam-to-oil ratio on the
selectivity of H2, CO2, CO and CH4 in the product stream.
The R2 coefficient and the root mean square error (RMSE) for
the training, validation and testing datasets and all gases was
higher than 0.99 and lower than 1 mol%, respectively.

Hossain et al.27 reported on an application of ANNs for
modelling DRM over Ni/CaFe2O4 catalysts. The ANN training
was performed using experimental data. Two types of ANNs,
multi-layer perceptron (MLP) and radial basis function (RBF),
were employed for the modelling. Both ANNs were fed with

Table 1 The main and side chemical reactions occurring in processes for hydrogen generation from methane

Reaction Occurrence in a process/processes ΔH0 [kJ mol−1] Type of reaction Equation

CH4 + H2O ⇌ CO + 3H2 DRM, SMR, POM 205.9 Main (SMR) (1)
CH4 + CO2 ⇌ 2H2 + 2CO DRM, SMR, POM 247.0 Main (DRM) (2)
CH4 ⇌ C(s) + 2H2 MP, DRM, SMR, POM 75.0 Main (MP) (3)
CH4 + 0.5O2 ⇌ CO + 2H2 POM −36.0 Main (POM) (4)
CO + H2O ⇌ CO2 + H2 DRM, SMR, POM −41.0 Side (5)
2CO ⇌ C(s) + CO2 DRM, SMR, POM −172.5 Side (6)
CO2 + 4H2 ⇌ CH4 + 2H2O DRM, SMR, POM −164.7 Side (7)
H2 + CO ⇌ C(s) + H2O DRM, SMR, POM −175.3 Side (8)
CO2 + 2H2 ⇌ C(s) + 2H2O DRM, SMR, POM −134.4 Side (9)
CO + 0.5O2 ⇌ CO2 POM −283.0 Side (10)
C(s) + O2 ⇌ CO2 POM −393.5 Side (11)
2C(s) + O2 ⇌ 2CO POM −221.0 Side (12)
CH4 + 2O2 ⇌ CO2 + 2H2O POM −890.3 Side (13)
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input signals consisting of the CH4/CO2 feed ratio, reaction
temperature and catalyst metal loading, while the output
signals included the CO2 and CH4 conversions and the H2

and CO yields. The MLP-based ANN model demonstrated
superior performance compared to the RBF-based model.

Zamaniyan et al.28 investigated the application of an ANN to
model an industrial hydrogen plant. They employed a three-
layer ANN, and the training dataset was generated using
conventional modelling by varying parameters such as feed
temperature, reformer pressure, the steam-to-carbon ratio and
carbon dioxide-to-methane ratio in the feed stream. A tangent
sigmoid activation function was used in both the hidden and
output layers, and the ANN was trained with a gradient descent
algorithm. The optimum number of neurons in the hidden
layer was determined by minimizing the MSE. The ANN model
predicted temperature, pressure andmole fraction of hydrogen
and carbonmonoxide in the product of the hydrogen plant.

In the work of Ayodele and Cheng29 the process of
synthesis gas production from DRM over ceria supported
cobalt catalyst in a fixed bed stainless steel reactor was
investigated. ANN and Box Behnken design (BBD) were
employed to investigate the effects of reactant partial
pressures, reactant feed ratios, reaction temperature on the
reactor performance. Good agreement was shown between
the predicted outputs from the ANN model and the
experimental data. Optimum reactant feed ratio of 0.60 and
CH4 partial pressure of 46.85 kPa were obtained at 728 °C
with corresponding conversions of 74.84% and 76.49% for
CH4 and CO2, respectively.

This paper investigates the potential of using an ANN as a
modelling tool for describing the gas-phase composition and
carbon yield in MP and three widely studied reforming
processes: DRM, SMR and POM. The nonlinear approximation
capabilities of ANNs provide a robust computational
framework for capturing the complex relationships governed
by thermodynamics. Moreover, the high computational
efficiency of a trained ANN makes it a promising alternative to
conventional thermodynamic models, especially in scenarios
which require rapid predictions or the incorporation of
equilibrium data into CFD simulations. To highlight this
advantage, it is useful to compare the two methods. While the
classical thermodynamic approach takes approximately 15
seconds to compute DRM equilibrium data for 31 temperatures
and 3 pressures, the ANN performs the same task in just
0.00233 seconds, making it 6438 times faster.

