
RSC Advances

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 2
/1

1/
20

26
 1

1:
43

:4
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue
Multi-objective o
aTaiyuan University of Science and Techn

Engineering, College of Energy and Ma

Wanbailin District, Taiyuan, Shanxi Provi

tyust.edu.cn
bTaiyuan University of Science and Technolo

Technology, 66 Waliu Road, Wanbailin Dis

China. E-mail: yywangs@163.com

Cite this: RSC Adv., 2026, 16, 2255

Received 9th December 2025
Accepted 29th December 2025

DOI: 10.1039/d5ra09551d

rsc.li/rsc-advances

© 2026 The Author(s). Published by
ptimization design of
microchannel reactors for Fischer–Tropsch
synthesis using CFD, GENN, and NSGA-II

Shijie Ren a and Yuanyang Wang*b

In Fischer–Tropsch synthesis processes, microchannel reactors exhibit pronounced process intensification

compared with conventional fixed-bed reactors. Computational fluid dynamics was coupled with

a surrogate model based on a gradient-enhanced neural network to systematically evaluate the

influence of four characteristic geometric variables on the catalytic performance of multi-tubular

microchannel reactors. A multi-objective optimization aimed at maximizing C5+ yield and concurrently

minimizing the maximum temperature rise was then conducted using the non-dominated sorting

genetic algorithm-II. The resulting Pareto frontier was analyzed to identify the solutions that optimally

reconcile thermal safety and productivity. The results indicate that, relative to the initial design, the

selected optimal configuration reduces DTmax by 7.2 °C and increases YC5+
by a factor of 1.86,

substantially enhancing reactor performance and providing both a theoretical basis and design reference

for pilot-scale demonstration and industrial deployment of Fischer–Tropsch microchannel reactors.
1. Introduction

Non-oil-based carbon resources such as coal, natural gas, and
biomass can be converted into clean fuels and high-value
chemicals via Fischer–Tropsch synthesis (FTS), thereby allevi-
ating energy shortages, strengthening strategic energy security,
and reducing environmental pollution.1 Owing to the strongly
exothermic nature of the FTS, microchannel reactors exhibiting
superior interphase heat and mass transfer characteristics are
employed to effectively suppress thermal runaway and enhance
selective hydrocarbon productivity.2 Nevertheless, the micro/
millimetric characteristic dimensions preclude intrusive inser-
tion of temperature, concentration, or pressure probes, which
inevitably disturbs the ow eld; complete spatial proles of
temperature, concentration, and pressure cannot be obtained
experimentally, and reactor design therefore is primarily based
on computational uid dynamics (CFD) simulations.3

In recent years, CFD has been coupled with optimization
algorithms for the design of diverse reactor types. Lee et al.4

rapidly determined the catalyst packing ratio in a four-channel
reactor by integrating CFD with a Bayesian envelope optimiza-
tion algorithm. Teimouri et al.5 embedded a genetically
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calibrated trimetallic kinetic scheme within a two-dimensional
porous-medium CFD model to accurately predict the C5+

distribution in a xed bed. Na et al.6 employed a CFD-genetic
algorithm framework to optimize a zoned catalyst dilution
strategy, achieving a signicant reduction in temperature rise
and an improved yield. Nevertheless, conventional CFD-based
design remains a labor-intensive procedure:7 any variation in
diameter, length, or thickness necessitates remodeling,
remeshing, and re-specication of boundary conditions. When
the design space encompasses tens to hundreds of geometric
combinations, the “geometry–mesh-solution” cycle becomes
computationally prohibitive, and the discrete results yield
sparse gradient information for continuous-space optimization.

Gaussian-process regression, radial-basis-function interpola-
tion, and neural networks are routinely employed to construct
input–output mappings from limited CFD samples, enabling the
resulting surrogate models to replace the CFD solver during the
optimization loop and thereby alleviate the associated compu-
tational burden. Mishra et al.8 coupled CFD with a deep neural
network to enable rapid prediction of local hydrodynamic vari-
ables such as bubble number density in a slurry-bed hydro-
cracking reactor. Qiu et al.9 generated two-dimensional H2

concentration elds from CFD simulations of a methanol steam-
reforming xed bed and subsequently trained a multilayer-
perceptron surrogate model to map spatial coordinates to
concentration, reducing computational time by 90%. Jung et al.10

performed a dual-objective optimization of reactor volume and
maximum temperature difference for a U-cooled microchannel
FT process by training an articial-neural-network surrogate with
CFD samples. Ansys has further slashed CFD simulation
RSC Adv., 2026, 16, 2255–2270 | 2255
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turnaround times via its cloud-native SimAI platform, which
leverages physics-informed AI models trained on legacy simula-
tion datasets to accelerate performance predictions by 10–100
times compared with traditional solvers.11 Collectively, these
studies and reports demonstrate that CFD-surrogate coupling
constitutes a viable route for mitigating computational intensity
in CFD-driven design.12 Surrogate-based modeling enables
computationally efficient and quantitative evaluation of the
catalytic performance of the microreactor within the bounded
geometric design space. Owing to inherent trade-offs among
reactor-design variables, multi-objective optimization algorithms
must be implemented to identify the Pareto frontier and hence
the optimal compromise.10,13 Jiang et al.14 developed a CFD–ANN–
NSGA-II framework to optimize the structural parameters of
a stirred-tank reactor with high computational efficiency. Zhang
et al.15 employed NSGA-II to minimize radial temperature differ-
ence and maximize CO conversion, thereby determining the
optimal operating conditions of a helium-heated reverse water–
gas shi reactor. However, studies on surrogate-assisted multi-
objective optimization for Fischer–Tropsch synthesis in multi-
tubular microchannel reactors remain unavailable in the open
literature.

