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ural, vibrational and dielectric
properties of the [(C4H9)4N]2CoBr4 compound:
origin of low-frequency polarization

Ridha Briki,a Khawla Ben Brahim,a Malika Ben Gzaiel, *ab Nourah A. Alsobai,c

Walid Rekikd and Abderrazek Oueslati a

Organic–inorganic hybrid materials based on divalent metal halides constitute versatile platforms for tuning

their physicochemical properties, with potential applications in optoelectronics, energy storage, and

dielectric devices. Here, we present the first synthesis and complete characterization of

[(C4H9)4N]2CoBr4, a novel halogenocobaltate(II) compound. Hirshfeld surface analysis and single-crystal

X-ray diffraction reveal a monoclinic structure composed of layered tetrabutylammonium cations and

tetrahedral [CoBr4]
2− units stabilized by strong C–H/Br interactions. The integrity of the organic and

inorganic components is verified by vibrational spectroscopy (FT-IR and Raman). DSC analysis revealed

the existence of two phase transitions at 335 K and 345 K. Electrical and dielectric tests, performed

between 313 K and 353 K, demonstrated a phase transition around T = 338 K, as well as non-Debye

relaxation processes, thermally activated charge transport, and semiconducting properties. At low

frequencies, the dielectric permittivity reaches exceptionally high values (30 z 105), highlighting the

strong dielectric response of this material and its potential relevance for functional dielectric and energy-

storage applications. This study expands the family of functional halogenocobaltates(II) and provides

valuable insights into the structure–property relationships that govern hybrid materials.
1. Introduction

Organic–inorganic hybrid materials based on divalent and
trivalent metal halides have attracted increasing interest in
recent years due to their structural adaptability and the
combination of their controllable physicochemical character-
istics. Offering promising prospects in optoelectronics, infor-
mation storage, dielectric switching, and other advanced
technologies, these materials lie at the intersection of basic and
applied research.1,2 Their simple synthesis, oen achievable at
room temperature with a low environmental impact, reinforces
their importance for the design of sustainable materials, in
addition to their functional potential.3–8 The halo-
genocobaltate(II) class is particularly interesting in this regard.
Their structural and functional characteristics are strongly
inuenced by their ability to form hydrogen bonds with organic
cations, as well as by the size and symmetry of these cations.
oratory of Spectroscopic Characterization

x, Tunisia. E-mail: bengzaiel_malika@

ial Sciences and Education, Gafsa, 2119,

Taif University, P. O. Box 11099, Taif,

boratory Physical-Chemistry of the Solid

the Royal Society of Chemistry
When Co(II) is in tetrahedral coordination with halide ligands,
the liing of the degeneracy of its crystal eld induces unique
electronic characteristics that directly impact its optical, elec-
trical, and dielectric properties. Several tetrahalocobaltate
compounds have been described, including [N(C3H7)4]2CoBr4,9

[(C6H9N2)]2CoCl4,10 [N(CH3)4]2CoBr4,11 and [N(C3H7)4]2CoCl4,12

illustrating how slight structural modications can signicantly
alter their physical properties.

Numerous publications are devoted to alkylammonium-type
aliphatic cation hybrid compounds, characterized by the
general formula AyMX4, where A represents an organic cation, y
= 1 or 2, M a transition metal (Co, Cu, Zn, Fe, Cd, Hg, Mn, etc.)
and X a halide (Cl, Br, I). These materials are attracting
increasing interest due to the wide diversity of their structures
and their tunable physicochemical properties, closely linked to
the nature of the central metal and the alkylammonium cation.
Numerous analogous compounds have been described in the
literature, including [N(C3H7)4]2HgBr4,13 [N(C3H7)4]2ZnBr4,14

[N(CH3)4]2CoCl4,15 [N(C2H5)4]2Cu2I4 (ref. 16) and
[(C4H9)4P]2Cd2Cl6.17 These examples illustrate the structural
richness and wide variety of architectures present in
alkylammonium tetrahalometalates(II).

