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-driven optimization of extraction
process and development of quality standards for
traditional Chinese medicine (TCM) formulae in
primary liver cancer

Xing Gao,†a Leilei Gong, †c Xinyue Zhang,†a Yanxi Chen,a Zhongyuan Guo*bd

and Hong Yang*a

Traditional Chinese medicine (TCM) formula extraction optimization is vital for clinical efficacy and

standardization. This study targeted an anti-hepatocarcinoma formula, combining orthogonal

experimental design (OED) with machine learning (ML) to optimize extraction—focused on extraction

yield and paeoniflorin content. OED revealed extraction time as the key factor influencing both metrics,

while ML modeling identified optimal parameters. Experimental validation achieved a 43.21% extraction

yield and 74.2 mg total paeoniflorin, confirming ML's utility in process refinement. The OED–ML

integration proves a powerful tool for TCM preparation optimization, accelerating cost-effective, eco-

friendly technology development and advancing formula standardization. This work highlights AI's role in

modernizing TCM R&D, offering a replicable framework to balance efficacy, affordability, and sustainability.
Introduction

Traditional Chinese Medicine (TCM), a time-honored system
integrating ancient wisdom with modern scientic validation,
has emerged as a global cornerstone for pharmaceutical inno-
vation and a catalyst for its own systematic modernization.1 The
extraction process of Chinese medicinal materials represents
a critical step in both pharmaceutical research and the
modernization of TCM. Its signicance is manifested not only
in enhancing the purity and biological activity of pharmaco-
logically active constituents but also in advancing the stan-
dardization, internationalization, and multidisciplinary
application of TCM.2,3 In the eld of extraction technologies, not
only are traditional water extraction methods employed,4 but
also advanced techniques such as supercritical uid extrac-
tion5,6 and ultrasound-assisted extraction7 are utilized. Never-
theless, conventional water extraction remains the dominant
approach. According to the Chinese Pharmacopoeia, the pro-
cessing of 646 proprietary Chinese medicines involves water
extraction technology.8 Furthermore, pharmacological studies
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on traditional classical formula preparations of Chinese herbal
compounds primarily focus on “decoction in water” as the main
method of administration. Water extraction or decoction not
only aligns with the theories of TCM but also contributes to the
conservation of Chinese medicinal resources, facilitates the
preservation of traditional processing techniques, and reduces
costs in industrial production. Traditional water extraction
processes are typically evaluated based on conventional char-
acteristic indicators (extraction yield). These features oen
possess subjectivity and specicity, lacking a comprehensive
perspective. Against the backdrop of the global Pharma 4.0
revolution, traditional water extraction processes, characterized
by conventional evaluation metrics, are increasingly inadequate
to meet the current demands of drug development research.9,10

There is an urgent need to develop digitalized and intelligent
water extraction processes, centered on automation, digitiza-
tion, and intellectualization, to better leverage the core role of
these traditional techniques in pharmaceutical formulation
research and development.

In recent years, the concept of Quality by Design (QbD) has
been introduced to optimize extraction processes, thereby
promoting the standardization, modernization, and compre-
hensive quality control of pharmaceutical preparations
throughout their entire lifecycle.11 By OED or response surface
methodology (RSM), the critical extraction process parameters
(CPPs) that inuence the critical quality attributes (CQAs) of
TCM compounds can be identied. This approach enables the
establishment of quantitative relationships between CQAs and
CPPs.12,13 Subsequently, a design space for the extraction
© 2026 The Author(s). Published by the Royal Society of Chemistry
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process can be constructed to ensure product quality and
stability within this dened space, thereby achieving compre-
hensive quality control throughout the entire drug
manufacturing process. This QbD-based approach demon-
strates high experimental efficiency and strong model robust-
ness, making it suitable for multi-objective optimization of
complex processes. However, it remains inadequate for
handling high-dimensional nonlinear problems and exhibits
limited capability in interpreting interactions involving more
than three factors. As a rst-generation intelligent optimization
strategy for TCM preparations, it falls short in addressing the
needs of complex formulation processes—particularly for
multi-component TCM compounds with intricate interactions.

With the rapid advancement of articial intelligence across
various elds, ML has been increasingly applied to multiple
domains within the pharmaceutical industry.14 It enables the
analysis of historical data to predict and characterize relation-
ships between inuencing factors and observed outcomes. It
enables the transformation of traditional development models
reliant on trial-and-error and empirical experience by adopting
data-driven methodologies to accelerate R&D processes, opti-
mize workows, and enhance product quality. In the context of
pharmaceutical extraction process optimization, this approach
analyzes historical experimental data to construct complex
mapping relationships between extraction parameters and
outcomes.15 It enables the prediction of globally optimal
process parameters with minimal data requirements, followed
by experimental validation to evaluate model predictive accu-
racy and robustness.16,17 This approach not only enables
researchers and enterprises to rapidly identify optimal extrac-
tion conditions and enhance the extraction efficiency of target
compounds, but reduces R&D costs and minimizes resource
wastage. It is widely recognized as a second-generation intelli-
gent solution for extraction process optimization research and
has been extensively applied in studies focusing on the
enhancement of extraction techniques.

Chinese herbal formulas, as a unique form of natural
medicine, are widely popular in China and Southeast Asian
countries. Maximizing the extraction of active substances from
these formulas is a crucial prerequisite for their therapeutic
efficacy.18 In our previous work, we successfully screened
effective TCM prescriptions for the treatment of primary liver
cancer (PLCTCMP) based on Traditional Chinese Medicine
Inheritance Computer System (TCMICS) V3.0. Through inte-
grative pharmacology and molecular simulation approaches,
combined with in vitro experiments, we elucidated that the
prescription and its primary active component, paeoniorin,
inhibit the proliferation of liver cancer cells by modulating the
Ras/Raf/MEK/ERK, AKT/NF-kB, and JAK-STAT signaling path-
ways.19 To maximize the characterization of active constituents
in the formula, paeoniorin was utilized as the observation
index in an OED for the preliminary screening of the extraction
process. This approach served as an initial exploration and
factor screening, establishing a foundational dataset for further
optimization via ML. Therefore, this study further employed an
expanded OED dataset and multiple ML algorithms, focusing
on the liver cancer formula, to establish a quantitative analysis
© 2026 The Author(s). Published by the Royal Society of Chemistry
method for paeoniorin as the primary active constituent.
Subsequently, using key active constituents (e.g., paeoniorin)
and extract yield as critical observation indices, we character-
ized key process parameters including water addition volume,
extraction time, and extraction frequency. Establishing a more
rened non-linear model to achieve global optimization of the
extraction process for the liver cancer formula. The optimiza-
tion outcomes were subsequently subjected to rigorous experi-
mental validation. This methodology aims to provide
a theoretical foundation and technical support for the stan-
dardization of compound formulations and their clinical
translation and application.
Materials and methods
Instruments