On the basis of our previously validated CFD model,16 this
work presents an integrated framework that combines
Fig. 1 Geometric model of the reactor. Tube II dimensions are governe
larger by twice RG, and its wall thickness is fixed at 1 mm.

2256 | RSC Adv., 2026, 16, 2255–2270
sensitivity analysis, surrogate modelling and multi-objective
optimization for the geometric design of a multi-tubular
microchannel reactor for FTS. Latin hypercube sampling
(LHS) was used to generate 250 CFD cases within the bounds of
the four geometric design variables (RL, RD, RT, RS). A gradient-
enhanced neural network (GENN) surrogate model exhibiting
the highest predictive accuracy was then constructed, elimi-
nating the need for further computationally intensive simula-
tions. Finally, the GENN surrogate model was integrated with
the Non-dominated Sorting Genetic Algorithm II (NSGA-II)
algorithm to minimize the maximum temperature rise (DTmax)
and maximize the C5+ yield (YC5+

). The resulting Pareto frontier
was analyzed to identify Pareto-optimal solutions that balance
thermal stability and productivity, providing a quantitative
design basis and optimization strategies for pilot-to-industrial
scale-up of multi-tubular microchannel FTS reactors.
2. Reactor model and optimization
strategy
2.1 Reactor model

Fig. 1 illustrates the multi-tubular microchannel reactor
employed in this study. The reactor consists of seven inner
tubes (Tube I) and one outer tube (Tube II). Tube I are
d by those of Tube I: its length is 60 mm greater, its inner diameter is

© 2026 The Author(s). Published by the Royal Society of Chemistry
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axisymmetrically arranged around the central axis of Tube-II,
with their ends recessed 30 mm from the corresponding inlet/
outlet. The inlet and outlet headers are packed with inert
particles to guarantee fully developed laminar ow inside the
reactor. Both the inner and outer surfaces of Tube I undergo
controlled chemical etching, ultrasonic cleaning and subse-
quent wash-coating with the active catalytic layer reported in
ref. 17, thereby serving simultaneously as catalytic surfaces and
mechanical supports. Syngas enters the reactor through the
inlet of Tube-II and reacts on the catalytically active surface of
Tube I. Reactor fabrication, CFDmodelling, validation and ow-
eld distribution detailed in ref. 16 and 17 are reused here with
the same geometric model, mesh, governing equations, kinetics
and boundary conditions, with only the dimensions of Tube I
treated as parametric variables. Specically, the CFD model was
previously validated in ref. 16, which described a multi-tubular
microchannel reactor loaded with Fe-supported catalysts and
featuring an identical geometric conguration to that of the
present work. Ref. 16 investigated a wide range of operating
parameters (inlet temperature: 220–380 °C, pressure: 0.1–
2.1 MPa, H2/CO ratio: 1/3–7/3, GHSV: 2000–16 000 h−1), which
fully covers the xed baseline operating conditions utilized in
this study. The simulation results from ref. 16 showed good
agreement with experimental data, with mean absolute relative
residuals of 11.74% for CO conversion and 0.43% for reactor
center temperature, conrming the model's reliability. This
consistency in reactor geometry and overlap in operating
conditions between ref. 16 and the current study provide robust
support for the credibility of the optimized design's simulation
results, thereby enhancing the work's reference value for
subsequent pilot-scale demonstrations. Geometric design vari-
ables including tube length (RL), inner diameter (RD), wall
thickness (RT) and inter-tube spacing (RS) are specied in Fig. 1,
where RS is established via two one-piece multi-tube locating
sleeves positioned inside Tube-II at both ends of the bundle.
The corresponding values of each variable are listed in Table 1.
2.2 Integrated CFD-surrogate-optimization workow

A hybrid CFD–GENN–NSGA-II workow (Fig. 2) is proposed for
the high-delity design of the multi-tubular microchannel
reactor loaded with Fe-supported catalysts for FTS. Reaction
kinetics and grid independence have been validated previously
in ref. 16 (white block). Three tasks were undertaken in the
present study:
Table 1 Baseline values and design ranges of the four geometric
dimensions (mm)

Parametersa RL RD RT RS

Baseline values 100 2 0.5 1
Exploration range [30, 400] [0.5, 50] [0.25, 35] [0.01, 50]
Design range [30, 200] [0.5, 4] [0.25, 6.5] [0, 2.5]

a All cases were simulated under an inlet temperature of 340 °C,
pressure of 0.7 MPa, H2/CO ratio of 2 : 3, and GHSV of 8000 h−1.

© 2026 The Author(s). Published by the Royal Society of Chemistry
(1) Sensitivity analysis (yellow block): the established CFD
model was exercised under xed operating conditions (inlet
temperature 340 °C, H2/CO = 2/3, P = 0.7 MPa, GHSV = 8000
h−1) to quantify the individual inuence of RL, RD, RT and RS on
DTmax and YC5+

, thereby delimiting the feasible design space.
(2) Surrogate-model construction (blue block): a 250-point

LHS design was generated and evaluated by CFD. The data set
was randomly split into training (60%), validation (20%) and
test (20%) subsets; a GENN surrogate model was then trained to
provide rapid estimation of the objective functions across the
design space.

(3) Multi-objective optimization (green block): NSGA-II was
employed to maximize YC5+

while minimizing DTmax, yielding
the Pareto frontier and corresponding trade-off solutions.