2. Methods
2.1. The Gibbs free energy minimization method

The method of minimizing the Gibbs free energy was used to
calculate equilibrium gas compositions and carbon yields in
methane pyrolysis (MP), dry reforming of methane (DRM),
steam methane reforming (SMR) and partial oxidation of
methane (POM).

Thermodynamic equilibrium in a system is achieved when
the total Gibbs free energy, Gt, reaches its minimum value,

i.e., when its change is zero at a given temperature, pressure,
and chemical species composition (eqn (14)).

min Gt
T,P = f (n1, n2, …, ni, …, nN, nC) (14)

where ni is the number of moles of the i-th chemical species.
This minimization considers CH4, CO2, H2, CO, H2O, O2,

N2 and C(s), as the side reactions associated with MP, DRM,
SMR, and POM, as outlined in the Introduction, involve only
these species. Since these compounds represent the gas and
solid phases, the total Gibbs free energy to be minimized can
be expressed as follows

Gt ¼
XN
i

ngi μ
g
i þ nsCμ

s
C (15)

where μ is the chemical potential and the superscripts ‘g’
and ‘s’ denote the gas and solid phases, respectively.

Then, introducing the definition of chemical potential
and utilizing the fact that the fugacity of a solid (carbon) is
unity, eqn (15) can be rewritten as:

Gt ¼
XN
i

ngi G0;g
i þ RT ln

f gi
P0

� �
þ nsCG

0;s
C (16)

After expressing the fugacity, f gi , as the product of mole
fraction, yi, the fugacity coefficient, ϕi, and the total pressure,
P, the final equation becomes:

Gt ¼
XN
i

ngi G0;g
i þ RT ln

yiϕiP
P0

� �
þ nsCG

0;s
C (17)

The fugacity coefficient was calculated using the Peng–
Robinson equation of state:

P ¼ RT
V − b − a

V V þ bð Þ þ b V − bð Þ (18)

Rewriting eqn (18) into the compressibility factor form, gives

Z3 − (1 − B)Z2 + (A − 3B2 − 2B)Z − (AB − B2 − B3) = 0 (19)

where

A ¼ aP
R2T2 (20)

B ¼ bP
RT

; (21)

The a, b and α can be calculated as follows:

a ¼ 0:45724
R2T2

c

Pc
α (22)

b ¼ 0:07780
RTc

Pc
(23)

α ¼ 1þm 1 −
ffiffiffiffiffiffiffiffiffiffiffi
T=Tc

p� �� �2
(24)

where m = 0.37464 + 1.54226ω − 0.26992ω2.
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Solving eqn (19) and using the largest real root, Zg, yields
eqn (25), which is used to calculate the fugacity coefficient:30

lnϕ ¼ Zg − 1 − ln Zg −B
� �

− A

2
ffiffiffi
2

p
B
ln

Zg þ 1þ ffiffiffi
2

p� �
B

Zg þ 1 −
ffiffiffi
2

p� �
B

 !
(25)

The standard Gibbs free energy at a given temperature was
calculated from the Gibbs–Helmholtz equation:

G0(T) = H0(T) − TS0(T) (26)

where H0(T) and S0(T) are the standard enthalpy and entropy,
respectively, both at 1 bar. The standard enthalpies and
entropies for the gaseous species were obtained from the
NIST database and calculated using the Shomate equations.31

For carbon (graphite), the following relationship for the
molar heat capacity was employed:32

C0
p,C = A + BT + CT2 + DT3 + ET4 + FT5 + GT6 (27)

The standard enthalpy and entropy of graphite were
calculated as follows

H0
C(T) = H0

C(298.15) +
R T
298.15C

0
p,CdT (28)

S0C Tð Þ ¼ S0C 298:15ð Þ þ
ð T

298:15

C0
p;C

T
dT (29)

The Gibbs free energy minimization was carried out with the
following constraints:

• Mass balance

XN
i

Aikni ¼ bk (30)

where Aik is the number of atoms of element k (C, H, O, and
N) in species i (CH4, CO2, H2, CO H2O, N2, O2, C), bk is the
total moles of element k in the system.

• Nonnegative number of moles

ni ≥ 0 (31)

The minimization was implemented in Matlab R2024b
(MathWorks, Inc.).