High-performance liquid chromatograph (LC-2030C 3D Plus)
and C18 column (4.6 × 250 mm, 5 mm) were obtained from
Shimadzu Corporation. Desktop low-speed centrifuge (SF-TDL-
4A) was purchased from Shanghai Fulgor Analysis Apparatus
Co., Ltd, handheld centrifuge (S1010E) was obtained from
SCILOGEX, LLC. Ultrasonic cleaner (KQ5200E) was purchased
from Kun Shan Ultrasonic Instruments Co., Ltd. Electronic
balances (B6002 and BSA224S) were obtained from Shanghai
Liangping Instrument Co., Ltd and Sartorius Scientic Instru-
ments (Beijing) Co., Ltd respectively. Analytical balance
(MS105DU) was purchased from Mettler-Toledo International
Trading (Shanghai) Co., Ltd. Glass instrument airow dryer (C-
30) was obtained from Zhengzhou Asus Instrument Co., Ltd.
Electronic thermostat type electric heating sleeve (DZTW) was
purchased from Beijing Brightness Medical Equipment Co.,
Ltd. Electric-heated thermostatic water bath (DK-2000-IIIL) and
electric thermostatic drying oven (WGL-125L) were purchased
from Tianjing Taisote Medical Equipment Inc. Vacuum drying
oven was obtained from Shanghai Huitai Instruments
Manufacturing Co., Ltd.
Chemicals and materials

Phosphoric acid (cat. no. 190900), acetonitrile (cat. no.
F24O86202), and methanol (cat. no. F24O85202) were obtained
from Thermo Fisher Scientic (China) Co., Ltd. Puried water
(cat. no. 20240819) were purchased from Hangzhou Wahaha
Group Co., Ltd. Ethyl alcohol (cat. no. 20210512) were obtained
from Sinopharm Chemical Reagent Co., Ltd. Paeoniorin (cat.
no. 23072811) were purchased from Shanghai Topscience Co.,
Ltd. Bupleurum chinense DC., Paeonia lactiora Pall., Atractylodes
macrocephala Koidz., Poria cocos (Schw.) Wolf, Glycyrrhiza ura-
lensis Fisch., and Angelica sinensis (Oliv.) Diels were obtained
from Bozhou Chongyuan Pharmaceutical Co., Ltd.
Standard solution and sample solution preparation

Precisely weigh 0.1 g of pulverized Paeonia lactiora Pall. sample
powder, transfer to a 50 mL volumetric ask, add 35 mL of
dilute ethanol, subject to ultrasonic treatment (power 240 W,
frequency 45 kHz) for 30 minutes, allow to cool, then dilute with
RSC Adv., 2026, 16, 7992–8007 | 7993
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Table 1 Orthogonal factor and level table

Factor Level 1 Level 2 Level 3

A: solid–liquid ratio 1 : 8 1 : 10 1 : 12
B: extraction time (h) 0.5 1 1.5
C: number of extraction cycles (n) 1 2 3
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dilute ethanol to the mark, and mix well to obtain a Paeonia
lactiora Pall. sample (PLPS) containing 2 mg per mL.

According to the Chinese Pharmacopoeia 2025 Edition,
Volume I, an appropriate amount of paeoniorin reference
standard was accurately weighed, dissolved and diluted with
methanol, and then made up to volume to obtain a paeoniorin
standard solution (PSS) containing 60 mg mL−1.

According to our previous research methodology,19 the
PLCTCMP sample (PLCTCMPS) solution was prepared as
follows: precisely weigh 0.050 g of the dried extract powder,
transfer to a 10 mL volumetric ask, dissolve with dilute
ethanol, and subject to ultrasonic treatment. Subsequently,
dilute to the mark with dilute ethanol and mix thoroughly to
obtain a homogeneous solution.

Chromatographic conditions

The quantitative analysis of paeoniorin was performed using
high-performance liquid chromatography (HPLC) (Shimadzu
2030 system) equipped with a C18 column (4.6 × 250 mm, 5
mm). The mobile phase consisted of acetonitrile (A) and 0.1%
phosphoric acid aqueous solution (B), with the following
gradient elution program: 0–15 min: 14–14% A; 15–35 min: 14–
19% A; 35–42 min: 19–100% A; 42–50 min: 100–100% A; 50–
50.01 min: 100–14% A; 50.01–60 min: 14–14% A. The ow rate
was set at 1.0 mL min−1, and the detection wavelength was
230 nm. The injection volumes were 10 mL for the reference
standard solution and 20 mL for the test sample solution.

Validation parameters

The HPLC method for determination of paeoniorin in Paeonia
lactiora Pall. and PLCTCMP was validated for specicity test,
linearity, precision, stability, repeatability, accuracy, limit of
quantication (LOQ), limit of detection (LOD), and durability.

Specicity. Aliquots (10 mL each) of PSS, test solutions
(including PLPS and PLCTCMPS), and blank solvent (dilute
ethanol) were precisely withdrawn and injected in duplicate
under the chromatographic conditions specied in section “

Chromatographic conditions” for analysis. The average peak
areas were calculated. The purpose was to evaluate whether the
blank solvent peak interferes with the determination of paeoni-
orin content, and to qualitatively and quantitatively analyze the
presence and content of paeoniorin in both the PSS and test
solutions. This study provides a basis for calculating the required
weighing amount of dried extract powder for preparing the test
solution, ensuring that the paeoniorin content in the PSS and
test solutions is essentially consistent in subsequent stages.

Calibration curves, limits of detection and quantication. A
series of PSS spanning concentrations from 20% to 200% were
prepared, with the concentration specied in the Pharmaco-
poeia of the People's Republic of China designated as the 100%
concentration point. Each concentration level was injected in
triplicate under the “Chromatographic conditions”. The mean
peak area was calculated for each concentration. A linear
regression analysis was performed by plotting the mean peak
area (y-axis) against the corresponding nominal concentration
(x-axis). The linearity of the method was assessed based on the
7994 | RSC Adv., 2026, 16, 7992–8007
correlation coefficient (r) and the goodness-of-t. The limit of
detection (LOD) and limit of quantitation (LOQ) were deter-
mined based on the signal-to-noise ratio (S/N). The 20% line-
arity PSS was injected, and the peak height (signal intensity) and
the baseline noise in a representative blank region were
measured. The LOD was dened as the concentration yielding
an S/N ratio of 3 : 1, and the LOQ was dened as the concen-
tration yielding an S/N ratio of 10 : 1.

Precision, stability, repeatability. Precision measurements
were conducted by successively injecting PSS (10 mL) six times
using the “Chromatographic conditions” to verify precision.
The stability was validated by assaying both PSS and test solu-
tions (including PLPS and PLCTCMPS) at various time intervals
aer preparation according to the “Chromatographic condi-
tions”. Finally, repeatability was evaluated by preparing six
PLCTCMPS in parallel and analyzing them via the same
“Chromatographic conditions”.

Accuracy. The recovery test was used to evaluate the accuracy
of this method. For the percent recovery experiments, selected
samples were also spiked with known amount paeoniorin, and
then analyzed as described in “Chromatographic conditions”.
The average recoveries were calculated by the formula: recovery
(%) = (observed amount original amount)/spiked amount 100%.

Durability. To evaluate the ability of the analytical method to
maintain its performance unaffected by deliberate, minor
variations in parameters, the content of paeoniorin in both
PSS and test solutions (including PLPS and PLCTCMPS) was
determined according to the analytical method by individually
altering the column temperature (±5 °C), ow rate (±0.1
mL min−1), and phosphoric acid concentration (±0.01%, v/v).