In this study, we present the synthesis and characterization
of a new tetrahalocobaltate(II) compound, [(C4H9)4N]2CoBr4.
Subsequently, single-crystal X-ray diffraction, Hirshfeld surface
analysis, thermal scanning calorimetry (DSC), and complex
RSC Adv., 2026, 16, 3791–3802 | 3791
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Table 1 Crystal data and structure refinement for [(C4H9)4N]2CoBr4 at
300 K

Formula [(C4H9)4N]2CoBr4

Color/shape Blue/prism
Formula weight (g mol−1) 863.48
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View Article Online
impedance spectroscopy were employed to examine its struc-
ture and functional properties in detail. The results obtained
expand the family of functional halogenocobaltates(II) and shed
new light on the relationship between organic chain length,
supramolecular organization, and phase transition behavior in
hybrid materials.
Crystal system Monoclinic
Space group P21/c
Density 1.363
Crystal size (mm) 0.23 × 0.18 × 0.13
Temperature (K) 296(2)
Diffractometer Bruker APEX II
a (Å) 16.1580(2)
b (Å) 16.6083(2)
c (Å) 16.9298(2)
b (°) 112.185(3)
V (Å3) 4206.89(13)
Z 4
Radiation type Mo Ka (0.71073 Å)
Absorption correction Multi-scan
q range for data collection (°) 1.786 # q # 26.022
Measured reections 74 808
Independent reections 8288
Observed data [I > 2s(I)] 3876
Index ranges h = −19 to 19, k = −20 to 20,

l = −20 to 20
2. Experimental section
2.1. Synthesis

The process of slow evaporation was used to make ([(C4H9)4N]2)
CoBr4. Stoichiometric quantities of [(C4H9)4N]Br (0.29 g, 9.1 ×

10−4 mol) and CoBr2 (0.1 g, 4.5 × 10−4 mol) were dissolved in
aqueous solution while being continuously swirled. The reac-
tion's trajectory is described by the following equation:

2[(C4H9)4N]Br + CoBr2 / ([(C4H9)4N]2)CoBr4

The homogeneous solution obtained was allowed to evapo-
rate gradually at room temperature. Aer about a week, high-
quality single crystals of [(C4H9)4N]2CoBr4 were produced,
exhibiting a prismatic shape and a blue color.
F(000) 1780
Number of parameters 360
R1 0.0556
wR2 0.1650
Goof 1.002
2.2. Single-crystal X-ray crystallography

A high-quality single crystal of ([(C4H9)4N]2)CoBr4 was carefully
selected under a polarizing microscope, mounted with adhe-
sive, andmeasured at 296 K on a four-circle Bruker APEX II area-
detector diffractometer. Reection data were collected using
graphite-monochromated Mo Ka radiation (l = 0.71073 Å).
Intensity data were processed with the APEX 2 program,18 and
empirical multi-scan absorption corrections were applied using
SADABS.19

The crystal structure, belonging to the monoclinic system
with centrosymmetric space group P21/c, was solved by direct
methods using SHELXT-2018 (ref. 20) within the WINGX suite.21

All non-hydrogen atoms were rened anisotropically, while
hydrogen atom positions were geometrically generated using
the HFIX instruction in SHELXL-2014,22 with C–H distances
constrained to 0.96 or 0.97 Å.

Final structure renement yielded satisfactory reliability
factors: R1 = 0.0556 and wR2 = 0.1650. Crystal structure repre-
sentations were produced using Diamond 3.2.23 Pertinent
details of the crystal structure of (C16H36N)2[CoBr4] are
summarized in Table 1, while selected bond distances, bond
angles, and hydrogen-bond parameters are listed in Tables 2
and 3, respectively.

Supplementary crystallographic data in CIF format are
available from the Cambridge Crystallographic Data Centre
(CCDC 2419610) as SI.
2.3. Hirshfeld surface

These surfaces dene the volume of space where a molecule's
electron density dominates over that of its neighboring mole-
cules.24,25 For each point on the surface, two distances are
dened:
3792 | RSC Adv., 2026, 16, 3791–3802
(1) di, the distance from the point to the nearest nucleus
inside the surface, (2) de, the distance to the nearest nucleus
outside the surface.

The normalized contact distance (dnorm) is obtained from
these values as follows:

dnorm ¼ di � rvdWi

rvdWi

þ de � rvdWe

rvdWe

(1)

with rvdWi and rvdWe are the van der Waals radii of the respective
atoms. The dnorm values are visualized using a red-white-blue
color scheme: negative values (red) indicate contacts shorter
than the sum of van der Waals radii, zero (white) corresponds to
contacts near the van der Waals separation, and positive values
(blue) indicate longer contacts.26

Additionally, 2D ngerprint plots, which combine di and de,
allow quantication of the contributions of different types of
intermolecular interactions.27
2.4. Vibrational analysis

At room temperature, the infrared spectrum of the [(C4H9)4-
N]2CoBr4 compound was recorded using a PerkinElmer FT-IR
1000 spectrometer over the frequency range 400–3500 cm−1,
with a resolution of 0.5 cm−1. The Raman scattering spectrum
(50–3500 cm−1) was obtained using a Horiba Jobin-Yvon T64000
spectrometer (ISA, Jobin Yvon) with a 532 nm excitation
wavelength.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Selected bond distances (Å) and angles (°) for
[N(C4H9)4]2CoBr4