Modelling results were generated and are presented in
this work using the following definitions:

• For gaseous species as mole fractions, yi ¼ ni;eqPN
i

ni;eq

• For carbon as carbon yield, YC;eq ¼ nC;eq
nCH4 ;inþnCO2 ;inþnCO;inþnC;in

The thermodynamic calculations were validated using the
following expression obtained for MP elsewhere.33

ΔG J mol − 1
� � ¼ 89658:88 − 102:27T − 0:00428T2 − 2499358:99

T
(32)

Using eqn (32), the pressure equilibrium constant Kp was
calculated as:

Kp = e−ΔG/RT (33)

Recalculation of Kp into the mole fraction equilibrium
constant, Ky, yields:

Ky ¼ Kp
P
P0

� �−Δν
(34)

where Ky is the equilibrium constant in terms of mole
fractions, Δν is the change in the number of moles of gas,
which is unity for MP.

Then, utilizing the definition of Ky for MP, one obtains:

Ky ¼
y2H2

yCH4

¼ 2Δnð Þ2
nCH4;0 þ Δnþ nN2

� �2 nCH4;0 þ Δnþ nN2

� �
nCH4;0 −Δn

(35)

Rearranging and solving the resulting quadratic equation
yields a real root:

Δn ¼ −KynN2 þ
ffiffiffi
Δ

p� �
2Ky þ 8

(36)

where Δ ¼ K2
yn

2
N2

− 4 Ky þ 4
� �

−K ynCH4;0nN2 −Kyn2CH4;0

� �
.

Since Δn is the number of converted CH4, the CH4

conversion can be calculated as:

αCH4 ¼ 100%
Δn

nCH4 ;0
(37)

Fig. 1 compares the CH4 conversion profiles for MP obtained
using the Gibbs minimization method with those calculated
from eqn (37) (ref. 33) at pressures of 1, 2 and 5 bar, showing
an excellent agreement.

2.2. ANNs

To enable an accurate approximation of the equilibrium gas
composition and carbon yield for MP, DRM, SMR, and POM
using an ANN, the following input and output vectors were
defined:

inputs ¼ nCO2

nCH4

;
nH2O

nCH4

;
nO2

nCH4

;T ; P
	 


(38)

outputs = [yCH4
, yCO2

, yCO, yH2
, yH2O, YC] (39)

The selected inputs represent all independent variables that
govern the thermodynamic equilibrium of the considered
methane conversion processes. The molar feed ratios nCO2

/
nCH4

, nH2O/nCH4
, nO2

/nCH4
, define the overall feed composition

and thus determine the relative availability of reforming
agents. Temperature and pressure were included as they
strongly influence equilibrium. Together, these five
parameters uniquely specify the thermodynamic state of the
system.
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The outputs were chosen to reflect the primary species
participating in methane conversion reactions as well as the
carbon yield, YC, which quantifies solid carbon formation.
This selection ensures that the ANN captures both the gas-
phase composition and the extent of carbon deposition, that
is key indicators of reactor performance across MP, DRM,
SMR and POM (Fig. 2).

The ANN training was carried out in Matlab R2024b
(MathWorks, Inc.) using the Neural Net Fitting toolbox.

Following the recommendations of Pimentel et al.,25 the
use of the satlin activation function in the output layer and
training algorithms other than trainlm or trainbr (specifically
traingdx, traingd, traingda, traingdm, trainbfg, traincgb,
traincgf, traincgp, or trainrp) was avoided, as the authors
suggested these configurations exhibit poor performance.

Consequently, the Levenberg–Marquardt (trainlm) algorithm
was selected for network optimization.

The outputs were calculated as follows:

outputs ¼ yk ¼ σ2
XK
i¼0

ww
kivi

 !

¼ σ2
XK
i¼0

ww
kiσ1

XN
j¼0

wu
ijxj

 ! !
(40)

where: σ1 is the bipolar sigmoidal activation function (eqn
(30)), in which the auxiliary parameter has a unit value (β =
1), σ2 is the linear activation function (eqn (31)) with zero free
term (b = 0) and unit slope (a = 1), S is the weighed sum of
inputs (i.e. the sum of input signals multiplied by the
appropriate weights), xj is the j-th input signal, wu

ij is the
weight of the input signal to the i-th hidden layer neuron
coming from the j-th input layer neuron, vi is the i-th output
signal from the hidden layer (i.e. output signal from the i-th
hidden layer neuron), ww

ki is the weight of the input signal to
the k-th output layer neuron coming from the i-th hidden
layer neuron.