OED for PLCTCMP

OED, which scientically arranges trials to obtain comprehen-
sive information with a minimal number of experiments, is
widely applied in multi-factor optimization studies. In the
context of TCM extraction processes, this approach constructs
an orthogonal learning strategy to effectively discover and retain
valuable information regarding the extraction procedure. In the
present study, the extract yield of PLCTCMPS and the content of
paeoniorin were selected as evaluation indicators for assessing
the extraction efficiency. Key parameters, including the volume
of water added, decoction time, and number of decoction
cycles, were investigated through an OED (Table 1) to optimize
the extraction process of PLCTCMPS.

ML-based optimization of extraction processes

Development of regression equation tting. Based on the
principle of small-sample learning compatibility, nine ML
© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra09650b


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

9 
Fe

br
ua

ry
 2

02
6.

 D
ow

nl
oa

de
d 

on
 2

/1
9/

20
26

 9
:3

6:
19

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
models were selected to perform regression analysis on the
results of an OED using limited sample data. The imple-
mentation was carried out in Python v3.12 with the scikit-learn
machine learning library (version 1.4.2) to optimize the extrac-
tion process.

Linear regression. A linear relationship between process
parameters and target indicators (extraction yield and paeoni-
orin content) was constructed by minimizing the squared
error between predicted and actual values. This approach,
implemented without regularization, is suitable for capturing
simple linear associations

min
Xm
i¼1

�
yi � byi�2

Let yi denote the actual value of the i-th sample (i.e., the
experimentally measured yield of the extract or paeoniorin
content); byi represent its predicted value calculated by the
model; m be the total sample size.

Ridge regression. Based on ordinary linear regression, L2 regu-
larization (penalizing the sum of squared coefficients) was incor-
porated to mitigate parameter multicollinearity. For small-sample
scenarios, hyperparameter tuning (a= 0.01/0.1/1.0) was employed
to balance model tting and generalization performance.

min
Xm
i¼1

�
yi � byi�2

þ a
Xn

j¼1

wj
2

Let m denote the total sample size; for the i-th sample, yi
represents the actual value (i.e., the experimentally measured
yield of the extract or paeoniorin content); byi is its corre-
sponding predicted value generated by the model; the model
incorporates a regularization term controlled by the parameter
a (with candidate values of 0.01, 0.1, and 1.0); where a larger
a indicates a stronger regularization strength, imposing
a greater penalty on the model parameters to promote
simplicity; let wj be the weight coefficient associated with the j-
th feature; n be the total number of features (e.g., solid–liquid
ratio, extraction time, and number of extraction cycles).

Least absolute shrinkage and selection operator (LASSO). L1
regularization was applied to shrink the coefficients of non-
critical parameters to zero, enabling automated feature selec-
tion. This approach enhances the interpretability of models
trained on small-sample datasets by emphasizing the inuence
of key process parameters (e.g., water addition volume).

min
Xm
i¼1

�
yi � byi�2

þ a
Xn

j¼1

��wj

��
Let m denote the sample size; for the i-th sample, yi represents
the actual value (i.e., the experimentally measured yield of the
extract or paeoniorin content); byi denotes the corresponding
predicted value calculated by the model; the parameter a is the
regularization strength coefficient (with candidate values of
0.01, 0.1, and 1.0); a larger a imposes a stronger penalty on the
model parameters, leading to a simpler model; the absolute
value of the weight coefficient for the j-th feature is given by jwjj;
n represents the number of features (e.g., solid–liquid ratio,
extraction time, and number of extraction cycles).
© 2026 The Author(s). Published by the Royal Society of Chemistry
Elastic net regression. By integrating both L1 and L2 regula-
rization, the model simultaneously selects critical parameters
(e.g., extraction time) and mitigates multicollinearity, making it
particularly suitable for feature selection and tting in small-
sample scenarios with high-dimensional parameters.

min
Xm
i¼1

�
yi � byi�2

þ a

"
ð1� rÞ

Xn

j¼1

wj
2 þ r

Xn

j¼1

��wj

��#;
Let m represent the sample size; for the i-th sample, yi denotes
the actual value (i.e., the experimentally measured yield of the
extract or paeoniorin content); byi is the corresponding pre-
dicted value generated by the model; the parameter a is the
regularization strength coefficient (with values set to 0.01, 0.1,
or 1.0); a larger a imposes a stronger penalty on the model
parameters, promoting a simpler model structure; the absolute
value of the weight coefficient for the j-th feature is given by jwjj;
n indicates the total number of features (e.g., solid–liquid ratio,
extraction time, and number of extraction cycles); the param-
eter r denotes the L1 regularization ratio within the elastic net
framework, which ranges from 0 to 1.

Bayesian ridge regression. An extension of ridge regression
based on the Bayesian framework, which employs probabilistic
models to automatically optimize regularization parameters
without manual tuning, is particularly suitable for assessing
parameter uncertainty in small-sample scenarios.

min[−log p(yjX, w) − log p(w)]; p(yjX, w)

p(w) denotes the prior distribution (the probability distribution
of parameter w); X is the feature matrix, i.e., the process
parameters of all samples; y is the target vector, i.e., the true
values of all samples; w is the weight vector, i.e., the model
parameters.

Characteristic polynomial + ridge regression. L2 regularization
(L2 norm penalty) is introduced. Second-order polynomial
features (including squared terms and interaction terms) are
constructed based on the original features to expand nonlinear
relationships. Meanwhile, L2 regularization is leveraged to
alleviate the multicollinearity problem caused by polynomial
feature expansion. This method is suitable for the scenario of
nonlinear tting of multiple parameters with small sample
sizes where overtting needs to be avoided.

min
1

m

Xm
i¼1

�
yi � byi�2

þ a
Xn

j¼1

wj
2

Let m denote the total sample size; for the i-th sample, yi
represents the actual value (i.e., the experimentally measured
yield of the extract or paeoniorin content); and byi denotes its
corresponding predicted value generated by the model; the
parameter a is the regularization strength coefficient (with
candidate values of 0.01, 0.1, and 1.0); a larger a imposes
a stronger penalty on the model parameters, promoting
a simpler model structure; let wj be the weight coefficient
associated with the j-th feature; n be the total number of
features (e.g., solid–liquid ratio, extraction time, and number of
extraction cycles).
RSC Adv., 2026, 16, 7992–8007 | 7995
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Random forest. To mitigate overtting risks, an ensemble of
50 simplied decision trees is constructed by restricting the
maximum depth and the minimum sample size required for
splitting. This approach leverages averaged predictions from
multiple trees to enhance generalization performance, while
controlling model complexity under limited sample conditions
to ensure robust out-of-sample applicability.

min[MSE(L) + MSE(R)]

MSE(L) is the mean squared error of the le child node; MSE(R)
is the mean squared error of the right child node.

