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Kinetic modeling of multi-step transformations
using sequential dynamic flow experiments
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In this paper, we present the development of a kinetic model for multi-step transformations, comprising of

a Paal–Knorr pyrrole reaction followed by a nucleophilic aromatic substitution within a continuous-flow

process, utilizing data obtained from sequential dynamic flow experiments. The reaction networks were

fitted to achieve successful parameter estimation (7 parameters in total) with a R2 of 0.974 for the desired

Paal–Knorr product and a R2 of 0.998 for the nucleophilic aromatic substitution product. Model validation

based on dynamic flow experiments was extended beyond the previously explored experimental space. In

silico simulation involving a threefold higher concentration of the nucleophile than previously studied

resulted in approximately 7% model predicted difference to the experimental results.

Introduction

The synthesis of active pharmaceutical ingredients (APIs) has
been traditionally performed under batch conditions,
requiring multiple discrete steps with intermediate workup
and purification. This approach, while well-established,
generates substantial solvent waste, extends processing times,
and necessitates significant operator intervention.1 Recently,
there has been a shift in pharmaceutical manufacturing to
continuous flow synthesis with reaction telescoping, where
multiple reaction steps are conducted sequentially without
intermediate purification. This strategy offers considerable
advantages, including reduced waste generation, enhanced
process efficiency, and improved safety by limiting direct
human interaction with potentially hazardous materials.1,2

However, implementing reaction telescoping presents
substantial challenges, as complex interactions between
intermediates, by-products/side products, and reaction
conditions must be considered.3 Unlike discrete optimization
of individual steps, telescoped processes require
simultaneous global optimization to ensure overall efficiency
and product quality (Fig. 1).4,5

Process analytical technology (PAT)6 has become an integral
part of continuous flow synthesis, facilitating real-time reaction
monitoring for process control,7,8 self-optimization,9,10 and
reaction kinetic studies.11,12 The combination of multiple PAT
tools enhances process understanding and enables the

possibility to obtain concentration values for species of complex
reaction mixtures. Notable examples include Nambiar et al.,
who implemented inline FTIR spectroscopy and online liquid
chromatography-mass spectrometry LC-MS to monitor and
optimize a three-step continuous flow synthesis of sonidegib.3

Clayton et al. successfully applied Bayesian self-optimization for
a telescoped Heck cyclization–deprotection reaction sequence,
utilizing multipoint sampling for online HPLC for accurate real-
time reaction monitoring.10 These examples highlight how real-
time analytical methods support the efficient implementation
and control of telescoped reactions.

Optimization strategies play a crucial role in refining
chemical reactions. A simple approach is the one-factor-at-a-
time (OFAT) method, where a single parameter is varied
while others are held constant. However, this approach is
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inefficient and often misleading, as it fails to capture
interaction effects between parameters.13 Thus, the global
optimal conditions within the design space can be missed.
Design of experiments (DoE), which generates statistical
models to describe system behavior, can be considered as
more robust methodology.14,15 Although, as the model is not
based on underlying chemistry, only interpolation within the
generally narrow design space is typically valid.13 Fath et al.
applied DoE to optimize an imine synthesis in a
microreactor.16 Self-optimization does not require a priori
knowledge of the reaction system. Instead, reactions are
performed iteratively suggested by the algorithm based on
results of the previous experiments. Self-optimization can
cover a wider design space when compared to DoE. In
addition, recently utilized optimization algorithms can focus
on both, exploration of a wider space and exploitation
around regions where good results have previously been
measured.17 Several examples of successful integration for
automated flow reactors, operating in closed-loop systems
without human intervention are shown in literature.18,19

Amara et al. applied self-optimization to continuous-flow
reactors.20 Moore et al. describes the reaction optimization of
a Paal–Knorr reaction in a microfluidic system.21 Wagner
et al. showed the implementation of Bayesian self-
optimization for pharmaceutically relevant amide coupling
reactions.22 Cortés-Borda et al. applied autonomous self-
optimization for the synthesis of carpanone in flow.23 Kinetic
modeling, which provides chemical insights, enables in silico
simulations even beyond the explored design space, offering
a powerful tool for process optimization.13,24 Moreover, as
they are based on the underlying chemical reaction processes
they can be easily linked to reactor performance equations to
consider different reactor types and configurations. Although,
additional information on mass transfer and heat evolution
within the process is an important consideration for scale-
up, alongside to the kinetics.25