σ1 = σ1(βS) = σ1(S) = tanh(S) (41)

σ2 = σ2(S) = a·S + b = S (42)

The fitting error for the entire network was defined as the
arithmetic mean of the sum of squared residuals:

E ¼ E w!� � ¼ 1
P

XP
p¼1

XM
k¼1

y pð Þ
k − z pð Þ

k

� �2
(43)

where: P is the number of datasets (x→, z→), p = 1, …, P indexes
the individual samples from the training, validation and
testing datasets, M is the number of output neurons, k = 1,
…, M indexes the output neurons, yk is the network's output
for the k-th output neuron, zk is the target value for the k-th
output neuron.

Despite the recommendation of Pimentel et al.25 to
employ two hidden layers in data-driven modelling for
predicting biomass gasification and for comparison with
thermodynamic equilibrium models, rather than using three
or four layers, we adopted a single hidden layer, as also
implemented by Igwegbe et al.26 This choice is supported by
the universal approximation theorem, which states that
continuous feedforward neural networks with a single hidden
layer and any continuous sigmoidal nonlinearity can
approximate arbitrary decision regions with arbitrary
accuracy.34,35

The ANN used in this study has a 5–40–6 architecture,
corresponding to 5 input neurons, one hidden layer of 40
neurons, and 6 output neurons. While several architectures
were tested during preliminary experiments, the primary aim
was to demonstrate the predictive capability of the ANN
rather than to perform an exhaustive hyperparameter
optimization. The 5–40–6 structure was selected as it

Fig. 2 The used ANN architecture: 5 input neurons, 40 hidden
neurons, 6 output neurons.

Fig. 1 Comparison of CH4 conversion profiles calculated using the
Gibbs minimization method and those calculated using eqn (32) taken
from ref. 33 at pressures of 1, 2, and 5 bar.
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provided satisfactory performance while maintaining
simplicity and clarity in presentation.

Overfitting risks were mitigated by evaluating ANN
predictions on separate testing sets that were not used during
training (Fig. 7–9, no. 2.1–5.3). For each tested architecture,
predicted values were compared with the corresponding
target values across all testing sets using a MATLAB script.
The high agreement between predictions and targets, as
shown in Fig. 13, 15 and 17–20 indicate that overfitting was
minimal.

Table 2 summarizes all training and testing cases
considered in this study. For example, the ANN was trained
using 2233 input samples (as defined in eqn (38)) in dataset
no. 1, which included:

• 1 data subset for MP,
• 8 data subsets for DRM,
• 8 data subsets for SMR,
• 7 data subsets for POM.
These data subsets cover temperatures from 0 to 1500 °C

in 50 °C increments, at pressures of 1, 3, and 5 bar. The
number of input samples was selected to ensure adequate
coverage of the input space while maintaining computational
efficiency. This number was determined after preliminary
tests indicated that further increasing the dataset size
resulted in negligible improvement in prediction accuracy.
Therefore, while the same trends could in principle be
represented with a smaller number of data points, this would
likely come at the expense of predictive precision and
robustness across the full range of operating conditions
considered. Overall, this is always a trade-off between data
density and ANN generalization capability. A denser dataset
can improve the accuracy of the ANN within the training
domain, as it allows the network to better capture nonlinear
dependencies between variables. However, excessively
increasing the number of training points may lead to
redundancy, longer training times, and potential overfitting.
Conversely, using fewer data points can make the model
more efficient but may reduce interpolation (or

generalization) accuracy, especially in regions where the
underlying thermodynamic relationships change rapidly.

The corresponding targets for the supervised training of
ANN were calculated using the thermodynamic approach
described in section 2.1.

The ANN training was carried out by monitoring the
network performance using a validation set (15% of the data)
and a test set (15% of the data).

The interpolation ability of the ANN was evaluated in
separate tests with respect to temperature (no. 2.1–2.4),
pressure (no. 3.1–3.4), and reactant ratios (no. 4.1–4.3).
Additionally, test sets 5.1–5.3 were devoted to the
simultaneous evaluation of interpolation performance
across temperature, pressure, and reactant ratios. The
extrapolation ability of the ANN was not assessed, in
recognition of the inherent limitations of data-driven
models in such scenarios.