Support vector regression. The linear kernel function constructs
a direct linear mapping between parameters and targets, offering
computational efficiency and suitability for scenarios with line-
arly distributed features in small-sample settings.

min
1

2
kwk2 þ C

X
ðxi þ xi*Þ

w represents the weight vector dening the separating hyper-
plane; C is the penalty parameter (or regularization parameter)
that controls the trade-off between maximizing the margin and
minimizing the classication error, a larger value of C imposes
a stricter penalty on training errors; a positive slack variable xi is
introduced for each sample to quantify the error where the
prediction exceeds the true value; while a negative slack variable
xi* quanties the error where the prediction falls below the true
value, particularly in support vector regression.

Partial least squares regression. Extracting principal compo-
nents strongly correlated with the target variable (ncomponents =

2) compresses parameter dimensionality while retaining critical
information, making it particularly suitable for scenarios
involving multicollinearity among multiple parameters

maxw,ccov(Xw, yc)s.t.‖w‖ = 1, ‖c‖ = 1

w is the weight vector along the X-direction (i.e., the feature
projection direction); c is the weight vector along the y-direction
(i.e., the target projection direction); Xw denotes the projection
of the feature matrix onto the direction w; yielding a score
vector; yc represents the projection of the target vector y onto the
direction c.

Evaluation of regression equation. To evaluate model
performance and identify the optimal model, we assess the
accuracy and reliability of each ML model based on the
following six evaluation metrics: the coefficient of determina-
tion (R2), adjusted coefficient of determination (Adj_R2),
difference in R-squared (R2-Diff), mean absolute error (MAE),
root mean square error (RMSE), and Corrected Akaike Infor-
mation Criterion (AICc).

R2 quanties the proportion of variance in the dependent vari-
able explained by a regression model, reecting the overall
goodness-of-t between predicted and observed values. Values
closer to 1 indicate superior model performance, and it is compu-
tationally implemented via sklearn.metrics.r2_score (y, ypred)

R2 ¼ 1�
P ðyi � ŷiÞ2P ðyi � yÞ2
7996 | RSC Adv., 2026, 16, 7992–8007
yi represents the true value obtained from experimental
measurement for the i-th sample, which includes key perfor-
mance indicators such as the extraction yield and the paeoni-
orin content; ŷi represents the predicted value for the i-th
sample, generated by the forward propagation of the input data
through the trained model; �y represents the mean of all true
observed values.

The adjusted coefficient of determination (Adj_R2) is
a modied version of R2 that incorporates penalties for the
number of parameters in the model and the sample size. It is
particularly useful for comparing models with different
numbers of predictors, as it penalizes excessive model
complexity. A higher value indicates a better t, provided the
model maintains simplicity. It is calculated as follows:

Adj_R2 ¼ 1� �
1� R2

�� � ðn� 1Þ
ðn� k � 1Þ

�
R2 represents the coefficient of determination; n denotes the
sample size; k indicates the number of features in the model
(including solid–liquid ratio, extraction time, and number of
extraction cycles); and n − k − 1 represents the degrees of
freedom aer accounting for the intercept term.

The difference in R-squared (R2-Diff), dened as the differ-
ence between the coefficient of determination (R2) and the
adjusted coefficient of determination (Adj_R2), serves as a rapid
assessment metric for evaluating the rationality of model
parameters. A smaller R2-Diff value indicates more reasonable
model parameterization and a lower.

R2-Diff = R2 − Adj_R2

R2 denotes the coefficient of determination; Adj_R2 represents
the adjusted coefficient of determination; n is the sample size;
and k signies the number of features (predictor variables) in
the model.

RMSE is dened as the square root of the average of the
squared differences between predicted and actual values. It
quanties themagnitude of prediction errors, where a lower value
indicates higher predictive accuracy. This metric is computa-
tionally implemented as np.sqrt (mean_squared_error (y, ypred)).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

X
ðyi � ŷiÞ2

r
yi represents the true value obtained from experimental
measurement for the i-th sample, which includes key perfor-
mance indicators such as the extraction yield and the paeoni-
orin content; ŷi represents the predicted value for the i-th
sample, generated by the forward propagation of the input data
through the trained model; m be the sample size.

MAE quanties the average magnitude of absolute differ-
ences between predicted and actual values, reecting the degree
of mean prediction error. A lower MAE value indicates reduced
average deviation and superior model accuracy. It is computa-
tionally implemented via sklearn.metrics.mean_absolute_error
(y, ypred).

MAE ¼ 1

n

X
jyi � ŷij
© 2026 The Author(s). Published by the Royal Society of Chemistry
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yi represents the true value obtained from experimental
measurement for the i-th sample, which includes key perfor-
mance indicators such as the extraction yield and the paeoni-
orin content; ŷi represents the predicted value for the i-th
sample, generated by the forward propagation of the input data
through the trained model; m be the sample size.

The Corrected Akaike Information Criterion (AICc) is a bias-
corrected version of the AIC for nite sample sizes. It balances
model goodness-of-t against complexity and provides a more
accurate model selection metric than AIC under small-sample
conditions (typically when n/k < 40). A lower AICc value indi-
cates better model performance.

AICc ¼ AICþ 2kðk þ 1Þ
ðn� k � 1Þ

AIC = n × ln(MSE) + 2k

MSE ¼


1

n

�
�
X

ðyi � ŷiÞ2

n represents the sample size, k represents the number of model
parameters (including the intercept), and MSE represents the
mean squared error.

Validation of the extraction process from computational
calculating and OED. Based on the optimal model established
and evaluated through the aforementioned process, the extrac-
tion process of the PLCTCMP was validated. The pre-established
paeoniorin quantication method was employed to determine
the paeoniorin content, thereby verifying the model's perfor-
mance and establishing a standardized extraction workow.
Table 2 Precision experiment

No. Peak area Average RSD%

1 873 125 881 118 0.96
2 885 132
3 874 512
4 873 991
5 886 089
6 893 859
Results
Method validation for analytical of PLCTCMP

To better optimize the extraction process and ensure the effec-
tive detection of the core component paeoniorin, as well as to
provide a reliable experimental method for subsequently con-
structing orthogonal tests and ML applications, this study
established a methodology validation using paeoniorin as
a standard and performed preliminary detection on samples.
Fig. 1 HPLC chromatogram of PSS and PLPS samples.

© 2026 The Author(s). Published by the Royal Society of Chemistry
The methodology rst investigated specicity. The results
indicated that the PLPS and PSS exhibited chromatographic
peaks at the same retention time, with no signicant interfer-
ence from the solvent in the determination of paeoniorin
content (Fig. 1 and S1). The resolution of paeoniorin was ideal
(all >1.5), demonstrating excellent specicity of the method.

A linear regression experiment was conducted by preparing
standard solutions covering a concentration range of 20% to
200%. The calibration curves exhibited good linear regression
within this range (y = 121 41x − 16 305(r = 0.9993), r = 9993).
The limit of detection (LOD) (signal-to-noise ratio S/N = 3) and
limit of quantication (LOQ) (S/N = 10) for paeoniorin were
2.81 mg mL−1 and 9.37 mg mL−1, respectively.

Precision was evaluated based on the relative standard
deviation (RSD) of six replicate analyses, yielding an RSD value
of 0.96% (Table 2). The stability of the test samples was assessed
by injecting them at intervals over 0–24 hours aer preparation;
the RSD of the peak area was 1.21% (Table 3), indicating good
sample stability.