Geometric modelling was carried out in Ansys SpaceClaim,
whereas mesh generation and CFD simulations were performed
in Ansys Fluent, which provides practically proven and mature
computational capacities for reactive ow research.18 Training
of the surrogate model was conducted with SMT (Surrogate
Modeling Toolbox) package v.2.9.5,19 and the optimization
routine was handled by PyMOO (Multi-Objective Optimization
in Python) package v.0.6.1.5.20 All computations and Python
scripting were executed on a Dell Precision 7920 Tower work-
station (2× Intel Xeon Gold 6258R, 56 cores). Each design cycle
was completed in approximately 5 min, corresponding to a ten-
fold reduction from the conventional 50 min workow and
substantially improving the computational efficiency of multi-
objective optimization of microchannel reactors.
2.3 Surrogate-model selection

Surrogate models were introduced to replace the computa-
tionally expensive CFD step and to provide a rapid mapping
between design variables and reactor performance. Two candi-
date surrogates from the SMT library were benchmarked: (i)
KRG: a data-efficient Gaussian-process Kriging estimator that
simultaneously returns predictive mean and variance, thereby
furnishing a built-in metric for adaptive inlling;21 (ii) GENN:
a feed-forward network with known adjoint gradients
embedded in the loss function, yielding higher-order conver-
gence and superior generalization in a four-dimensional
continuous design space for the same sample size.22 The
procedure is summarized below:

Step 1: sample generation: 250 designs were generated in the
4-D space (RL, RD, RT, RS) by LHS and sequentially solved by
CFD, generating y1(YC5+

) and y2(DTmax) to form the complete
data set.

Step 2: data partitioning: the data were randomly partitioned
60%/20%/20% into training, validation and test subsets. The
training subset was used to t the surrogate, the validation
subset to monitor generalization error and facilitate hyper-
parameter tuning with early stopping, and the test subset to
provide an unbiased estimate of predictive accuracy.

Step 3: model training and assessment: KRG and GENN were
trained concurrently. Accuracy was quantied by normalized
mean absolute error (NMAE) and normalized root-mean-square
error (NRMSE), dened in eqn (1) and (2). The model exhibiting
RSC Adv., 2026, 16, 2255–2270 | 2257
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Fig. 2 Hybrid CFD–GENN–NSGA-II workflow for multi-objective optimization of the microchannel reactor for FTS.
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the lower validation error was selected for the subsequent
optimization loop.

NMAE ¼

1

n

Xn

i¼1

��ysim � ŷpre
��

ymax � ymin

(1)

NRMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1

�
ysim � ŷpre

�2s

ymax � ymin

(2)

where n denotes the number of samples. Subscripts sim and pre
refer to the CFD simulation and surrogate-model prediction
values, respectively. Max and min indicate the sample
maximum and minimum values.

2.4 Optimization strategy

In the previously reported CFD model from ref. 16, products
from FTS and WGS were lumped into C1, C3, C5+ and CO2.
Maximizing YC5+

was set as the rst objective. As FTS is strongly
exothermic, previous studies23,24 commonly limit DT to 20 °C to
mitigate thermal runaway.

Minimize ½f1ðxÞ; f2ðxÞ�

f1ðxÞ ¼ 1

y1;pre
; f2ðxÞ ¼ y2;pre; x ¼ ðRL;RD;RT;RSÞT

s:t: x˛S f1ðxÞ$ 1 0# f2ðxÞ# 20

(3)

DTmax minimization was therefore adopted as the second
objective, subject to DTmax # 20 °C. The multi-objective
2258 | RSC Adv., 2026, 16, 2255–2270
problem is formulated as eqn (3), where f1(x) denotes the
reciprocal of YC5+

and takes a minimum value of 1, while f2(x)
corresponds to DTmax; the independent variable x is a four-
dimensional design vector, y1,pre and y2,pre are the YC5+

and
DTmax predicted by the surrogate model, and S refers to the
feasible region determined via the sensitivity analysis presented
in Section 3.1.

This bi-objective optimization problem was solved using the
NSGA-II algorithm implemented in PyMOO The algorithm
employs fast non-dominated sorting and crowding distance
mechanisms to simultaneously ensure the convergence and
diversity of solutions.25 Aer obtaining the Pareto frontier, the
optimal design was selected based on the trade-off principle
between temperature rise and product yield.
3. Results and discussion
3.1 Sensitivity analysis of design variables

Local geometric dimensions of the steel tubes composing the
reactor directly determine the ow cross-sectional area and
channel space velocity, and thus exert a signicant inuence on
reactor performance. Four variables (RL, RD, RT, RS) were
selected to characterize the key geometric features. At xed
operating conditions (inlet temperature of 340 °C, operation
pressure of 0.7 MPa, H2/CO molar ratio of 2/3, GHSV of 8000
h−1), with the dimensions listed in Table 1 as the baseline, the
control variable method was adopted, wherein only one of the
four variables was adjusted relative to the base value at a time
while the others remained constant. For each variable-adjusted
scheme, the reactor performance (e.g. selectivity, temperature,
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The relationships between CO conversion, CO2 selectivity, C5+ selectivity, temperature and the four geometric variables. (a–d) Represent
the length, inner diameter, thickness and inter-tube spacing of Tube I among the four geometric variables, respectively. Tc: temperature at the
reactor center point; Tmax: maximum temperature in the reactor.
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yield) was obtained via CFD simulations, and the results are
presented in Fig. 3. Based on these results, the nal reasonable
ranges of each design variable were determined, and three
typical values per variable were selected to generate contour
plots (Fig. 4–7) for auxiliary analysis. All these plots share
a consistent format, comprising 3D perspective views and 2D
sections (axial cross-section of Tube I, plus transverse cross-
sections 10 mm inward from Tube I's inlet and outlet), with
only the research variables differing across gures. Each vari-
able in Fig. 3 was calculated using eqn (4)–(7).

CO conversion rate:

XCO ¼ COin � COout

COin

� 100% (4)

CO2 selectivity:

SCO2
¼ CO2out

COin � COout

� 100% (5)

C1, and C5+ selectivity:
© 2026 The Author(s). Published by the Royal Society of Chemistry
SCi
¼ Ciout

COin � COout

� 100% (6)

where Ci represent the C1 and C5+.

C5+ yield: YC5+
= XCO × SC5+

× 100% (7)

where in and out represent the molar ow rates of CO, C1, C5+ at
the inlet and outlet, respectively, in units of mol s−1.