Distances (Å) Angles (°)

Co1–Br4 2.3953(12) Br4–Co1–Br3 111.65(5)
Co1–Br3 2.3994(11) Br4–Co1–Br2 112.66(5)
Co1–Br2 2.4067(11) Br3–Co1–Br2 106.94(4)
Co1–Br1 2.4253(10) Br4–Co1–Br1 106.63(4)
N1–C9 1.510(8) Br3–Co1–Br1 110.39(4)
N1–C13 1.517(8) Br2–Co1–Br1 108.56(4)
N1–C5 1.522(8) C9–N1–C13 112.0(5)
N1–C1 1.530(8) C9–N1–C5 109.0(5)
C1–C2 1.499(9) C13–N1–C5 108.9(5)
C2–C3 1.500(10) C9–N1–C1 108.2(5)
C3–C4 1.470(10) C13–N1–C1 108.8(5)
C5–C6 1.512(10) C5–N1–C1 110.0(5)
C6–C7 1.5004(10) C2–C1–N1 117.5(5)
C7–C8 1.4988(10) C1–C2–C3 110.8(6)
C9–C10 1.504(9) C4–C3–C2 114.3(7)
C10–C11 1.541(11) C6–C5–N1 116.6(6)
C11–C12 1.468(12) C7–C6–C5 126.0(9)
C13–C14 1.498(9) C8–C7–C6 117.7(13)
C14–C15 1.501(10) C10–C9–N1 116.1(6)
C15–C16 1.483(12) C9–C10–C11 109.6(7)
N2–C17 1.491(9) C12–C11–C10 114.2(9)
N2–C21 1.514(10) C14–C13–N1 115.5(6)
N2–C29 1.515(11) C13–C14–C15 111.6(7)
N2–C25 1.517(9) C16–C15–C14 113.1(8)
C17–C18 1.488(11) C17–N2–C21 110.9(6)
C18–C19 1.589(12) C17–N2–C29 97.2(6)
C19–C20 1.456(15) C21–N2–C29 115.9(7)
C21–C22 1.510(11) C17–N2–C25 112.9(6)
C22–C23 1.542(13) C21–N2–C25 105.8(6)
C23–C24 1.486(15) C29–N2–C25 114.2(6)
C25–C27 1.502(10) C18–C17–N2 116.3(7)
C26–C28 1.496(12) C17–C18–C19 111.5(8)
C26–C27 1.512(11) C20–C19–C18 110.1(10)
C29–C30 1.4987(10) C22–C21–N2 117.7(7)
C30–C31 1.551(13) C21–C22–C23 108.9(8)
C31–C32 1.432(12) C24–C23–C22 110.7(10)

C27–C25–N2 116.6(7)
C28–C26–C27 112.3(8)
C25–C27–C26 109.2(7)
C30–C29–N2 115.9(9)
C29–C30–C31 110.3(9)
C32–C31–C30 124.5(10)

Table 3 Hydrogen bond parameters for [N(C4H9)4]2CoBr4
a

D–H/A D–H H/A D/A D–H/A

C1–H1A/Br1i 0.97 3.10 3.951(7) 147.5
C5–H5A/Br2 0.97 3.05 3.748(7) 130.2
C6–H6B/Br1i 0.97 3.12 4.020(8) 154.3
C13–H13A/Br3i 0.97 3.03 3.988(7) 169.3
C13–H13B/Br3ii 0.97 2.96 3.893(7) 161.4
C21–H21B–Br1iii 0.97 3.14 4.096(9) 169.4
C25–H25B–Br1iv 0.97 3.03 3.965(8) 162.1
C29–H29A–Br4 0.97 2.95 3.772(9) 143.6

a Symmetry codes: i−x + /2, y + 1/2,−z + 1/2; ii x,−y + 1/2, z− 1/2; iii−x +
1, y + 1/2, −z + 1/2; iv x, −y + 1/2, z + 1/2.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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2.5. Thermal analysis DSC

Differential scanning calorimetry, DSC, was executed with
a PerkinElmer DSC-7 instrument in a temperature range from
320 K to 360 K with a 5 K min−1 rate.

2.6. Impedance spectroscopy

Under uniaxial pressure, the crystals were crushed and formed
into a cylindrical pellet that measured 8 mm in diameter and
1.1 mm in thickness. Using a Solartron impedance analyzer, the
electrical transport characteristics of this pellet were assessed in
the frequency range of 100 Hz to 5 MHz. Temperatures between
313 and 353 K were used for the measurements.