The work described herein focuses on the exploitation
of kinetic modeling as an optimization approach for a
two-step continuous flow synthesis. Flow reactors can be
operated either under steady-state or dynamic conditions.
While steady-state operation requires extended
equilibration times, dynamic experimentation—where input
parameters such as flow rate and temperature are
continuously varied—allows for rapid data acquisition and
therefore experimental time and material consumption can
be reduced.26 Hone et al. and Taylor et al. applied
dynamic experimentation for rapid development of a
kinetic model.11,27 Fath et al. used non-steady state
conditions for kinetic modeling applying FTIR as PAT.28

Moore et al. investigated the Paal–Knorr pyrrole synthesis
using 2,5-hexanedione and ethanolamine as substrates,
applying flow ramps and online infrared spectroscopy as
PAT.21 Silber et al. used dynamic experimentation to build
a digital twin based on kinetic modeling.12,29 The
implementation of dynamic experiments for data-rich
optimization was recently reviewed.30 The challenges of

automating the optimization of multistep process were
reviewed by Clayton.5 However, to date, no research
kinetic model has been derived for a two-step reaction
sequence using a dynamic experimentation approach.

This study aimed to consider the gap in the utilization of
dynamic experimentation to develop a rate-based
understanding of a two-step telescope flow process. A focus
was on dealing with complex interactions of intermediates
from a previous step to minimize impurity formation and
ensuring solubility of all species involved in the
concentrations present. Complex chemometric models were
required for accurate quantification of involved species and a
sophisticated experimental design was implemented to have
a broad experimental space accessible.

Results and discussion
Reactions of interest and experimental setup

This project investigated a Paal–Knorr pyrrole synthesis using
ethylenediamine (1) and 2,5-hexanedione (2) as reactants,
followed by a nucleophilic aromatic substitution (SNAr)
reaction between 2-fluoronitrobenzene (5) and the Paal–Knorr
product (Scheme 1). Preliminary experiments showed that
the Paal–Knorr reaction resulted in two products: a pyrrole
on one amino group (product (3)) or on both amino groups
(overreacted product (4)). The free amino group in 3 can then
react as a nucleophile in the SNAr reaction. Although, 3 is a
relatively unreactive nucleophile in the SNAr reaction,
requiring temperatures above the boiling point of acetonitrile
to achieve desired reaction times of several minutes.
Therefore, it would be difficult to study the kinetics of this
reaction under moderate conditions in batch.

Telescoping these two reactions posed many challenges,
in particular the selection of a suitable solvent and base, and
in the management of side product formation. The solvent
must have good solubility for all species involved in both
steps over the concentration range studied to prevent reactor
clogging and ensure compatibility with the equipment.
Acetonitrile (MeCN) was chosen as it met these criteria, can
be considered as green solvent31 and influenced the reaction
kinetics. In particular, it limited the formation of 4 in the
Paal–Knorr reaction to less than 3% within the experimental
space studied. Another solvent considered for the Paal–Knorr
reaction is a 2 : 1 mixture of toluene and methanol, which
significantly increased the rate for the formation of 4 and
complicated UHPLC analysis due to overlaying peaks of
toluene and reaction components. DMSO was initially tested

Scheme 1 Paal–Knorr pyrrole reaction and nucleophilic aromatic
substitution to study the kinetics.
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in batch reactions for the SNAr reaction, which significantly
increased the reaction rate of the SNAr reaction. However,
due to issues with equipment compatibility MeCN was
chosen as a reaction solvent for the telescoped process. The
significantly higher viscosity of DMSO impacted the accuracy
of the utilized HPLC pumps and caused pressure-related
issues with our UHPLC injection system. In terms of base
selection, 1,1,3,3-tetramethylguanidine (TMG, 6) was used,
but its nucleophilicity led to unwanted side-product
formation in the SNAr reaction, necessitating its inclusion in
the kinetic model (see SI). To avoid this side product
formation, 2-tert-butyl-1,1,3,3-tetramethylguanidine (tBuTMG)
was used as a non-nucleophilic base in a reference
experiment. Other bases, such as triethylamine and
1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), were also evaluated.
Triethylammonium fluoride from triethylamine led to
precipitation, while DBU showed high reactivity,32 increasing
2-fluoronitrobenzene consumption beyond that observed
with TMG.