Repeatability was demonstrated by analyzing six indepen-
dently prepared samples in succession. The average paeoni-
orin content was 6.63 mg g−1, with an RSD of 0.72% (Table 4).
For accuracy, known amounts of paeoniorin were added to the
samples, and analyses were performed before and aer spiking.
The recovery rates from six determinations ranged from 91.98%
to 95.33%, with an RSD of 1.35%, conrming the method's
accuracy and reliability (Table 5).

Finally, robustness was evaluated by introducing minor
variations in column temperature, ow rate, and phosphoric
acid concentration. The RSD values under these conditions
were 1.77% (n = 3), 7.25% (n = 3), and 0.77% (n = 3), respec-
tively (Table 6). These changes partially met the system
RSC Adv., 2026, 16, 7992–8007 | 7997
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Table 3 Stability experiment

No. Peak area Average RSD%

0 h 1 003 814 999 774 1.21
2 h 988 451
4 h 1 021 838
8 h 996 208
12 h 997 275
24 h 991 060

Table 4 Repeatability experiment

No. Content Average (mg g−1) RSD%

1 6.570 6.63 0.72
2 6.674
3 6.585
4 6.661
5 6.679
6 6.605
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suitability test requirements, indicating that the method is
relatively robust.
Data generation factor contribution based on OED

Factor importance analysis serves as a robust methodological
tool for evaluating the effectiveness of input factors in predict-
ing target observations, thereby providing an empirical basis for
factor screening. To systematically investigate factors inu-
encing extraction performance, an OED was constructed. This
design enables the quantication of associations between
observed responses (extraction yield and paeoniorin content)
and controlled factors (solid–liquid ratio, extraction time, and
Table 5 Recovery experiment

No. Sample weight (mg) Measured (mg) Content (mg)

1 24.97 0.320126031 0.165528395
2 24.95 0.322294654 0.165395813
3 24.90 0.321339174 0.165064358
4 24.96 0.32220932 0.165462104
5 24.95 0.317169455 0.165395813
6 25.03 0.323219658 0.16592614

Table 6 Suitability experiment

Condition Content (mg g−1)

Column temperature (25 °C) 7.946875053
Column temperature (35 °C) 7.693760895
Normal 7.919068653
Flow rate (0.9 mL min−1) 8.452052768
Flow rate (1.1 mL min−1) 7.307933677
Normal 7.919068653
Phosphoric acid (0.09%) 7.90241242
Phosphoric acid (0.11%) 8.013791391
Normal 7.919068653

7998 | RSC Adv., 2026, 16, 7992–8007
number of extraction cycles), while simultaneously character-
izing response levels under each factor variation. The resultant
dataset provides critical support for subsequent ML-driven
optimization processes by establishing reliable input–output
relationships for predictive modeling.

When extraction yield was employed as the observation
indicator, range analysis (Table 7) revealed the following order
of inuence among the three factors: number of extraction
cycles (R = 12.88) > solid–liquid ratio (R = 2.21) > extraction
time (R = 2.13). Consistent with this, variance analysis (Table 8)
demonstrated that the effect of the number of extraction cycles
substantially exceeded that of both solid–liquid ratio and
extraction time, further conrming its extremely signicant
impact on extraction yield (F = 144.21). With paeoniorin
content as the target observation, both range analysis (Table 9)
and variance analysis (Table 10) similarly identied the number
of extraction cycles as the most inuential factor, exhibiting
a range value (R) of 20.72, followed by solid–liquid ratio (R =

4.97) and extraction time (R = 1.65). Variance analysis indicated
a highly signicant effect of the number of extraction cycles on
total paeoniorin content (F = 33.12), with solid–liquid ratio
and extraction time being less inuential.
Evaluation and tting of linear regression equations for
factors and observed values in ML

To further investigate the factors affecting extraction perfor-
mance, we constructed multiple sets of polynomial features for
analysis. The advantage of polynomial features lies in elevating
the analytical perspective from “linear” to “nonlinear,” thereby
enabling a deeper exploration of the complex relationships
between inuencing factors and outcomes. The results indi-
cated that the number of extraction cycles exhibited a strong
positive correlation with both the extract yield and the
Addition (mg) Recovery% Average% RSD%

0.165 93.69553686 94.30 1.35
0.165 95.09020676
0.165 94.71200957
0.165 94.998313
0.165 91.98402535
0.165 95.32940451

Average (mg g−1) RSD%

7.853234867 1.77

7.893018366 7.25

7.945090821 0.76

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 7 OED and range analysis of extract yield

No.
Factor A
solid–liquid ratio

Factor B
extraction time/h

Factor C
extraction cycles/time (s)

Factor D
blank column

Extraction
yield (%)

1 1 1 1 1 26.79
2 1 2 2 2 36.69
3 1 3 3 3 42.64
4 2 1 2 3 37.97
5 2 2 3 1 42.49
6 2 3 1 2 30.27
7 3 1 3 2 41.68
8 3 2 1 3 31.12
9 3 3 2 1 39.93
K1 106.12 106.44 88.18 109.21
K2 110.73 110.30 114.59 108.64
K3 112.73 112.84 126.81 111.73
k1 35.37 35.48 29.39 36.40
k2 36.91 36.77 38.20 36.21
k3 37.58 37.61 42.27 37.24
R 2.21 2.13 12.88 1.03

Table 8 Analysis of variance for extract yield

Factor Sums of squared deviations Degrees of freedom Mean square F F0.05 F0.01

A 7.6601 2 3.8301 4.2505 19 99
B 6.9231 2 3.4616 3.8415 19 99
C 259.8989 2 129.9495 144.2121 19 99
D 1.8022 2 0.9011
Total 276 8

Table 9 OED and range analysis of paeoniflorin content

No.
Factor A
solid–liquid ratio

Factor B
extraction time/h

Factor C
extraction cycles/time (s)

Factor D
blank column

Paeoniorin
content

1 1 1 1 1 48.53
2 1 2 2 2 63.65
3 1 3 3 3 73.66
4 2 1 2 3 72.06
5 2 2 3 1 73.60
6 2 3 1 2 54.20
7 3 1 3 2 73.91
8 3 2 1 3 56.26
9 3 3 2 1 70.60
K1 185.84 194.50 159.00 192.73
K2 199.87 193.51 206.30 191.76
K3 200.77 198.46 221.17 201.98
k1 61.95 64.83 53.00 64.24
k2 66.62 64.50 68.77 63.92
k3 66.92 66.15 73.72 67.33
R 4.97 1.65 20.72 3.41
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paeoniorin content, with correlation coefficients reaching 0.95
and 0.91 (Fig. 2A), respectively. This suggests that the number of
decoctions is the most inuential process parameter. In
contrast, the solid–liquid ratio and extraction time showed only
weak correlations with the target variables (r = 0.058–0.22)
(Fig. 2A–D). A very strong synergistic relationship (r = 0.98)
(Fig. 2A) was observed between the two target variables,
© 2026 The Author(s). Published by the Royal Society of Chemistry
indicating that optimizing the extract yield can simultaneously
enhance the paeoniorin content. Additionally, the correlations
among the three process parameters were nearly zero, con-
rming the good orthogonality of the experimental design.