3. Results and discussion
3.1. Structure description

Bis(tetrabutylammonium) tetrabromocobaltate(II), ((C4H9)4-
N)2[CoBr4], crystallizes in the monoclinic system, space group
P21/c. The rened lattice parameters are: b = 112.185(3)°, V =

4206.89(13) Å3, b = 16.6083(2) Å, c = 16.9298(2) Å, and a =

16.1580(2) Å. In this crystal structure, the [CoBr4]
2− anions and

the tetrabutylammonium ((C4H9)4N)
+ cations are linked by

strong C–H/Br hydrogen interactions (Fig. 1).
The asymmetric unit of this new hybrid compound consists

of a tetrahedral anion [CoBr4]
2− and two crystallographically

independent cations ((C4H9)4N)
+, as illustrated in Fig. 2. The

two cations adopt a cis conformation, known as the “swastika”
conformation, which corresponds to the most stable congu-
ration. This stability is explained by minimal steric hindrance
and optimal arrangement of the butyl chains around the
tetrahedral anion.

Such an arrangement is typical of compounds in the A2MX4

family, where A represents a bulky organic cation, M a transi-
tion metal, and X a halogen. Well-documented examples
include [(C4H9)4N]2Zn2Cl7H2O28 and [(C4H9)4P]2SbCl4,29 in
Fig. 1 Projection of the structure of ((C4H9)4N)2[CoBr4] along the
crystallographic c-axis.

RSC Adv., 2026, 16, 3791–3802 | 3793
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Fig. 2 The asymmetric unit of (C16H36N)2[CoBr4]. Displacement
ellipsoids are drawn at the 50% probability level. Hydrogen bonds are
represented by dashed lines.
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which the cation generally adopts the cis “swastika” confor-
mation, favoring crystal stability and regular network
organization.

The [CoBr4]
2− polyhedron is formed by the coordination of

four bromide ions for each Co(II) core. The coordination
geometry can be seesaw, square planar, or tetrahedral. In order
to measure the departure from an ideal geometry, the s4
parameter was computed using the equation,30 where an ideal
tetrahedral conguration is represented by s4 = 1 and a perfect
square planar geometry by s4 = 0.

s4 ¼ 360� ðaþ bÞ
360� 2q

(2)

where the two largest angles inside the coordination poly-
hedron are a and b, and q is the ideal tetrahedral angle (q =

109.5°). The s4 parameter was found to be s4 = 0.962 using the
Fig. 3 Hydrogen bonds established by (a) the tetrabutylammonium catio

3794 | RSC Adv., 2026, 16, 3791–3802
measured values of a = 112.66(5)° and b = 111.65(5)°. This
number shows that the geometry of the [CoBr4]

2− polyhedron is
quite similar to that of an ideal tetrahedron.

The [CoBr4]
2− anions are stacked in layers to generate

anionic pseudo-layers, as seen in Fig. 1, with average planes at x
= 1

4 and x = 3
4 parallel to the (b, c) plane. The minimal Co/Co

intermetallic distance between these layers is 9.7242(13) Å. Co–
Br bond lengths range from 2.3953(12) to 2.4253(10) Å within
each [CoBr4]

2− unit, and Br–Co–Br bond angles range from
106.63(4)° to 112.66(5)° (Table 3).

Based on the geometrical characteristics of the [CoBr4]
2−

tetrahedra, the average Baur distortion indices (DI) were
calculated using the following equations:31

DIðCo� BrÞ ¼
Xn1
i¼1

jdi � dmj
n1dm

; DIðBr� Co� BrÞ ¼
Xn2
i¼1

jai � amj
n2am

(3)

where d represents the Co–Br bond length, a the Br–Co–Br bond
angle, dm and am the average values, n1 = 4, and n2 = 6 for
tetrahedral environment.

The calculated distortion indices, DI(Co–Br) = 0.0212 and
DI(Br–Co–Br) = 0.0191, suggest that the CoBr4 tetrahedron
deviates slightly from an ideal tetrahedral geometry. This
distortion is attributed to the intermolecular hydrogen bonds
formed between the organic cations and the metallic
tetrahedra.

The negative charges of the [CoBr4]
2− anions are compen-

sated by tetrabutylammonium cations ((C4H9)4N)
+, which are

arranged in stacked layers forming wavy organic cationic sheets
parallel to the (b, c) plane at x = 0 and x = 1

2 (Fig. 1). The crystal
structure of the title compound can thus be described as an
alternation of organic and inorganic layers along the crystallo-
graphic a-axis (Fig. 1).