Another complication in the telescoped process was the
interaction between species from different reaction steps.
Residual ethylenediamine (1) participated in the SNAr
reaction with 2-fluoronitrobenzene (5), causing precipitation
of products where 1 had reacted as a nucleophile with one or
two molecules of 5. In addition, 1 is a stronger nucleophile
than 3, further reducing the formation of the desired SNAr
product (7).

Initially, we attempted to perform the dynamic
experiments for both reactions simultaneously in a
telescoped configuration. However, this process led to
insoluble impurity formation with leftover ethylenediamine
(1), meaning full conversion of the ethylenediamine was
required to telescope the reaction. This highlights the
challenge associated with processing two steps
simultaneously, the presence of multiple species and reactive
sites increases the level of complexity significantly. Instead,
the kinetics of the Paal–Knorr reaction were studied
independently, while the telescoped setup was used to study
the kinetics of the SNAr reaction. In order to maintain

flexibility for dynamic experiments for the SNAr reaction
while ensuring complete conversion of 1 in the first step, a
reservoir was introduced to separate the two reactions, as
shown in Fig. 2.

The kinetics of the Paal–Knorr pyrrole reaction and the SN-
Ar reaction were studied using a 4.23 mL coil reactor. For the
telescoped process another 12.0 mL coil reactor was
implemented to the setup to operate the Paal–Knorr reaction
under constant conditions. Automated dynamic
experimentation was achieved using HPLC pumps for reagent
delivery and a thermostat for temperature control, managed
by a HiTec Zang Lab Manager, with flow rate ramps and
temperature profiles programmed in HiText (HiTec Zang).
Real-time process monitoring was implemented using inline
Fourier transform infrared spectroscopy (FTIR) (Mettler
Toledo, React IR 702L, DS Micro Flow Cell Diamond) and
online ultra-high-performance liquid chromatography
(UHPLC) (Shimadzu, Nexera X2) as process analytical
technologies (PAT). FTIR data were quantified using a partial
least squares (PLS) model using the second derivative of the
spectrum, allowing quantification of 2, 3 and 4. UHPLC data
was quantified by calibration of 3, 4, 5 and 7.

The implementation of inline FTIR for the Paal–Knorr
pyrrole reaction posed a chemometric challenge due to the
structural similarity between 3 and 4, resulting in similar IR
spectra. Simpler examples were previously studied using FTIR
as PAT by Moore et al.33 and Schrecker et al.,34 although
without the challenge to distinguish between the desired and
an overreacted product. To ensure accurate quantification,
online UHPLC was used alongside FTIR. FTIR is especially
interesting due to its rapid data acquisition, giving a
datapoint every 15 s, whereas UHPLC samples were measured
approximately every 3.7 min. 2,5-Hexanedione (2) can be
quantified only by FTIR while accurate quantification of
ethylenediamine was not possible with the selected PAT
methods. Mass balance analysis using FTIR-derived
concentrations alone resulted in an average mass balance
error of about 7%, which was reduced to below 3% by using
UHPLC data from 3 and 4. In the telescoped process,

Fig. 2 Schematic representation of the flow setup of the multi-step reaction with a sample collection unit in-between applying an automated
dynamic experimentation approach. FTIR and UHPLC were used as PAT to quantify the species involved to develop kinetic models.
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concentrations of 2, 3 and 4 were determined by FTIR at the
inlet of the second reactor, while the SNAr reaction mixture
was quantified using online UHPLC.

Dynamic flow experiments to study kinetics of the Paal–Knorr
pyrrole reaction

To efficiently study the kinetics of the Paal–Knorr pyrrole
reaction in flow, a dynamic automated experimentation
approach was implemented. In this approach, the flow rate
was linearly decreased while keeping the temperature and
input concentrations of ethylenediamine (1) and
2,5-hexanedione (2) constant throughout each ramp (Fig. 3).
The design space was chosen to cover a wide temperature
range to accurately fit the activation energy, as the reaction
shows only low temperature dependence, and the
stoichiometry was chosen to operate in a range enabling full
conversion of ethylenediamine while limiting excess of 2 and
formation of 4 as much as possible. The concentrations were
varied within the range desired to operate in for the
telescoped reaction and to evaluate the reaction order for
each reactant. A total of 14 dynamic ramps were performed
at temperatures ranging from 25 °C to 125 °C.
Concentrations of 1 were varied from 0.2 to 0.4 mol L−1,
using 1.0 to 1.6 equivalents of 2. In addition, a steady-state
experiment was performed at flow rates of 2 mL min−1, 1 mL
min−1, 0.5 mL min−1, and 0.33 mL min−1 to validate the
dynamic experimentation approach (details in SI).