3.1.1 Effect of length. As shown in Fig. 3(a), when RL varies
within the range of 30–400 mm, XCO and SCO2

increase
concurrently with increasing RL, while SC5+

decreases mono-
tonically. The concurrent elevation of XCO and SCO2

is attributed
to the prolonged residence time of reactants with the extension
of RL, which enhances gas–solid contact efficiency. In contrast,
the downward trend of SC5+

stems from the increased probability
of secondary hydrogenation, cracking, and readsorption of
olen intermediates in longer channels, which in turn
strengthens the C1–C4 formation pathway. Meanwhile, the
extended reactant residence time intensies the WGS side
reaction, which not only dilutes the effective syngas but also
reduces the probability of long-chain hydrocarbon growth. YC5+

is dened as the product of XCO and SC5+
. Due to the opposite
RSC Adv., 2026, 16, 2255–2270 | 2259
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Fig. 4 Contour plots of WC5+
, XCO and temperature at RL of 40, 70, and 120 mm.
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variation trends of XCO and SC5+
, the yield curve exhibits two

distinct local maxima at RL 120 mm and 250 mm, with corre-
sponding values of 11.43% and 11.66%, respectively. Notably,
YC5+

at RL = 400 mm is higher than those at RL = 120 mm and
250 mm; this phenomenon is primarily because the continuous
increase in XCO (driven by further prolonged residence time and
enhanced gas–solid contact) outweighs the slight decrease in
SC5+

at longer RL, leading to a net rise in YC5+
. With respect to

temperature variations, both Tmax and Tc increase with the
elevation of RL, and the temperature difference between them
continues to widen. When RL exceeds 300 mm, Tc decreases
slightly due to the reduced concentration of downstream reac-
tants and the consequent slowdown in heat release rate. In
contrast, Tmax remains elevated in the high-temperature zone
near the inlet due to thermal conduction lag, indicating that the
axial temperature distribution has become increasingly uneven
and is accompanied by an elevated risk of hot spot formation.
2260 | RSC Adv., 2026, 16, 2255–2270
Regarding the geometric variable RL (with typical values of
30, 70, and 120 mm), the results from Fig. 4 indicate that the
distribution patterns of all eld quantities are consistent across
the three parameter levels: increasing RL only expands the
catalytic area without altering the channel structure, while the
C5+ mass fraction (WC5+

) gradually increases along the axial
direction with higher values inside the tube than outside. Local
XCO increases axially, with SCO2

increasing and SC5+
decreasing in

the high-temperature zone at the rear section. Concurrently, the
enhanced heat release leads to a simultaneous rise in Tmax,
which corresponds to the overall trends in Fig. 3(a). Addition-
ally, as the distance from the center point to the hot spot at the
terminal end increases with RL, the temperature difference
between Tmax and Tc expands accordingly.

Consequently, the design boundary of RL is dened as [30,
200] mm. This range not only ensures XCO remains at a relatively
© 2026 The Author(s). Published by the Royal Society of Chemistry
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high level but also prevents excessive decline in SC5+
and

temperature runaway:
(1) The lower limit of 30 mm avoids the inuence of inlet–

outlet backmixing caused by an excessively short reaction
channel, which would otherwise lead to component uctua-
tions and notably low conversion. As presented in Fig. 3(a), YC5+

has decreased to its minimum value at RL 30 mm.
(2) The upper limit of 200 mm covers the main peak range of

YC5+
. Further extension results in a slowing trend in the varia-

tions of XCO and SC5+
, while DTmax tends to exceed 20 °C. Addi-

tionally, the reactor volume and catalyst dosage increase
signicantly, with the marginal yield gain benet being far
lower than the manufacturing and material costs.

3.1.2 Effect of inner diameter. As presented in Fig. 3(b),
within the range of RD from 0.5 to 50 mm, XCO rises to a peak at
2.5 mm before declining, with a steep slope observed in the
interval of 0.5 to 7 mm thus indicating that the reaction is
highly sensitive to RD. An increase in RD directly changes the
ow area ratio between the inner and outer channels of Tube I,
leading to a reduced ow velocity inside Tube I and an
increased one outside, and consequently resulting in an inverse
variation in the residence time on both sides. Given that active
components are loaded on both the inner and outer surfaces of
Tube I, XCO exhibits an opposite variation trend, with the peak
at 2.5 mm. The variation trend of SCO2

is consistent with that of
XCO, with its peak slightly shied to 3.5 mm and tending to level
off beyond 15 mm. This is because an increase in RD simulta-
neously promotes both FTS andWGS reactions. However, in the
descending segment, the reduction in CO partial pressure
inhibits the progression of WGS. Additionally, SC5+

remains
nearly constant throughout the entire RD range, indicating its
insensitivity to ow velocity. YC5+

is affected by variations in XCO,
exhibiting a trend of rst increasing and then decreasing with
its maximum value located at 3 mm. The temperature prole
exhibits a three-stage characteristic of “rise–decline–slow rise”:
initially, increasing RD prolongs the residence time inside Tube
I, enhancing FTS exothermicity and concurrently raising Tmax

and Tc. With further RD increases, the sharp drop in internal
tube velocity shis the main reaction zone outward, reducing
internal heat release and lowering temperatures. Subsequently,
concentrated reactions and relatively high velocity in the outer
channel cause heat accumulation, leading to a gradual
temperature rise. The outward migration of the hot spot moves
Tc (measured at the central point) away from the high-
temperature zone, and the temperature difference between Tc
and Tmax increases monotonically with RD. When RD is close to
20 mm, Tmax is completely located outside the tube, Tc basically
returns to the inlet temperature, and the temperature gradient
in the central channel is signicantly reduced.