The geometrical parameters of the organic cations, listed in
Table 3, are comparable to those observed in other compounds
containing the same organic moiety.32,33

The overall stability of the studied crystal lattice relies on
weak interactions, notably electrostatic and van der Waals
ns and (b) the metallic tetrahedron in the [N(C4H9)4]2CoBr4 compound.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Hirshfeld surfaces of [N(C4H9)4]2CoBr4: dnorm, di, de, and
curvedness.
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interactions, which manifest as C–H/Br hydrogen bonds
between tetrabutylammonium cations ((C4H9)4N)

+ and
[CoBr4]

2− anions. Each cation forms C–H/Br interactions with
Fig. 5 Fingerprint plot of the proportion of short-range action on the H

© 2026 The Author(s). Published by the Royal Society of Chemistry
three neighboring [CoBr4]
2− tetrahedra (Fig. 3a), while each

[CoBr4]
2− anion interacts with ve adjacent tetra-

butylammonium cations (Fig. 3b). Although these interactions
are relatively weak, they contribute signicantly to the cohesion
and stability of the lattice. The observed C/Br distances range
from 3.748(7) to 4.096(9) Å and the C–H/Br angles vary
between 130.2° and 169.4°, conrming the stabilizing role of
these intermolecular contacts in the crystal structure (Table 3).
3.2. Hirshfeld surface analysis

To better understand the nature and signicance of the inter-
molecular interactions within the synthesized crystal structure,
a Hirshfeld surface analysis was performed. The Hirshfeld
surfaces of [N(C4H9)4]2CoBr4 are illustrated in (Fig. 4). These
surfaces, mapped over dnorm, are drawn around the molecule to
visualize intermolecular contacts. The transparent representa-
tion of the surfaces, with appropriate curvature, allows a clear
view of the molecular fragments in a consistent orientation for
all structures. White regions on the dnorm surface correspond to
contacts with distances equal to the sum of the van der Waals
radii, whereas red and blue areas indicate shorter and longer
intermolecular contacts, respectively.

By taking into account both the internal and external nearest
neighbors, the three-dimensional Hirshfeld surface can be
transformed into a two-dimensional ngerprint plot. This
irshfeld surface in the [N(C4H9)4]2CoBr4 compound.

RSC Adv., 2026, 16, 3791–3802 | 3795
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Table 4 Assignments of most important observed bands in infrared and Raman spectra of [N(C4H9)4]2CoBr4 at room temperature (w: weak; m:
mean; s: strong)

Raman (cm−1) IR (cm−1) Assignments

80m — ns(CoBr4)
96s — ds(CoBr4)
178s — nas(CoBr4)
238w
267m — das(CoBr4)
744w/785w/809w 738s/801m n3(NC4)
888m 879s d(C–N–C) + d(C–C–C)
916s 923w ns(NC)
938w — ns(C–C)

987w ns(NC) + d(C–N–C)
1004w/1023w 1007w d(C–N–C) + n(C–C)
1045m 1032m d(C–C–C) + d(C–N–C) + n(C–C) + d(N–C–C)
1070m 1062m d(C–N–C) + d(C–C–C)
1123m/1134m 1108w d(C–C–C)
1144m s(CH2)
1162m 1167m s(CH2)
1177w
1191w
1263w/1283w/1292w 1244w/1282w u(CH2)
1331m/1356w 1316w/1351w u(CH2) + s(CH2)
1366w 1379s u(CH2)
1402w/1414w/1432w/1456s/1463s 1462s das(CH3) + sci(CH2)
1490w das(CH3)
2879s 2871s ns(CH2) + ns(CH3)
2917s 2931s nas(CH2)
2940s/2967s 2958s nas(CH3)
2979s/3000m 2995w nas(CH2) + nas(CH3)
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analytical approach enables the differentiation and quantica-
tion of various intermolecular interactions, which are collec-
tively displayed in a comprehensive ngerprint representation.
The related ngerprint plots are shown in Fig. 5. The two-
dimensional ngerprint analysis indicates that the most
important interactions in the crystal packing are Br/H/H/Br
and H/H, which account for 25.3% and 74.1% of the total
surface, respectively. This frequency suggests that maintaining
the crystal structure requires van der Waals interactions. The
Co/H/H/Co and other minor interactions only account for
0.7% of the Hirshfeld surface contribution.
Fig. 6 Raman and IR spectra of [(C4H9)4N]2CoBr4 compound at room
temperature.
3.3. Vibrational study at room temperature

Fourier-transform infrared (FT-IR) and Raman spectroscopy
were used in vibrational spectroscopic examinations to better
understand the molecular structure and the type of chemical
bonding inside the [N(C4H9)4]2CoBr4 molecule. A thorough
grasp of the interactions and structural stability of the material
is made possible by these complimentary approaches, which
offer useful information on the internal vibrations of the crys-
tal's organic and inorganic constituents.