Fig. 3 Thermodynamic calculation results for MP at 1, 3 and 5 bars.

Fig. 4 Thermodynamic calculation results for DRM (nCO2
/nCH4

= 1) at
1, 3 and 5 bars.

Fig. 5 Thermodynamic calculation results for SMR (nH2O/nCH4
= 1) at 1,

3 and 5 bars.
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3. Results and discussion
3.1. Thermodynamic calculation results

Fig. 3 presents the calculation results for MP at 1, 3, and 5
bar. Only CH4, H2 and solid carbon are observed in the
system between 0 and 1500 °C in accordance with eqn (3).
Since MP is an endothermic process, higher temperatures
favour the conversion of CH4 into H2 and solid carbon.
Conversely, increasing the pressure has the opposite effect,

decreasing CH4 conversion in line with Le Chatelier's
principle.

Fig. 4 shows the calculation results for DRM, which is
supplied with an equimolar mixture of CH4 and CO2. Similar
to MP, DRM is an endothermic process (eqn (2)). The
equilibrium at temperatures above 1100 °C is strongly shifted
toward the formation of H2 and CO, in accordance with
thermodynamic principles. At lower temperatures, the system
also contains H2O and solid carbon, along with partially
unreacted CH4 and CO2. Increasing the total pressure shifts
all equilibrium profiles toward higher temperatures, which
aligns with Le Chatelier's principle. It is also notable that
within the temperature range of 0–500 °C, the equilibrium
mole fractions of CH4 and CO2 initially have relatively low
values but gradually increase. This behaviour is due to the
high contribution of water vapor in the gas phase at low
temperatures. Above 500 °C, the influence of water vapor
diminishes, leading to a shift in the equilibrium
composition.

Fig. 5 presents the thermodynamic results for the SMR
process using an equimolar mixture of H2O and CH4. The
analysis was conducted over the same temperature and
pressure ranges as those discussed for the previous two
cases. At temperatures above 1100 °C, the equilibrium
composition aligns with the stoichiometry of the overall
reaction (eqn (1)), yielding mole fractions of 0.75 for H2 and
0.25 for CO. At lower temperatures, unreacted CH4 and H2O
are also present in the system. Additionally, small amounts

Fig. 6 Thermodynamic calculation results for POM (nO2
/nCH4

= 0.5) at
1, 3 and 5 bars.

Fig. 7 Comparison of fitting quality between ANN predictions and thermodynamic calculations for the training set no. 1 and interpolation sets no.
2.1–2.4 (Table 2).
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Fig. 8 Comparison of fitting quality between ANN predictions and thermodynamic calculations for the interpolation sets no. 3.1–3.4 (Table 2).

Fig. 9 Comparison of fitting quality between ANN predictions and thermodynamic calculations for the interpolation sets no. 4.1–4.3 and 5.1–5.3
(Table 2).
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of CO2 and solid carbon are observed, indicating the
occurrence of side reactions such as the CH4 cracking and
the Boudouard reaction (eqn (3) and (6)). As expected,
increasing the total pressure reduces the conversion of
reactants, as the main reaction (eqn (1)) results in an
increase in the total number of moles.

Fig. 6 shows the results for POM with the typical nO2
/nCH4

ratio of 0.5. As before, the equilibrium of the main reaction
(eqn (4)) shifts toward the products at temperatures above
approx. 1100 °C. However, this is due to the Gibbs free
energy, which becomes more negative at higher

temperatures. As a result, the mole fractions of H2 and CO
are 0.66 and 0.33, respectively. At lower temperatures,
unreacted CH4 is observed. Additionally, varying amounts of
H2O, CO2 and solid carbon are present resulting from side
reactions. In this figure, a similar effect to that observed in
Fig. 4 is visible. Namely, the equilibrium concentration of
CH4 slightly increases within the temperature range of 0–300
°C. This behaviour is due to the significant presence of water
vapor in the equilibrium mixture at lower temperatures,
whose contribution decreases substantially as the
temperature rises.

Fig. 10 Comparison of fitting quality between polynomial fitting using third-, fourth- and fifth-order polynomials.

Fig. 11 Comparison of the ANN predictions and targets for training set no. 1 (see Table 2 and Fig. 7).
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3.2. ANN results

Fig. 7–9 present the results of the ANN training and the
assessment of its generalization abilities. The numbering of
the figures, as given in their titles, corresponds to the
respective rows in Table 2.