For RD values of 0.5, 2, and 3.5 mm, Fig. 5 reveals notable
variations in the distribution of local WC5+

, XCO, and tempera-
ture. Local WC5+

distribution is highly dependent on RD: at RD =

0.5 mm,WC5+
is only locally elevated at the inlet and then rapidly

homogenizes, which is attributed to the combined effect of inlet
backmixing and the extremely small inner diameter. By
contrast, at RD values of 2 mm and 3.5 mm, WC5+

inside Tube I
increases steadily along the axial direction, while that outside
© 2026 The Author(s). Published by the Royal Society of Chemistry
remains nearly constant. Local XCO exhibits distinct axial
proles across RD values: it maintains a high level inside Tube I
for RD = 0.5 mm, whereas it rises gradually along the axial
direction at RD values of 2 mm and 3.5 mm. This discrepancy
arises because the 0.5 mm inner diameter is smaller than the
default inter-tube spacing (RS = 1 mm). Under laminar ow, the
disparity between high central velocity and small RD induces
space velocity distribution reversal, altering local reaction
extent. In contrast, the local XCO outside Tube I shows similar
distribution patterns across the three RD cases. Temperature
distributions are broadly consistent: temperature rises axially,
and the temperature difference between the outlet center and
the area outside Tube I diminishes with increasing RD. At RD =

0.5 mm, outlet tube internal temperature is higher than the
external, whereas at 3.5 mm, internal and external temperatures
are almost identical, verifying the trend in Fig. 3(b).

Accordingly, the design boundary of RD is dened as [0.5, 4]
mm, which encompasses the yield peak while suppressing
excessive temperature rise. The rationale for this range is as
follows:

(1) Lower limit (0.5 mm): an excessively small inner diameter
not only hinders the loading of active components but also
tends to cause blockage of the reaction channel.

(2) Upper limit (4 mm): XCO and SC5+
achieve their optimal

values within the range of 2.5–3 mm. When RD exceeds 4 mm,
the yield decreases continuously, Tmax rises again (increasing
the risk of hot spots), and both material consumption and
reactor volume increase rapidly. Furthermore, inner diameters
greater than 4 mm fall outside the scope of microchannel
specications.

3.1.3 Effect of thickness. As illustrated in Fig. 3(c), within
the RT range of 0.25 to 35 mm, XCO decreases almost linearly
over 0–6.5 mm before the rate of decline moderates. For RT #

6.5 mm, the ow area outside Tube I shrinks sharply with the
expansion of the outer diameter, with the increase in average
ow velocity and reduction in residence time acting as the
dominant factors. For RT > 6.5 mm, the rate of velocity increase
slows while the catalytic area on the outer surface expands
synchronously, partially offsetting the residence time loss and
thus decelerating the decrease in XCO. SCO2

declines alongside
XCO but stays at lower values, as WGS is also limited by resi-
dence time and has lower intrinsic activity than FTS. In
contrast, SC5+

rises gradually with increasing RT, as short resi-
dence time inhibits secondary hydrogenation and cracking,
thereby enhancing the chain propagation probability with the
most pronounced gradient observed in 0–6.5 mm. These
combined effects drive YC5+

to a slow downward trend, indi-
cating that the adverse effect of shortened residence time on CO
consumption is always more signicant than the benet from
expanded catalyst area. The temperature prole decreases
initially and then rises gently, with a trough at 11–15mm: at low
RT, elevated ow velocity enhances convective heat dissipation,
while at high RT, extended metal heat conduction pathways lead
to local heat accumulation and subsequent temperature
recovery. Notably, the temperature rise phase does not bring
about an improvement in yield, verifying that the “kinetics-
RSC Adv., 2026, 16, 2255–2270 | 2261
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Fig. 5 Contour plots of WC5+
, XCO and temperature at RD of 0.5, 2, and 3.5 mm.
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residence time” mechanism rather than thermal effects is the
decisive factor governing reactor performance.

Fig. 6 compares the overall and cross-sectional distribution
characteristics ofWC5+

, XCO, and temperature within the reactor at
RT values of 0.25 mm, 1.5 mm, and 6.5 mm. Closer to the reactor
outlet, the probability of re-adsorption and hydrogenation of
intermediate olens rises, leading to a corresponding increase in
heavy hydrocarbon formation. Within the same cross-section,
WC5+

inside Tube I is consistently higher than that outside, and
this difference widens as the axial position approaches the outlet.
Additionally,WC5+

outside becomesmore uniformnear the outlet.
This is because the stable ow in the 2 mm-diameter inner tube
facilitates product accumulation, whereas products generated
outside the tube diffuse radially over a large range from the outer
wall to the surroundings, which exerts a diluting effect on WC5+

.
These trends conrm that the channel inside Tube I dominates
C5+ formation, with larger RT increasingWC5+

in this channel and
thus enhancing C5+ selectivity. Local XCO also increases axially,
with uniform cross-sectional distribution at low RT. Increasing RT
2262 | RSC Adv., 2026, 16, 2255–2270
narrows the spacing outside Tube I and raises space velocity,
inducing a distinct radial gradient and thereby reducing the
overall XCO. Temperature rises gradually along the axial direction
with uniformdistribution inside and outside Tube I, attributed to
the strong exothermicity of FTS and high axial thermal conduc-
tivity of the metal wall. As RT increases, reduced XCO lowers heat
release and coupled with metal heat sink and elevated ow
velocity synergistically inhibiting temperature rise, which leads to
a decrease in the macroscopic temperature level.

Thus, the design boundary of RT is set to [0.25, 6.5] mm,
which not only covers the regions where XCO and SC5+

exhibit the
highest sensitivity to changes but also avoids the mechano-
thermal risks associated with excessively thin walls and di-
minishing returns caused by overly thick walls.