Table 4 summarizes the full vibrational assignment of
[(C4H9)4N]2 CoBr4 at room temperature based on comparison
with previously published data.34–37

The [(C4H9)4N]
+ cation is responsible for bands above

400 cm−1, whereas the [CoBr4]
2− anion displays its vibrational

modes in the 70–400 cm−1 area (Fig. 6).
3796 | RSC Adv., 2026, 16, 3791–3802
The Raman bands located at 2879, 2917, 2940, and
2979 cm−1 indicate the symmetric and asymmetric C–H
stretching vibrations of CH2 and CH3 groups in the high-
frequency region (2879–3000 cm−1). The infrared bands
located at 2871, 2931, 2958, and 2995 cm−1 are appropriate for
these designations.

Wagging and bending modes are visible in the mid-
frequency range. The bending vibrations of CH2 and CH3,
attributed to wagging (u) and deformation (d) modes, are
detected at 1366, 1379, 1402, 1414, 1432, 1456, and 1463 cm−1.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 5 The characteristic dynamical values of [N(C4H9)4]2CoBr4

T (K)
DH
(J mol−1)

DS
(J mol−1 K−1) U

335 163 0.48 0.15
345 141 0.40 0.13
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The combination of das(CH3) and CH2 scissoring is responsible
for the strong infrared band at 1462 cm−1. The nitrogen core
and butyl chains interact to produce the d(C–N–C) and d(C–C–C)
vibrations, which are detected at 1065–1070 cm−1 in Raman and
1062–1070 cm−1 in IR.

Lower-frequency skeletal vibrations involving C–C–C and
C–N–C units appear at 1045–1123 cm−1 (Raman) and 1032–
1108 cm−1 (IR). The symmetric stretching of the NC4 tetrahedral
moiety is detected at 738 and 801 cm−1 in IR and 744, 785, and
809 cm−1 in Raman.

Four fundamental vibrational modes are present in the
[CoBr4]

2− anion, which has a normal tetrahedral geometry (Td
symmetry): ns(CoBr4), nas(CoBr4), ds(CoBr4), and das(CoBr4).
Below 400 cm−1, the internal modes in the Raman spectra are
80 cm−1 (ns), 96 cm−1 (ds), 178 cm−1 (nas), and 267 cm−1 (das).
Additional bending or lattice vibrations of the tetrahedral unit
are responsible for the weak bands that are also seen at 238,
538, and 611 cm−1. The tetrahedral coordination of cobalt in the
crystal structure is conrmed by these data.

3.4. Thermal analysis

The calorimetric measurement (Fig. 7) showed that the
compound under investigation undergoes discontinuation of
two phase transitions at T1 = 335 K and T2 = 345 K. The char-
acteristic dynamical values of these phase transitions are listed
in Table 5. From the Boltzmann equation, (DS = R ln(U)), where
U is the rapport number of distinguishable orientations allowed
in the high and the low temperature phases (N1/N2). The ob-
tained values of U were 0.15 and 0.13 at T1 and T2, respectively
(U1,2 < 2), which reveals that these two phase transitions are not
purely “order–disorder”.

3.5. Electrical measurements

The Nyquist spectrum is a powerful tool for analyzing the
electrical behavior and ionic dynamics of hybrid materials over
a wide range of frequencies and temperatures.38 It enables di-
stinguishing different transport mechanisms and their contri-
butions. Fig. 8a shows the Nyquist plots of the [N(C4H9)4]2CoBr4
Fig. 7 Differential scattering calorimetric trace of [(C4H9)4N]2CoBr4.

© 2026 The Author(s). Published by the Royal Society of Chemistry
sample at selected temperatures. The plots exhibit dispersion
rather than ideal semicircles centered on the real axis, indica-
tive of Cole–Cole type behavior.39 The radii of the semicircles
decrease with increasing temperature, suggesting enhanced
charge transport due to thermal activation, as more charge
carriers can overcome energy barriers. This behavior conrms
that the compound exhibits semiconductor characteristics40

with a negative temperature coefficient of resistance (NTCR).41

To model the electrical response, an equivalent circuit was
proposed for tting the impedance spectra using ZView so-
ware. The optimal t was achieved with a circuit comprising
a parallel combination of global resistance R1 and a constant
phase element (CPE1), in series with a capacitance C, followed
by a parallel combination of global resistance R2 and CPE2. The
presence of two semicircles corresponds to contributions from
grains and grain boundaries. The equivalent circuit model is
presented in the inset of Fig. 8a.