Compared to traditional statistical analysis methods, ML
regression techniques demonstrate superior performance in
quantifying the relationship between process parameters and
RSC Adv., 2026, 16, 7992–8007 | 7999
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Table 10 Analysis of variance for paeoniflorin content

Factor Sums of squared deviations Degrees of freedom Mean square F F0.05 F0.01

A 48.0318 2 24.0159 2.2638 19 99
B 4.5739 2 2.2870 0.2156 19 99
C 702.6130 2 351.3065 33.1156 19 99
D 21.2170 2 10.6085
Total 776 8

Fig. 2 Feature association analysis based on multiple sets of polynomial features. (A) Feature–target correlation heatmap, where deeper colors
(red) indicate stronger correlations; (B) relationship between extract yield and process parameters, where the x-axis represents the values of
process parameters (e.g., solid–liquid ratio, extraction time) and the y-axis represents the extract yield (%), illustrating the scatter distribution of
parameters versus extract yield; (C) relationship between total paeoniflorin content and process parameters, x-axis represents the values of
process parameters, y-axis represents the total paeoniflorin content; (D) relationship between extract yield and total paeoniflorin content, x-axis
represents the extract yield (%), y-axis represents the total paeoniflorin content.
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target metrics. The efficacy of the nine evaluated models was
assessed based on ve performance indicators. The results
reveal signicant differences in the tting performance of these
models for predicting the extraction yield and paeoniorin
content on the training set (Tables 11, 12 and Fig. 3).

In the model incorporating both extraction yield and paeo-
niorin content as comprehensive predictive indicators, the
Poly2 + ridge demonstrated optimal performance. On the
training set, it achieved high R2 values of 0.988 and 0.986
8000 | RSC Adv., 2026, 16, 7992–8007
(Fig. 3A and C), respectively, for the two indicators, with corre-
sponding Adj_R2 values of 0.981 and 0.977. The R2-Diff were
minimal, at only 0.006 and 0.009, indicating negligible over-
tting. Additionally, the model yielded the lowest error metrics
across all compared models: a MAE of 0.532 and 1.007, a RMSE
of 0.609 and 1.107 (Fig. 3B), and a AICc of 1.89 and 12.63. These
results collectively highlight the model's superior comprehen-
sive performance. For the linear regression, ridge regression,
and LASSO regression models, the results were consistent: all
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 11 Model evaluation of extraction yield

Model Train R2 Adj_R2 R2-Diff RMSE MAE AICc

Linear regression 0.951 0.903 0.049 1.223 1.051 21.63
Ridge (a = 0.01) 0.951 0.903 0.049 1.223 1.051 21.63
Ridge (a = 0.1) 0.951 0.902 0.049 1.225 1.051 21.65
Ridge (a = 1.0) 0.942 0.884 0.058 1.337 1.125 23.23
ElasticNet 0.948 0.896 0.052 1.265 1.051 22.24
Lasso 0.951 0.902 0.049 1.226 1.051 21.67
BayesianRidge 0.951 0.901 0.049 1.231 1.051 21.74
Poly2 + ridge 0.988 0.981 0.007 0.609 0.532 1.89
Random forest (small) 0.839 0.743 0.096 2.221 1.685 25.16
SVR linear 0.904 0.809 0.096 1.713 1.197 27.69
PLS regression 0.951 0.903 0.049 1.223 1.051 21.63

Table 12 Model evaluation of paeoniflorin content

Model Train R2 Adj_R2 R2-Diff RMSE MAE AICc

Linear regression 0.882 0.765 0.118 3.184 2.404 38.85
Ridge (a = 0.01) 0.882 0.765 0.118 3.184 2.404 38.85
Ridge (a = 0.1) 0.882 0.764 0.118 3.186 2.417 38.86
Ridge (a = 1.0) 0.873 0.747 0.127 3.302 2.586 39.5
ElasticNet 0.88 0.759 0.120 3.22 2.499 39.05
Lasso 0.882 0.764 0.118 3.186 2.41 38.86
BayesianRidge 0.878 0.757 0.122 3.237 2.522 39.14
Poly2 + ridge 0.986 0.977 0.009 1.107 1.007 12.63
Random forest (small) 0.8 0.68 0.12 4.151 3.439 36.42
ZSVR linear 0.802 0.604 0.198 4.133 2.987 43.54
PLS regression 0.882 0.765 0.118 3.184 2.404 38.85
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yielded stable R2 values (0.951 and 0.882 for the two indicators)
and similar error metrics, with AICc values ranging from
approximately 21.6 to 38.9. This consistency suggests that these
models provide reliable but less accurate predictions compared
to the Poly2 + ridge combination.

For models excluding the polynomial features + ridge
regression combination, a three-tiered hierarchical structure
dened their performance across both extraction yield and
paeoniorin content prediction tasks.

The baseline linear group (linear regression, ridge (a = 0.01
and 0.1), PLS regression) exhibited highly consistent results: for
extraction yield, R2 z 0.951 (0.9512–0.9513), Adj_R2 > 0.902,
MAE = 1.051, RMSE = 1.223–1.225, and AICc z 21.6; for
paeoniorin content, R2 z 0.882 (0.8822–0.8823), Adj_R2 z
0.764, MAE= 2.40–2.42, RMSEz 3.18, AICcz 38.9—indicating
similar tting efficacy across tasks.

The regularized extension group (ridge (a = 1.0), ElasticNet,
Lasso, BayesianRidge) formed a secondary tier with marginally
lower R2: extraction yield (0.942–0.951, ridge a = 1.0: 0.9418,
stronger regularization), paeoniorin content (0.874–0.882,
ridge a = 1.0: 0.8735, MAE = 2.59, RMSE = 3.30). ElasticNet
consistently showed higher RMSE (extraction yield: 1.265, AICc
= 22.24; paeoniorin: 3.22, AICc = 39.05), while Lasso and
BayesianRidge had metrics comparable to the baseline.

Random forest (small) and SVRLinear underperformed
signicantly. Random forest had poor t (extraction yield: R2 =

0.839, MAE = 1.69, RMSE = 2.22, AICc = 25.2; paeoniorin
© 2026 The Author(s). Published by the Royal Society of Chemistry
content: R2 = 0.80, MAE = 3.44, RMSE = 4.15); SVRLinear
performed worst (extraction yield: R2 = 0.90, RMSE = 1.71, AICc
= 27.7; paeoniorin content: R2 = 0.80, RMSE = 4.13, AICc =

43.5), with all metrics substantially higher than linear models—
highlighting the superiority of linear approaches for these
tasks.

This hierarchy emphasizes the Poly2 + ridge model's
advantage, while illustrating trade-offs between model
complexity (regularization, nonlinearity) and predictive
performance.
Analysis of optimization results based on computational
models

To validate the reliability of the model, the optimization results
derived from polynomial ridge regression—specically, solid–
liquid ratio of 9.71, extraction time of 1.50 hours, and three
extraction cycles—were evaluated against practical process
constraints (e.g., solid–liquid ratio, extraction time, and
number of extraction cycles). The analysis conrmed that these
parameters not only yielded high predicted values but also
remained operationally feasible, thereby substantiating their
optimality. In terms of model adaptability, polynomial ridge
regression demonstrated superior prediction accuracy and
stability when applied to small-sample datasets. This model
effectively captures the nonlinear relationships between process
parameters and target indicators while mitigating overtting
through regularization, ensuring robust performance in prac-
tical applications.