(1) Lower limit (0.25 mm): a further reduction in wall
thickness would result in insufficient radial thermal resistance,
making local hotspots unavoidable. It would also lead to inad-
equate mechanical strength, causing bending or collapse
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 6 Contour plots of WC5+
, XCO and temperature at RT of 0.25, 1.5, and 6.5 mm.
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during catalyst loading and under pressure differences, which
in turn triggers catalyst layer fracture and ow maldistribution.

(2) Upper limit (6.5 mm): for RT values exceeding 6.5 mm, the
negative effect of shortened residence time in the channel
outside Tube I on XCO is signicantly mitigated. Although
further increasing wall thickness expands the external catalytic
surface area, its marginal contribution to YC5+

approaches zero.
Meanwhile, metal heat capacity and heat conduction paths
increase concomitantly, and the temperature prole rises aer
reaching its minimum at 11 to 15 mm, indicating potential
thermal runaway risks for larger RT. Additionally, material
consumption and reactor weight increase markedly, which
deviates from the microchannel design intent of compactness.
© 2026 The Author(s). Published by the Royal Society of Chemistry
3.1.4 Effect of inter-tube spacing. As depicted in Fig. 3(d),
within the RS range of = [0.01, 20] mm, XCO decreases almost
linearly in the range of 0.01–2.5 mm and then slows down. This
is because when the inter-tube spacing is extremely small and
approximates the uid boundary layer thickness, the diffusion
zones of adjacent catalysts overlap signicantly. CO undergoes
repeated “recycling” reactions and the catalyst effectiveness
factor remains high. As RS increases, the overlapping zones
shrink gradually and each Tube I operates independently. Some
CO in the core region between tubes cannot diffuse transversely
to the catalytic layer, causing the catalyst effectiveness factor to
decline. Thus XCO drops rapidly with increasing RS. When RS

exceeds 5 mm, the catalyst effectiveness factor approaches the
normal value of a single tube and the rate of XCO decline levels
RSC Adv., 2026, 16, 2255–2270 | 2263
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off accordingly. SCO2
decreases synchronously with XCO but with

a gentler trend. CO2 is generated by WGS and its intrinsic
activity is lower than that of FTS. It is also governed by the
catalyst effectiveness factor. The SCO2

curve attens aer 5 mm
as the effectiveness factor stabilizes. SC5+

increases rst and then
decreases. At extremely small RS, high-velocity purging thins the
boundary layer but the contact time is too short for a-olens to
undergo multiple adsorption and hydrogenation steps, so YC5+

remains at a low level. As RS increases, the ow velocity is still
relatively high but provides an adequate yet not excessive resi-
dence window for chain propagation. The probability of
secondary hydrogenation and re-adsorption rises and SC5+

increases accordingly. With further increases in RS, prolonged
residence time induces excessive hydrogenation and secondary
cracking leading to product lightening, and SC5+

declines grad-
ually. Under the combined effect of XCO and SC5+

, YC5+
exhibits

a trend of rst rising and then falling with its peak corre-
sponding to 0.3 mm. Tmax drops sharply rst and then rises
Fig. 7 Contour plots of WC5+
, XCO and temperature at RS of 0.1, 2.5, and

2264 | RSC Adv., 2026, 16, 2255–2270
slowly. At extremely small RS, the narrow slits between tubes
force gas to sweep across the wall surface at high velocity
resulting in intense forced convective heat transfer. Wall heat is
removed rapidly and the temperature falls to its lowest point at
2.5 mm. As RS continues to increase, the ow cross-section
expands and gas velocity decreases weakening convective heat
dissipation capacity. Heat generated by reactions accumulates
continuously in the bed and the wall temperature rises gradu-
ally. Tc also decreases rst and then rises but its lowest point
lags to RS= 5 mm. The center is far from the wall surface and its
temperature response lags behind the wall due to radial heat
conduction lag. When the spacing increases to 5 mm, the
combined effect of extended heat conduction paths and weak-
ened convection brings the central heat accumulation to
a minimum equilibrium point. The temperature then rises with
the decrease in heat dissipation capacity.

As presented in Fig. 7, three-dimensional contour plots for RS

= 0.1 mm, 2.5 mm and 5 mm are compared. The WC5+
5 mm.

© 2026 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra09551d


Paper RSC Advances

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 2
/1

1/
20

26
 1

1:
43

:4
1 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
distribution shows a pronounced dependence on RS. At RS = 0.1
mm, the narrow inter-tube slit has extremely high ow velocity
yet a small gas ow rate, facilitating rapid reactions and the
formation of high C5+ concentrations. In contrast, Tube I's
2 mm inner channel and the gap between its outer wall and
Tube II's inner wall feature low ow velocity and long residence
time, driving steady axial WC5+

accumulation. At RS = 2.5 mm,
the inter-tube spacing approximates Tube I's outer diameter
and the external space velocity drops sharply, leading to a “high
inlet–low outlet” WC5+

prole. At the 40 mm inlet cross-section,
WC5+

is uniformly distributed inside Tube I while diffusing
outward from its outer wall externally; by the 120 mm cross-
section, the distribution homogenizes across both regions. A
similar pattern occurs at RS = 5 mm, but external WC5+

remains
non-uniform even at the 120 mm outlet cross-section, demon-
strating that excessively large spacing reduces the utilization
efficiency of catalysts outside Tube I.

Thus, the optimization boundary of RS is set to [0.01, 2.5]
mm, which covers the high productivity peak and temperature
difference control region, balancing sufficient reaction depth
while avoiding thermal accumulation induced by abnormal
space velocity from excessively large spacing.