To further investigate the frequency-dependent electrical
response and relaxation phenomena of the [N(C4H9)4]2CoBr4
compound, the real and imaginary components of the imped-
ance were analyzed as a function of frequency and temperature.
Fig. 8b shows the frequency dependence of the real part of the
impedance (Z0). At low frequencies (f < 5 × 104 Hz), Z0 decreases
with increasing temperature and frequency, indicating the
accumulation of charge carriers.42 At higher frequencies (f > 5 ×

105 Hz), Z0 values converge for all temperatures, reecting the
release of space charges. This behavior is consistent with
a decreasing effective conduction barrier with rising tempera-
ture, leading to reduced resistance and enhanced AC
conduction.43

The relaxation behavior of the compound is further investi-
gated through the frequency dependence of the imaginary part
of the impedance (Z00), as shown in Fig. 8c. Two peaks are
observed in the Z00 plots at the relaxation frequencies, satisfying
fmaxs = 1, indicating contributions from both grains and grain
boundaries. These peaks arise from dipolar polarization. The
peak positions shi to higher frequencies with increasing
temperature, reecting the temperature-dependent relaxation
process44 and the decreasing resistive character of the
sample.45,46 Additionally, the broadening of the peaks at higher
temperatures suggests the presence of a thermally activated
electrical relaxation process, associated with immobile elec-
trons at low temperatures and the formation of vacancies at
higher temperatures.47,48

The resistance values (R) obtained from tting the imped-
ance spectra were used to calculate the DC conductivity (sDC) of
the grains according to the following equation:

sDC ¼ t

R� S
ðU cmÞ�1 (4)
RSC Adv., 2026, 16, 3791–3802 | 3797
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Fig. 8 Complex impedance spectra of [N(C4H9)4]2CoBr4 at different temperatures: (a) complex impedance spectra, (b) variation of the real part
Z0 as a function of frequency, and (c) variation of the imaginary part Z00 as a function of frequency.
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where t and S are the thickness and the cross-sectional area of
the pellet, respectively, and R is the grain resistance.

Fig. 9a shows the variation of the grain conductivity (sDC) as
a function of the inverse absolute temperature. The conductivity
increases with temperature, following Arrhenius' law:

sDCT ¼ s0 exp

��Ea

kBT

�
(5)

where s0 is the pre-exponential factor, kB is the Boltzmann
constant, and Ea is the activation energy.

Linear tting of the data revealed two activation energies, Ea1
z 0.61 eV in region (I) and Ea2 z 1.3 eV in region (II), values
comparable to those reported for analogous materials such as
[(C3H7)4N]2CoBr4 (ref. 38) and [(C4H9)4N]2Cu2Cl6.49

These two activation energies indicate different conduction
mechanisms across the temperature range. In the lower-
temperature region (I), the relatively small activation energy is
consistent with dipole orientation and simple ionic motion. In
the higher-temperature region (II), the larger activation energy
reects the onset of more energy-intensive processes, including
charge carrier migration. At this stage, partial blockage of
electrons due to saturation of conduction sites limits their
participation, giving a predominant role to ions and enhancing
ionic diffusion.50 This transition results in a clear modication
3798 | RSC Adv., 2026, 16, 3791–3802
of the conduction mechanism as the material responds to
increasing thermal energy.

To gain insights into charge carrier transport and the
dominant conduction mechanisms as a function of tempera-
ture and frequency, the electrical conductivity was analyzed
using the real (Z0) and imaginary (Z00) components of the
impedance. The AC conductivity (sAC) was calculated according
to the following equation:51

sAC ¼ e

s

Z
0�

Z02 þ Z002
� (6)

Fig. 9b shows the AC conductivity spectra of the synthesized
compound in the temperature range 313 # T # 353 K. Two
distinct regions can be identied. At low frequencies, a plateau
is observed, corresponding to DC conductivity behavior. At
higher frequencies, the AC conductivity increases, dening
a dispersive region oen referred to as the “conductivity scat-
tering area.” This behavior reects the ability of charge carriers
accumulated at grain boundaries to overcome energy barriers as
the temperature increases. The low values of sAC (∼10−6

U−1 cm−1) further conrm the semiconducting character of the
compound.52
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Temperature dependence of the electrical conductivity of the compound [(C4H9)4N]2CoBr4: (a) variation of ln(sDC) as a function of 1000/
T and (b) evolution of the AC conductivity at different frequencies.