In the parameter space optimization analysis, the optimal
solutions for process optimization were predominantly
concentrated within the region of a water addition ratio of 9 to
11 times and a decoction time of 1.25 to 1.75 hours (Fig. 4A),
exhibiting a distinct peak distribution pattern. The improve-
ment magnitude in paeoniorin content was generally superior
to that of the extract yield (Fig. 4B), which aligns with the
characteristic observed in the heatmap (Fig. 2A), where paeo-
niorin, as an active ingredient, demonstrated greater sensi-
tivity to variations in process parameters. The optimal solutions
achieved signicant enhancement in both indicators. Further-
more, the optimization results within the objective space
(Fig. 4C and D) illustrate the positional relationship between
the ML-predicted optimum point and the original experimental
points. The predicted optimal process parameters are capable
of simultaneously increasing both the extract yield and paeo-
niorin content, thereby realizing effective process
improvement.

In the performance evaluation of process optimization, the
comparative analysis of original optimal process versus ML-
optimized process parameters (Fig. 5A) revealed that the opti-
mized water volume increased from 8-fold to 9.71-fold, with
a decoction time of 1.5 hours and three decoction cycles. The
performance improvement analysis (Fig. 5B) quantied the
optimization effects, demonstrating a 0.57% increase in extract
yield and a 1.09-unit enhancement in paeoniorin content. The
performance trajectories of the top 10 solutions (Fig. 5C)
exhibited consistently high-performance levels, indicating the
RSC Adv., 2026, 16, 7992–8007 | 8001
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Fig. 3 Performance evaluation of machine learning models. (A) R2 score comparison of models, the x-axis represents different regression
models, while the y-axis denotes the R2 score (ranging from 0 to 1); (B) RMSE comparison of models, the x-axis lists the different regression
models evaluated, and the y-axis shows the RMSE values; (C) Optimal model predictive performance, the x-axis represents the true values, the y-
axis represents the predicted values, and the dashed line denotes the ideal fit line (y = x).
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robustness of the optimization algorithm. Furthermore, the
relationship between solution quality and model condence
(Fig. 5D) indicated that the optimal solution not only achieved
the highest optimization score but also maintained a high
model condence (0.826), ensuring the reliability of the pre-
dicted outcomes.

The performance heatmap of the ensemble models (Fig. 6A)
revealed that characteristic polynomial + ridge regression,
elastic net regression, and ridge regression (a = 1.0) excelled
across all evaluation metrics, with their combination forming
a stable and reliable ensemble prediction system. The weight
distribution of the ensemble models (Fig. 6B) indicated that
polynomial ridge regression was assigned the predominant
weight (0.353), underscoring its superior performance in
predictive accuracy. A comparative analysis between individual
models and the ensemble model (Fig. 6C and D) conrmed the
effectiveness of the ensemble strategy: across various parameter
combinations, the ensemble model yielded more stable
predictions and effectively mitigated the deviations that might
arise from relying on any single model.
8002 | RSC Adv., 2026, 16, 7992–8007
Based on the comprehensive ML analysis, the nal recom-
mended process parameters are as follows: solid–liquid ratio of
9.71, decoction time of 1.50 h, and 3 extraction cycles. This
parameter combination is predicted to yield an extract rate of
43.21% and a paeoniorin content of 75 units, representing an
improvement of 0.57% in extract yield and an increase of 1.09
units in paeoniorin content compared to the original optimal
experimental results (SI 1).
Characterization of extract and paeoniorin in PLCTCMP
using computational models

As mentioned previously, the extraction yield and paeoniorin
content serve as critical quality standards for the PLCTCMP. By
integrating ML to construct a predictive model and analyzing
the optimal extraction, further experimental verication
revealed that under the selected conditions, the PLCTCMP
formula achieved an extraction yield of 43.28% and a total
paeoniorin content of 74.2 mg. These results not only
corroborate the ndings from the OED but also demonstrate
the feasibility of ML in optimizing extraction.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Parameter space optimization analysis. (A) Parameter space optimization score distribution, the x-axis represent solid–liquid ratio, the y-
axis represent extraction time; (B) top 10 solution improvement effects, the x-axis represent solution ranking, the y-axis represent absolution
improvement; (C) optimization results in target space, the x-axis represent extract yield, the y-axis represent paeoniflorin content, (D) top 20
optimization solution parameter distribution, the x-axis represent solid–liquid ratio, the y-axis represent extraction time.
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Discussion

Based on the effective anti-liver cancer formula developed
through previous data mining and experimental validation, this
study focuses on standardizing the extraction process of the
formulated preparation. Active components are critical quality
control indicators for the extraction process. Paeoniorin,
a representative monoterpene glycoside, is not only a recog-
nized active substance in Paeonia lactiora but was also
conrmed as a primary active component in PLCTCMP in our
preliminary research.19 Paeoniorin has been extensively
studied in liver cancer research. Studies have shown that
paeoniorin inhibits Skp2 activity, thereby suppressing cell
viability, inducing apoptosis, and inhibiting invasion and
migration, positioning it as a novel inhibitor of liver cancer
cells.20 The aberrant expression of programmed death-ligand 1
(PD-L1) in cancer cells facilitates immune escape of liver cancer
cells. Paeoniorin can trigger T cell-mediated anti-tumor
immunity by increasing CD8+ T cell counts in tumor tissues,
an effect mediated through the SOCS3/STAT3 (ref. 21) and NF-
kB/PD-L1 (ref. 22) signaling pathways. Furthermore, the
combination of paeoniorin and sorafenib (Sor) inhibits
© 2026 The Author(s). Published by the Royal Society of Chemistry
invasion and activation of the NF-kB/HIF-2a/SerpinB3 pathway
in Sor-resistant liver cancer cells, synergistically enhancing the
anti-liver cancer effect of Sor.23

This study focused on PLCTCMP for the treatment of
primary liver cancer. A quality control method was established
using paeoniorin as the indicator component, which served as
a critical parameter for the systematic optimization of the
extraction process. Through HPLC methodology validation, it
was conrmed that the detection method exhibits strong
specicity, high sensitivity, and is suitable for the quantitative
analysis of paeoniorin in the PLCTCMP.