Kinetic fitting was performed in Dynochem35 (Scale-up
Systems, Mettler Toledo) using second-order rate equations
corresponding to the reaction scheme shown in Scheme 2.

Dynochem uses a modified Arrhenius equation which uses a
rate constant at a specified reference temperature (kref). This
approach resulted in the differential eqn (1) and (2) used in
the fitting process. Residence time distribution (RTD)
experiments were performed within a flow rate range of 0.5
mL min−1 to 2.0 mL min−1 resulting in Bodenstein (Bo)
numbers of >600. Based on this analysis, minimal axial
dispersion and minimal deviations from plug flow would be
expected (values above 100 indicate plug flow behaviour).36

Therefore, the influence of dispersion on the kinetic
parameters could be assumed to be negligible.

Parameter fitting was performed using data from 9 out of
the 14 experiments, with the remaining 5 experiments used
for model validation. An overall reaction order of 2 gave the
best fit with a model selection criterion of 3.35 while models
with an order of 1 only for one reactant and 0 for the other
resulted in a worse fit (model selection criterion of 2.67 for
the model with reaction order of 1 for the amine 1 or 3 and
2.87 for the model with reaction order of 1 for
2,5-hexandione 2). In addition, another model, including
intermediate formation was fitted resulting in the same
model selection criterion of 3.35 as the simple second order
model (details in SI). As inclusion of intermediate formation
did not improve the quality of the model, the simpler model
was chosen to describe the reaction. This model showed
good agreement with the experimental data (Fig. 4). The
identified kinetic parameters (kref,1 = 1.95e−2 ± 0.12e−2 L
mol−1 s−1, kref,2 = 3.54e−4 ± 0.10e−4 L mol−1 s−1, Ea,1 = 4.67 ±
2.13 kJ mol−1) correspond to a reference temperature of 75
°C. The formation of 4 was observed to have a slow reaction
rate and very low temperature dependence. Based on
preliminary studies, the formation of 4 appears to primarily
be influenced by the reaction solvent. In the reaction solvent
(MeCN) experiments were performed in a range from 25 to

Fig. 3 (a) Experimental design to study the Paal–Knorr pyrrole
reaction for dynamic variation of flow rate while keeping temperature
and input concentrations of 1 and 2 constant within a ramp. (b)
Measured output concentrations of 2, 3 and 4 determined by FTIR and
UHPLC measurements.

Scheme 2 Reaction network of the Paal–Knorr pyrrole reaction used
for kinetic modelling.

Fig. 4 Model predicted concentration vs. measured concentration for
the Paal–Knorr pyrrole reaction (a) 2,5-hexandione 2 and (b) product 3.
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125 °C, each resulting in very low formation of 4, nearly
independent of the temperature. Consequently, the empirical
activation energy for this step (Ea,2) was found to be close to
zero and was fixed at 0 kJ mol−1 in the model. However, when
this reaction was performed in toluene/methanol 2 : 1, the
formation of 4 was significantly faster than in acetonitrile
and significant temperature dependence was found (kref,2 =
4.21e−3 ± 0.05e−3 L mol−1 s−1, Ea,2 = 18.9 ± 0.4 kJ mol−1)
demonstrating solvent dependence of this reaction step.

d 3½ �
dt

¼ kref;1e
−Ea;1
R

1
T− 1

Tref

� �� �
1½ � 2½ � (1)

d 4½ �
dt

¼ kref;2e
−Ea;2
R

1
T− 1

Tref

� �� �
2½ � 3½ � (2)

Dynamic flow experiments in a telescoped reaction setup

To investigate the kinetics of the SNAr reaction within a
telescoped process setup, the Paal–Knorr reaction was
conducted at 75 °C with a constant flow rate of 0.3 mL
min−1 for each pump, using 1.2 equivalents of 2 to ensure
complete conversion of ethylenediamine (1), to avoid side
product formation that would result in reactor clogging in
the following nucleophilic aromatic substitution. The
resulting reaction mixture was continuously collected in a
reservoir and directly used in the second step. Inline FTIR
was employed to analyze the mixture immediately before
mixing with other reagents, ensuring accurate determination
of input concentrations resulting in 89 ± 4% of 3 within the
experimental time. Within a ramp the concentration of 3
changed less than ±2.5% and therefore a constant average
concentration of 3 was used for the fitting process. For the
second step, dynamic experimentation was carried out by
linearly varying the flow rate from 1 mL min−1 to 0.33 mL
min−1. Six dynamic experiments were performed at
temperatures ranging from 130 °C to 150 °C using 1.2 to
2.0 equivalents of the first step product (3) and using a
fixed concentration of 100 mmol L−1 of 2-fluoronitrobenzene
(5) (Fig. 5).