Fig. 10 Frequency-dependent real part of dielectric constant of
[N(C4H9)4]2CoBr4.
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s(u) = sDC + sAC = sDC + Aus1 + Bus2 (7)

In the following equation, s1 and s2 are the frequency exponents,
A and B are temperature-dependent constants, and u is the
angular measurement frequency. Each conductivity curve
exhibits a dispersive behavior across the frequency range.

To gain further insight into the dynamics of charge carriers
in the material, scaling models correlating the conduction
mechanisms have been proposed in the literature.53–55 The
conduction mechanism can be inferred from the variation of
the frequency exponent s, which reects the interaction
between mobile ions and their local environment, according to
Elliott's theory.56

Fig. S1 shows the temperature dependence of the exponents
s1 and s2. The analysis reveals that below 335 K, the conduction
behavior is well described by the correlated barrier hopping
(CBH) model. Above 335 K, the increase in s1 and s2 suggests
a transition to a non-overlapping small polaron tunneling
(NSPT).

The DSC analysis reveals two distinct thermal events at
approximately 335 K and 345 K. In contrast, the electrical
measurement shows a single transition centered at 338 K,
which corresponds to a clear change in the conduction mech-
anism. This suggests that both thermal processes detected by
DSC manifest as a single, overall modication of the electrical
conductivity.

3.6. Dielectric studies with frequency and temperature

The study of the frequency of dielectric properties (Fig. 10)
provides essential information on the internal dynamic mech-
anisms of [N(C4H9)4]2CoBr4. At low frequencies, the dielectric
permittivity of this compound reaches exceptionally high values
(30 z 105), indicating a predominant contribution from orien-
tational and interfacial polarizations. As the frequency
increases, 30 gradually decreases, reecting the increasing
difficulty for charge carriers to keep pace with the rapid changes
in the electric eld.57 At high frequencies, the response is
mainly controlled by the much faster electronic and ionic
© 2026 The Author(s). Published by the Royal Society of Chemistry
polarizations.58 Compared to other organohalogen compounds,
such as [C7H12N2]NiCl4 (30 z 102)59 or [(CH2)7(NH3)2]CoCl2Br2 (30

z 130),53 [N(C4H9)4]2CoBr4 is distinguished by a signicantly
higher permittivity.60 This behavior indicates non-Debye relax-
ation and underscores the material's strong potential for low-
frequency energy storage applications,61 thanks to its excep-
tional charge retention capacity and the stability of its dielectric
response over a wide frequency range. Furthermore, the high
polarizability and structural stability of [N(C4H9)4]2CoBr4 make
it a promising candidate for various optoelectronic applications
requiring controlled modulation of dielectric properties. Its
exceptional characteristics can signicantly improve the
performance of devices such as electro-optical modulators,
photodetectors, or fast-switching components.

The thermal dependence of the dielectric permittivity (30,
Fig. S2) reveals a clear link betweenmolecular dynamics and the
material's functional properties. Below 338 K, 30 remains nearly
constant, indicating limited reorientation of polarizable entities
RSC Adv., 2026, 16, 3791–3802 | 3799
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and a minor contribution from the organic cations. Above 338
K, thermal activation enhances the rotational mobility of the
cations, improving their alignment with the electric eld and
causing a marked increase in 30.62 This sharp change coincides
with the phase transition detected by DSC and electrical
measurements, demonstrating a direct correlation between
structural dynamics and the observed dielectric response.

4. Conclusion

Slow evaporation at room temperature allowed the successful
synthesis of a new organic–inorganic hybrid, [(C4H9)4-
N]2[CoBr4], featuring a stable monoclinic (P21/c) structure in
which tetrahedral [CoBr4]

2− units are connected to tetra-
butylammonium cations via C–H/Br hydrogen bonds. Struc-
tural analysis conrms a nearly ideal tetrahedral geometry (s4 =
0.962; DI(Co–Br) = 0.0212). Thermal and electrical studies
reveal a close correlation between structural changes and
transport properties: two nearby thermal events observed by
DSC merge into a single electrical transition at 338 K, corre-
sponding to a clear change in conduction mechanism, with
activation energies of Ea1 = 0.61 eV and Ea2 = 1.3 eV. AC
conductivity analysis further indicates the coexistence of
correlated barrier hopping and small polaron tunneling
mechanisms. Dielectric measurements highlight exceptionally
high low-frequency permittivity (30 z 105) and non-Debye
relaxation, demonstrating the material's strong dielectric
response. Overall, these ndings establish [N(C4H9)4]2CoBr4 as
a promising candidate for phase-change devices, low-frequency
energy storage, and hybrid electrical applications. Future work
will explore temperature-dependent phase behavior and cation/
halide substitutions to further optimize its electrical and
dielectric properties.
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