For comparative purposes, we also developed a Matlab
script to perform polynomial fitting of the relevant
variables using third- (56 parameters), fourth- (126
parameters), and fifth-order (252 parameters) polynomials.
Similar to the ANN approach, this approach offered a

straightforward implementation and reduced
computational time compared to Gibbs free energy
minimization simulations. However, the predictive accuracy
depended on the polynomial order and was generally
lower than that achieved with the ANN predictions (see a
comparison in Fig. 10). This comparison highlights the
trade-off between simplicity and predictive performance.
While polynomial fitting reduces computational cost, it
does not attain the same level of accuracy as the ANN
model.

The training set no. 1 (Table 2) shows the training quality
for the entire dataset, which includes data for MP, DRM,
SMR and POM (a total of 2232 patterns). Overall, the ANN
predictions demonstrate excellent agreement across all
output signals (Fig. 11). However, the carbon yield exhibits
slightly poorer agreement with the training subset.

For temperature interpolation, all tested methods: MP,
DRM, SMR and POM produced very similar results. Fig. 12
and 13 present the parity plots and the ANN prediction
quality for DRM, respectively (see also Fig. 7). Please note
that parity plots for the remaining methods are provided in
the SI.

The ability of the ANN to predict data for interpolated
pressures was demonstrated using the SMR subset (no. 3.3 in
Fig. 8). As shown in Fig. 14 and 15, the ANN predicts gas-
phase concentrations more accurately than carbon yields.
Nonetheless, the agreement between predicted and training
patterns remains satisfactory.

Fig. 12 Comparison of the ANN predictions and targets for testing set no. 2.2 (see Table 2).

Fig. 13 Comparison of the ANN predictions and targets for testing set
no. 2.2 (see Table 2).
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Further similarities are observed when the ANN predicts
results for interpolated ratios of nCO2

/nCH4
, nH2O/nCH4

and
nO2

/nCH4
. To avoid redundancy, Fig. 16 and 17 highlight the

ANN performance for POM only (parity plots for the other
methods are presented in the SI).

Finally, the ability of the ANN to interpolate all signals, i.e.
the ratios nCO2

/nCH4
, nH2O/nCH4

and nO2
/nCH4

, temperature and
pressure, was thoroughly examined. Fig. 18 and 19 illustrate
the ANN prediction performance for DRM, SMR and POM,
showing very good agreement between the predictions and
targets.

Overall, the ANN performs slightly less accurately for
carbon yield, with the lowest fitting observed for SMR (R2 =
0.8399, Fig. 9). This is likely because the carbon yield in
SMR is more sensitive to variations in process parameters
compared to MP, DRM, or POM. However, a more detailed
investigation would be required to fully clarify this
behaviour.

For practical use of the elaborated method, i.e. an
application of ANNs for predicting the equilibrium gas
composition and carbon yield in each considered process,
the set of properly trained networks parameters (synaptic
weights) is given in the SI. Using eqn (40) and the
appropriate set of weights a prediction of the equilibrium gas
composition and carbon yield in MP and methane reforming
methods (SMR, DRM and POM) processes can be easily, fast
and accurate executed.

Data-driven models, such as black-box ANNs or other
reduced-order approaches (e.g., response surfaces,
polynomial regressions), can be readily integrated into real-
time process control systems by serving as virtual sensors or
surrogate models that predict key process variables. Once
trained on historical or simulated process data, the ANN can
rapidly estimate system behaviour without relying on
complex first-principles models.

In a real-time control framework, these predictive outputs
can be incorporated into optimization algorithms that
continuously adjust reactor parameters (e.g., feed rate,
pressure, temperature or catalyst concentration) to maintain

Fig. 14 Comparison of the ANN predictions and targets for testing set no. 3.3 (see Table 2).

Fig. 15 Comparison of the ANN predictions and targets for testing set
no. 3.3 (see Table 2).
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optimal operating conditions. Furthermore, such models can
be updated online as new process data become available,
enabling adaptive learning and sustained accuracy under
changing conditions. The short computation time required
for parameter estimation makes this approach particularly
attractive for dynamic optimization and process monitoring
applications.