In this study, the traditional reux extraction method was
employed. Although existing literature indicates that ethanol
reux extraction can signicantly improve the extraction effi-
ciency of paeoniorin,24,25 aqueous reux extraction more
closely aligns with the traditional application of Chinese herbal
formulations and reects real-world patient usage practices.26

This approach helps preserve thermolabile active components
in the formulation, such as volatile oils and polysaccharides,
thereby facilitating subsequent process verication and clinical
translation.27 Moreover, using water as a green solvent circum-
vents issues related to ethanol residue, which is consistent with
RSC Adv., 2026, 16, 7992–8007 | 8003
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Fig. 5 Process optimization performance evaluation. (A) Optimal vs. original best process parameters, the x-axis represent process parameters,
the y-axis represent parameter value; (B) performance improvement analysis, the x-axis represent performancemetrics, the y-axis values; (C) top
10 solutions performance trajectory, the x-axis represent solution ranking, the y-axis represent predicted values; (D) solution quality vs. model
confidence, the x-axis represent optimization score, the y-axis represent model confidence.
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the safety requirements for quality control of TCM formulations
as stipulated by the Chinese Pharmacopoeia. It also reduces
process complexity and costs.28

In the study of aqueous extraction technology, the solid–
liquid ratio, extraction time, and extraction cycles signicantly
inuence the yield of paeoniorin,29 while the extract yield also
serves as a critical indicator of the extraction process.30 There-
fore, this research employed both paeoniorin content and
extract yield as quality control metrics to construct an OED. This
allowed for a preliminary investigation into the impact of
various extraction factors on the outcome indicators. The
results revealed that the solid–liquid ratio and extraction time
had a relatively weak inuence on the extraction of paeoniorin,
whereas the extraction cycles were identied as the key factor
affecting both the extract yield and paeoniorin content. Anal-
ysis of variance further validated the signicance of the number
of decoctions (P < 0.01). Using polynomial features algorithm,
we further validated the strong positive correlation between
extraction times and both extract yield and paeoniorin
content, and obtained the optimal solution to break the leach-
ing equilibrium state via ML methods. Additionally, the minor
error term indicated a reliable experimental design and repro-
ducible results. This is because multiple extraction steps
8004 | RSC Adv., 2026, 16, 7992–8007
repeatedly “reset” the concentration gradient, continually di-
srupting the intracellular-extracellular concentration equilib-
rium, overcoming the resistance in the extraction process, and
thereby persistently “driving” the outward migration of active
components. However, as the number of extractions increases,
the vast majority of the active components will have been
essentially leached out completely. Consequently, further
increasing the number of extraction steps yields diminishing
returns in terms of component recovery while increasing energy
consumption.31

To better optimize the extraction process, this study
proposes an optimization method based on the integration of
OED and ML. Specically tailored for small sample data, nine
ML models were selected to analyze the results of the orthog-
onal experiments. The OED selects the most representative set
of few test points from the full factorial combinations, while ML
integrates efficient OED, powerful nonlinear tting capabilities,
and intelligent optimization into a unied framework. This
approach reduces the number of “trial-and-error” experiments
and enables rapid, low-cost screening of optimal parame-
ters.32,33 Based on the principle of small-sample-friendliness,
nine supervised ML models were selected. The learning
process of OED data by the nine models essentially consists in
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Ensemble model performance evaluation. (A) Ensemble models performance heatmap, the x-axis represent performance metrics, the y-
axis represent models; (B) ensemble model weight distribution, the x-axis represent models, the y-axis represent weight in ensemble; (C)
individual vs. ensemblemodel predictions (extract yield), the x-axis represent sample parameters, the y-axis represent extract yield prediction; (D)
individual vs. ensemble model predictions (paeoniflorin), the x-axis represent sample parameters, the y-axis represent paeoniflorin content
prediction.
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capturing the mapping relationship of chemical laws in a high-
dimensional space, achieving survival of the ttest, exploring
the optimal solution, and the exploration space is dened by the
feasible domain derived from chemical principles. These
models were evaluated and the optimal model was screened
based on R2, RMSE, MAE, AIC, and a comprehensive score. In
the prediction of extract yield and content of paeoniorin, the
characteristic polynomial + ridge regression demonstrated
optimal performance in both cases. It achieved the highest R2 of
0.988 and 0.986, respectively, which are the closest to 1 among
all evaluated models. Meanwhile, it yielded the smallest values
of RMSE (0.609, 1.107), MAE (0.532, 1.007), and AIC (−2.9, 7.8).
Eventually, this model attained the highest comprehensive
scores (0.809, 0.812). The essence of characteristic polynomial
lies in feature transformation. By generating higher-order terms
and interaction terms from the original features, the data is
mapped into a higher-dimensional space. This process cleverly
converts inherently nonlinear relationships in the original
feature space into a linear tting problem in the high-
dimensional space, where the relationship can be
© 2026 The Author(s). Published by the Royal Society of Chemistry
approximated by a hyperplane.34,35 However, this feature trans-
formation drastically increases model complexity and the
number of variables. Under small-sample conditions, this oen
leads to overtting. Ridge regression addresses this issue by
incorporating an L2 regularization term into its loss function.
This penalty term encourages the shrinkage of model coeffi-
cients towards zero, preventing them from becoming exces-
sively large by tting noise in the training data, thereby
enhancing the model's generalization capability. Furthermore,
when multicollinearity exists among the transformed features –
a common occurrence aer polynomial expansion—the solu-
tion of Ordinary Least Squares (OLS) becomes highly
unstable.36,37 Ridge regression signicantly improves the
numerical stability of the solution by introducing the regulari-
zation term. This combined strategy, where characteristic
polynomial is responsible for expanding the model's capacity
and ridge regression imposes necessary constraints, proves
particularly suitable for handling small-sample datasets.

Based on the polynomial–ridge regression model, the
optimal extraction process was obtained. Further experimental
RSC Adv., 2026, 16, 7992–8007 | 8005
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verication ultimately demonstrated that under this ML opti-
mization, both the extraction yield (43.21%) and paeoniorin
content (74.2 mg) achieved the highest improvement. This not
only validates the reliability of ML in process optimization but
also proves that the chemical regularities learned thereby are
accurate. The 0.57% elevation in extract yield translates to
a direct reduction in the unit cost of the extract and an expan-
sion of prot margins during large-scale industrial
manufacturing. Concurrently, it improves the utilization effi-
ciency of medicinal herb resources, thus demonstrating the
extensive application potential of this technology in pharma-
ceutical formulation practices.

In pharmaceutical preparation processes, while extraction
methods serve as the initial step, the efficient extraction of
active ingredients is of paramount importance. In this study,
a database was constructed using an OED, and articial intel-
ligence was employed to build a model for calculating the
optimal extraction parameters. Preliminary extraction process
parameters were successfully obtained and their reliability was
experimentally veried. This successful experience is not
limited to systems involving two optimization objectives and
three factors. Instead, the core advantages of the OED + ML
workow—efficient experimental design, data-driven nonlinear
modeling, and multi-objective optimization—render it partic-
ularly suitable for multi-herb TCM formulae with complex
interactions, especially in terms of its capacity to capture the
intricate nonlinear relationships between multiple factors and
multiple optimization objectives. Through rational model
construction and validation strategies, this workow can serve
as a universal tool for the efficient optimization of TCM
extraction processes, effectively bridging the gap between
laboratory-scale research and industrial production.

However, the current model exhibits certain limitations due
to the constrained dataset volume. Furthermore, the limited
number of outcome measures restricted the model's construc-
tion robustness. This highlights that for future model devel-
opment, it is essential not only to expand the sample size but
also to incorporate a broader range of outcome measures to
seek an optimized solution. This approach will provide a solid
experimental foundation for quality control in the production
process. It is also anticipated that ML-assisted strategies will
nd broader application in future production workows.
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