(1) Lower limit (0.01 mm): this corresponds to the narrowest
inter-tube slit, featuring the highest cross-sectional ow
Table 2 Final hyperparameters of the surrogate model

Model Hyper-parametera Parameter description

KRG poly Polynomial order that denes the form
the mean function to t global data
trends

corr Type of correlation function that
characterizes local data correlation and
model smoothness

theta0 Initial value of correlation function
hyperparameter (q) that initializes mod
correlation parameters

theta_bounds Optimization bounds of q that constra
parameter range to avoid overtting an
undertting

hyper_opt Algorithm for hyperparameter
optimization that realizes efficient
tuning of model parameters

GENN alpha Learning rate of optimizer that control
parameter update step size to balance
convergence

hidden_layer_sizes Number of hidden layers and neurons
that determines model tting capabilit

num_iterations Number of optimizer iterations that
balances computational cost and
prediction accuracy

beta1/beta2 Adam optimizer's momentum decay
coefficients that stabilize learning rate
scaling

lambd Regularization coefficient that
suppresses overtting by penalizing
excessive weights

is_normalize Data normalization ag that improves
model training stability and prediction
accuracy

a All hyperparameters are named following SMT interface functions. Unsp

© 2026 The Author(s). Published by the Royal Society of Chemistry
velocity, a sharp rise in space velocity and extremely short
residence time. Both XCO and SC5+

selectivity remain at low
levels. Yet the temperature reaches its maximum value in this
scenario, rendering the system prone to thermal runaway
incidents.

(2) Upper limit (2.5 mm): this matches the inection point
where XCO transitions from a steep decline to a gradual
decrease. With further increases in RS, space velocity decreases
and heat dissipation weakens, causing wall temperature and
central temperature to increase synchronously and elevating
thermal runaway risks. Meanwhile, SC5+

decreases mono-
tonically, YC5+

has passed its peak and diminishing returns
occur.
3.2 Surrogate model evaluation

Based on the boundary ranges of the four design variables
determined in Section 3.1, Latin hypercube sampling was
adopted to 250 design points and perform corresponding CFD
simulations, establishing a foundational dataset. Of these, 150
samples accounting for 60% were used to train the KRG and
GENNmodels. A further 50 samples representing 20% served as
the validation set to iteratively optimize hyperparameters with
NMAE and NRMSE as evaluation metrics. The remaining 50
Value NMAE NRMSE

of Second-order polynomial 9.27% 6.36%

Squared exponential correlation function

el
Four design variables, each initialized to
100

in
d

[1 × 10−6, 1000]

COBYLA (constrained optimization by
linear approximation algorithm)

s 0.03 (moderate learning rate for stable
convergence)

8.35% 4.57%

y
[30, 30] (2 hidden layers, 30 neurons per
layer)
1000 (sufficient iterations for model
convergence)

First-order: 0.95, second-order: 0.99

0.02 (moderate regularization strength)

True

ecied hyperparameters take the default values of the functions.
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Fig. 8 Comparison of prediction results between KRG and GENNmodels and simulation results. (a) and (b) Respectively compare the KRGmodel
predictions and CFD simulation results of f1(x) and f2(x); (c) and (d) respectively compare the GENNmodel predictions and CFD simulation results
of f1(x) and f2(x).
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samples making up 20% were reserved as the test set to inde-
pendently verify the model generalization capability and elim-
inate overtting. The nal hyperparameters and evaluation
metrics are listed in Table 2, and the data distribution and
tting performance are illustrated in Fig. 8. Fig. 8(a) and (b)
present the predicted versus simulated value scatter plots and
parity checks of KRG for f1(x) and f2(x) respectively, while
Fig. 8(c) and (d) show the corresponding results for GENN.
Analysis of these plots reveals that GENN yields lower NMAE
Fig. 9 Original data and LHS sampling prediction data of GENN. (a) Shows
GENN model prediction; (b) shows the distribution after prediction using

2266 | RSC Adv., 2026, 16, 2255–2270
and NRMSE values than KRG, indicating its higher prediction
accuracy. Thus GENN was selected as the surrogate model for
subsequent bi-objective optimization.

Fig. 9 further validates the continuous predictive perfor-
mance of the surrogate model across the entire design space.
Fig. 9(a) presents the 1/YC5+

and DT distribution of the original
250 high-delity samples via scatter plots while Fig. 9(b) shows
the GENN prediction results for 2000 Latin hypercube-sampled
points within the identical boundary ranges. The predicted
the distribution of 250 sets of original data obtained viaCFD before the
the GENN model based on the 250 sets of original data.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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results fall within the same physical interval as the original data
and achieve smooth transitions in sample-sparse regions
without any non-physical oscillations or extrapolation distor-
tions. This conrms that GENN not only accurately reproduces
the training samples but also yields a continuous and differ-
entiable predictive prole from discrete sampling points at
negligible computational cost. It thus serves as an efficient and
reliable tness evaluation function for subsequent multi-
objective optimization, enabling the Pareto frontier solution
for the geometric parameters of the microchannel reactor.
3.3 Multi-objective optimization

3.3.1 Multi-objective optimization process. Table 3 lists the
key parameter settings of NSGA-II while Fig. 10 presents the
Pareto frontier of the multi-objective optimization, overlaid
Table 3 Main parameters of the NSGA-II algorithm

Model Parametera Parameter description Val

NSGA II pop_size Number of individuals
per population generation

200

n_offsprings Number of offspring generated
per generation

100

Crossover Crossover operator pro

Mutation Mutation operator pro

a All parameters are named following PyMOO interface functions.

Fig. 10 Pareto curve of multi-objective optimization.