Recently, Physics-Informed Artificial Neural Networks
(PIANNs) have emerged as a promising extension of
conventional black-box ANNs, combining data-driven
learning with physical laws expressed as differential

equations or thermodynamic constraints. By embedding
these physical relationships into the training process,
PIANNs can improve model interpretability, reduce the
need for large datasets, and enhance extrapolation
capability beyond the training domain. Such hybrid
models are especially valuable in chemical process
systems, where they can bridge the gap between purely
empirical data-driven approaches and rigorous mechanistic
modelling.

Overall, integrating both conventional ANNs and PIANN
frameworks into process control architectures enables faster
decision-making, enhanced process stability, and improved
product quality, while simultaneously minimizing energy
consumption and raw material use.

4. Conclusions

This study demonstrates that the proposed ANN-based
modelling approach is a powerful and efficient tool for
approximating the equilibrium gas-phase composition and
carbon yield in key methane conversion processes of MP,
DRM, SMR and POM. Unlike the conventional
thermodynamic approach, which relies on computationally
intensive Gibbs free energy minimization, the ANN model
employs a data-driven methodology to learn the complex,
nonlinear dependencies between process variables, such as
temperature, pressure and reactant ratios, and the resulting
equilibrium concentrations and carbon yield.

Fig. 16 Comparison of the ANN predictions and targets for testing set no. 4.3 (see Table 2).

Fig. 17 Comparison of the ANN predictions and targets for testing set
no. 4.3 (see Table 2).
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Our findings confirm that the trained ANN not only
achieves high predictive accuracy, closely matching the
results obtained from classical thermodynamic calculations,

but also generalizes effectively to unseen input conditions
within the studied domain. This generalization capability
highlights the robustness of the ANN framework and its

Table 2 List of training and test sets

No Training/testing

nCO2

nCH4

nH2O

nCH4

nO2

nCH4 T [C] P [bar]

1. Training 0 (MP) 0 0 [0, 50, 100, …, 1500] [1, 3, 5]
0.25 (DRM)
0.5 (DRM)
0.75 (DRM)
1 (DRM)
1.25 (DRM)
1.5 (DRM)
1.75 (DRM)
2 (DRM)
0 0.25 (SMR) 0

0.5 (SMR)
0.75 (SMR)
1 (SMR)
1.25 (SMR)
1.5 (SMR)
1.75 (SMR)
2 (SMR)
0 0.1 (POM)

0.2 (POM)
0.3 (POM)
0.4 (POM)
0.5 (POM)
0.6 (POM)
0.7 (POM)

2.1 Testing - interpolation 0 (MP) 0 0 [25, 75, 125, …, 1500] [1, 3, 5]
2.2 1 (DRM) 0 0
2.3 0 1 (SMR) 0
2.4 0 0 0.5 (POM)
3.1 Testing - interpolation 0 (MP) 0 0 [0, 50, 100, …, 1500] [2, 4]
3.2 1 (DRM) 0 0
3.3 0 1 (SMR) 0
3.4 0 0 0.5 (POM)
4.1 Testing - interpolation 0.875 (DRM) 0 0 [0, 50, 100, …, 1500] [1, 3, 5]
4.2 0 1.125 (SMR) 0
4.3 0 0 0.45 (POM)
5.1 Testing - interpolation 0.875 (DRM) 0 0 [25, 75, 125 …, 1500] [2, 4]
5.2 0 1.125 (SMR) 0
5.3 0 0 0.45 (POM)

Fig. 18 Comparison of the ANN predictions and targets for testing set
no. 5.1 (see Table 2).

Fig. 19 Comparison of the ANN predictions and targets for testing set
no. 5.2 (see Table 2).
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applicability across a wide operating window relevant to
industrial methane reforming.

The computational efficiency of the ANN is particularly
notable. For instance, in the case of DRM, while the
conventional method requires approximately 15 seconds to
evaluate equilibrium compositions for 31 temperatures at
three different pressures, the ANN accomplishes the same
task in just 0.00233 seconds, what gives over six thousand
times faster. This makes the ANN-based approach especially
appropriate for applications where rapid evaluation of
equilibrium states is integrated with CFD simulations that
require frequent equilibrium data evaluations.

From the practical perspective, this work facilitates the
implementation of the ANN model in other computational
applications as the ANN weights are provided in the SI.

In conclusion, the proposed ANN-based approach presents
as a promising alternative to conventional thermodynamic
modelling for methane conversion processes.
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