1,1,3,3-Tetramethylguanidine (TMG) was used as base for
the SNAr reaction; however, it also acted as a nucleophile,
leading to the formation of impurity (8). This resulted in a
discrepancy in the mass balance between 5 and the desired
SNAr product (7), which was attributed to the formation of 8,
requiring consideration of this impurity formation in the
kinetic model.

Kinetic fitting was performed using Dynochem based on
the reaction scheme shown in Scheme 3. Three rate
equations were applied in this model. The parameters for
the third reaction were set to kref = 100 L mol−1 s−1 and Ea =
0 kJ mol−1. This was based on the assumption that the
acid/base reaction is significantly faster than the other
reactions involved.

d 7½ �
dt

¼ kref;1e
−Ea;1
R

1
T− 1

Tref

� �� �
3½ � 5½ � (3)

d 8½ �
dt

¼ kref;2e
−Ea;2
R

1
T− 1

Tref

� �� �
5½ � 6½ � (4)

Parameter fitting was performed at a reference temperature
of 140 °C, resulting in the kinetic parameters: kref,1 =
5.13e−3 ± 0.04e−3 L mol−1 s−1, kref,2 = 8.94e−3 ± 0.08e−3 L
mol−1 s−1, Ea,1 = 40.1 ± 1.3 kJ mol−1 and Ea,2 = 72.6 ± 1.6 kJ
mol−1, showing excellent alignment of the model with the
experimental data (Fig. 6). Even though the rate constant
for the intermediate formation is slightly higher, its
formation can be lowered by performing the reaction at
lower temperature due to its high activation energy and
with an excess of 3, providing a higher concentration of

Fig. 5 (a) Experimental design to study the SNAr reaction in a
telescoped setup for dynamic variation of flow rate while keeping
temperature and input concentrations of 5 and 3 constant within a
ramp. (b) Measured output concentrations of 5 and 7 determined by
UHPLC measurements.

Scheme 3 Reaction network of the SNAr reaction used for kinetic
modelling. The reaction rate of the fast acid–base reaction was fixed at
100 L mol−1 s−1.
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starting material. This approach effectively characterized the
kinetics of the SNAr reaction within the telescoped process,
providing valuable insights into reaction rates and impurity
formation, which could be used for optimization.

Model validation, in silico exploration

The kinetic models could then be applied for in silico
exploration beyond the experimentally investigated space to
investigate the performance at different experimental
conditions. To demonstrate this capability, simulations were
conducted using 4.0 to 6.0 equivalents of product (3) – far
exceeding the range used for model development (1.2 to 2.0
equivalents), while applying the same experimental design as
used for model development, with 100 mmol L−1 of 5 at a
temperature of 140 °C. To validate the simulation, the
experiments were performed in the laboratory, increasing the
yield of 7 from 30% up to 64% at 140 °C. The simulated
results are ∼7% higher than experimental results (Fig. 7).
This deviation of the experimental result from the model
prediction can be attributed to a combination of model
limitations and experimental error. Although, these
simulations show that kinetic modelling is an excellent tool
for in silico optimization beyond the experimentally
investigated space.

Conclusions

We have successfully addressed the challenges of telescoping,
particularly in minimizing the unwanted interaction of
species from different steps within the two-step Paal–Knorr
pyrrole reaction and nucleophilic aromatic substitution.
Utilizing a reservoir between the two steps allowed us to
leverage a dynamic experimentation approach, enabling rapid
exploration of a wide experimental space. The data collected
has been utilized for kinetic modeling, and the model's
validity has been demonstrated to extend beyond the
explored space through in silico simulation of reaction
conditions, resulting in excellent agreement with the
experimental data. Our future efforts will be directed towards
automating data processing and kinetic fitting, aiming to
establish a fully automated workflow with minimal human
intervention and to perform the process fully continuously
without the need of separation for optimization.
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