© 2026 The Author(s). Published by the Royal Society of Chemistry
with the training, validation and test set samples, CFD samples
for sensitivity analysis as well as CFD points invoked during the
search. Points on the Pareto frontier curve are distributed in the
lower-le region of the entire feasible domain, forming a non-
dominated solution set that clearly reveals the trade-off rela-
tionship between YC5+

and DTmax.
Fig. 11 illustrates the evolution of corresponding geometric

parameters aer sorting Pareto frontier solutions by increasing 1/
YC5+

. The geometric characteristics of the lemost region with high
yield and high temperature rise are short channel length, small
inner diameter, narrow inter-tube spacing and thin wall thickness.
This indicates that small-scale geometries exhibit a pronounced
reaction enhancement effect. However, no external heat dissipa-
tion is applied and heat removal relies solely on reactant ow,
resulting in a high DTmax value. As 1/YC5+

increases, RL rst rises
and then decreases, remaining generally within the range of 90–
ue Remark

0 Balances computational time and result accuracy

0

b = 0.7, eta = 5 Crossover probability and distribution index are
0.7 and 5 respectively

b = 0.2, eta = 5 Mutation probability and distribution index are
0.2 and 5 respectively

RSC Adv., 2026, 16, 2255–2270 | 2267
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Fig. 11 Relationship between design variables (geometric parameters) distribution on the Pareto frontier and output results.

Table 4 Initial design and typical Pareto optimal designs

Design schemes

Design variables/mm Output results

RL RD RT RS YC5+
/% DT/°C

Initial design 100 2 0.5 0 10.71 17.31
S1 97.01 0.53 0.58 1.12 33.55 12.36
S2 112.05 0.52 0.50 4.01 19.89 10.11
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125 mm. This is the outcome of the continuous trade-off between
yield and temperature rise. RD grows gradually, which aligns with
the sensitivity analysis results in Section 3.1 where increasing RD
within this interval improves YC5+

and reduces DTmax. In the le
region where DT > 9 °C, RT increases rapidly from 1.05 mm to 6
mm, demonstrating that wall thickness plays a dominant role in
temperature suppression. Beyond this region where DT < 9 °C,
further thickening yields minimal cooling effects. RS is only
sensitive in the region where YC5+

exceeds 15.4% and DT < 9 °C,
rising rst to 0.7 mm before declining. In all other low-
temperature-rise regions, RS takes the minimum value of 0.05
mm. This suggests that adopting a relatively small inter-tube
spacing is benecial for both high yield and low temperature
rise simultaneously.

3.3.2 Determination of optimal solutions. Final design
schemes can be selected from the Pareto frontier based on
productivity and thermal safety requirements. If the tempera-
ture control margin is large, le-side solutions can be chosen to
prioritize high yield. If strict hotspot control is required, solu-
tions should be shied rightward to sacrice partial yield for
milder thermal conditions. Table 4 lists several typical solu-
tions. In comparison with the initial geometric schemes, the
optimized schemes achieve marked improvements in both yield
2268 | RSC Adv., 2026, 16, 2255–2270
and temperature difference performance. When DTmax is
reduced by 4.95 °C and 7.20 °C respectively, yield increases by
213% and 86%. Furthermore, at equivalent yield levels, DTmax

can be further decreased by 9.06 °C.
When selecting the optimal solution, in addition to reaction

performance, considerations must be given to manufacturing
tolerances, support structure strength and catalyst deactivation
temperature limits. Following comprehensive evaluation, Scheme
S2 was identied as the nal design. The geometric dimensions of
this solution were validated via CFD simulations, yielding an
actual yield of 18.72% and a temperature rise of 12.87 °C. The
relative errors compared with the surrogate model predictions
were 6.25% and 0.96% respectively, both falling within the model
S3 112.51 0.05 1.38 6.12 10.71 8.25

© 2026 The Author(s). Published by the Royal Society of Chemistry
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uncertainty range and conrming the model's reliability. Scheme
S2 achieves a 1.86-fold increase in yield while reducing the
maximum temperature rise by 7.20 °C, thus laying a foundation
for pilot-scale scaling-up and subsequent industrial application.

Since the optimal scheme is obtained under xed operating
conditions, the Pareto frontier will shi when the operating
conditions change. Regarding the effects of various operating
conditions on YC5+

and DTmax of the reactor with initial dimen-
sions, these have been discussed in ref. 16. The operating condi-
tions adopted in this study are those that generate relatively
favourable reaction results. However, since YC5+

and DTmax do not
exhibit a simple monotonic change with variations in operating
conditions, it is difficult to directly determine whether the current
optimal scheme remains optimal under other operating condi-
tions. An effective strategy is to treat the four operating conditions
as design variables and construct an 8-variable input and 2-vari-
able output surrogate model alongside the dimensional variables.
Nevertheless, this study is limited by the length of the manuscript
and insufficient initial data. Future in-depth investigations can be
performed once sufficient reaction data under diverse operating
conditions are acquired in follow-up studies.

4. Conclusions

This study presents a multi-objective optimization design
approach for microchannel reactors based on the integration of
CFD, GENN and NSGA-II. It investigates the reactor performance
of FTS microchannel reactors under different geometric parame-
ters. Specically, sensitivity analysis reveals that all four-
dimensional design variables exert signicant impacts on reac-
tion outcomes, each with an optimal range that requires balancing
during optimization. The developed GENN surrogate model
exhibits excellent predictive accuracy and generalization capa-
bility, maintaining simulation precision while signicantly
reducing CFD computational load. Notably, the NSGA-II algorithm
effectively obtained the Pareto optimal solution set, achieving the
dual-objective optimization of maximizing YC5+

while controlling
DTmax. Ultimately, the selected optimal scheme reduces DTmax by
7.20 °C and increases YC5+

by 1.86-fold. This optimized design
exhibits substantial potential for engineering applications,
providing technical support for the practical deployment of
microchannel reactors in FTS.

It should be noted that the present optimization focused
exclusively on YC5+

maximization and DTmax minimization.
Manufacturing cost, reactor volume, catalyst deactivation and
pressure drop were reserved for future investigation because the
multi-tube microchannel reactor examined in this study
remains at the laboratory scale and reliable surrogate modeling
of economic or durability metrics requires extensive pilot or
industrial data. Comprehensive multi-objective studies that
incorporate these additional criteria will be pursued once the
requisite operational datasets are generated during the subse-
quent pilot stage.
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