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The growing interest in sustainable materials has prompted extensive research into plant fiber reinforced
polymer composites as alternatives to synthetic fibers (e.g. glass, carbon). This review explores the
tribological behavior, wear resistance, and mechanical properties of various plant fibers, like Abaca,
Banana, Hemp, Jute, Coir etc.,, when incorporated into epoxy matrices. It analyzes the chemical
compositions, fiber—matrix interactions, and the influence of fiber content, treatment methods and fiber
orientations on the tribological performance of the composites. Surface treatments along with the
nanoparticles and fillers, have demonstrated lower friction coefficient, increased wear resistance and
overall strength of every fiber reinforced epoxy composite. Combining multiple natural fibers or hybrid

composites, offers superior durability and wear resistance compared to pure fiber composites. Increasing
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at 20-30% fiber concentrations. Also, this review highlights the potential of plant fiber/epoxy composites

DOI: 10.1038/d5ra07843a as sustainable substitutes for synthetic fibers in industrial applications like automotive, construction, and
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1. Introduction

The growth of population and industrialization has played
a significant role in shaping the demand for high-strength,
lightweight materials in construction and building applica-
tions, consequently fueling the need for eco-friendly
alternatives.'™ Natural fiber reinforcements become the best
substitute for replacing conventional fibers (glass/carbon)
because they are environmentally friendly, biodegradable, and
have good mechanical performance and chemical resistance,
and are low cost and lightweight.*® Natural fibers are being
used extensively in polymer composites nowadays for various
applications such as helmets, roofing sheets, postboxes, lami-
nates and panels for multifunctional tables, door frames, seat
coverings, glove boxes, seat surface, door panels, back support,
trunk panel, and trunk floor.”® The use of synthetic fibers is an
important aspect in many different fields because of the prop-
erties and characteristics obtained from its production, with
widespread types being utilized in numerous contexts.'** Their
development has revolutionized sectors such as textiles, auto-
motive, construction and packaging, offering numerous
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advantages. However, it is important to know that synthetic
fibers come with so disadvantages also, specially concerning
their effect on environment and health. For example, one of
synthetic material, asbestos has been referred to as a “God-
given” material for inclusion in friction linings for its good
physical and chemical properties that remain stable over the
temperature range experienced by friction materials,*® it has
been reported that asbestos has serious health risks. Diseases
associated with it include asbestosis, mesothelioma, lung
cancer and other cancers." Today plant fibers are widely used in
research since they are abundant, cheap, and re-growable in
arelatively short period of time. The increasing interest in using
natural fibers for environmentally friendly products is attrib-
uted to their natural biodegradability (Fig. 1).***¢

The mechanical properties of natural fibers depend on some
factors like cellulose content and polymerization, microfibril
angle."” Moreover, significant amount of research works have
been carried out on polymer composites employing natural
fibers,"”®™® but a clear understanding of their tribological
behavior is still missing.

In recent articles showed that fibers such as bamboo, sisal,
jute, flax, coir, and abaca can improve friction, wear, and load-
bearing performance while offering better sustainability than
synthetic fibers.”>*' Another review reported that nanofillers
like nano-silica, nano-clay, metal oxides, and CNC/CNF can
increase strength, thermal stability, and bonding when they are
well dispersed.®-** A number of studies reported that extraction
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Fig.1 Type of natural fiber.

procedures and chemical treatments (such alkali, silane) would
remove impurity and increase adhesion, therefore decrease the
moisture absorption content and improve composite
performance.**>*” Reviews on hybrid composites showed that
mixing natural fibers with synthetic ones like glass or carbon
gives higher impact resistance, better stiffness, and improved
durability, but moisture and bonding issues still exist.*”**3°
Some reviews also introduced new plant fibers with good
cellulose content and mechanical strength, which could be used
for inducing a sustainable composite.**** A fiber-specific review
on coir showed that its high lignin content gives good stability
and makes it useful for eco-friendly applications.”** One more
review on nano-lubricants indicated that friction and wear can
be reduced significantly with carbon-based and metal-oxide
nanoparticles, provided valuable findings for tribology
studies.** Overall, these works give important knowledge, but
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none combine all aspects of fiber structure, treatment, filler
addition, and composite design to explain tribological behavior
in plant-fiber-reinforced epoxy composites.

Recent studies have explored the tribological behavior of
single fiber polymer to hybrid composite (Fig. 2). However, there
are noticeable gap in understanding of best fibers reinforced
epoxy composites based on tribological behavior, wear, friction
co-efficient and mechanical properties by collectively analysis.
Also, the effect of fiber loading and external filler content on
tribological and mechanical properties. The goal of the current
review article is to summarize all recent research papers on
natural fiber composite based mechanical and tribological
enhancement, including those that address improvement in
wear rate, coefficient of friction (COF), anti-wear properties,
load-carrying capacity, effects of extraction process and chem-
ical treatments on fiber properties. Also, this paper carried the
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Fig. 2 Available research paper on the topic of plant fiber/epoxy based tribological analysis at Google scholar; (search keywords: tribological

properties, fiber name, epoxy).
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comparative analysis of hybrid composite to pure fiber polymer
on the perspective of mechanical and tribological behavior.
This exploration helps us better grasp practical applications.
Additionally, this article helps to understand the best
performers during reinforcement with epoxy. Ultimately, our
goal is to offer a comprehensive understanding of these
composites and their behavior under changing of different
perimeters.

2. Chemical, and mechanical
properties of natural fiber
2.1 Chemical properties

Plant fibers are primarily composed of cellulose, hemicellulose,
and lignin. These fibers possess intricate structures and contain
a diverse range of organic compounds, such as cellulose,
hemicellulose, wax, pectins, fatty acids, and ash.** Numerous
studies have examined the properties of various fibers.**”® The
composition of these components in fibers varies depending on
factors such as the fiber source, age, extraction methods,
conditions, and environmental factors e.g. soil, weather.” The
average proportion of chemical constituents in the plant fibers
are provided in Table 1.

From Table 1 it can show that, the cellulose content varies
widely, with pineapple, ramie exhibiting the highest at approx.

Table 1 Chemical properties of different type of fiber
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80-85%, while piassava has the lowest at 31.6%. Hemicellulose
content is highest in kapok (49.3%) and lowest in ramie (3-4%),
indicating a greater presence of structural components like
cellulose in some fibers. Lignin content is notably high in
piassava (48.4%) and coir (38-40%), while ramie has the lowest
at 0.5%, which may contribute to the fiber's superior strength
and durability.

In terms of ash content, rice straw having highest ash
content (of 9.9%), and fibers like Luffa cylindrica, sisal having
lower value indicates the presence of impurities in them along
with some mineral content. The density in these fibers varies
from 0.6 g cm™* (bamboo) to 1.6 ¢ cm® (pineapple); thus,
making them more suitable for varied applications depending
on weight requirements.

The cellulose crystallinity index (CI) shows a strong positive
relationship with the mechanical performance of natural-fiber
composites.” The crystallinity index also differs significantly
fiber to fiber; flax offers 86.1%, offering great structural integrity
and strength,” while kapok has relatively low values-up to
35.3% (ref. 66) — possibly limiting its applicability in high-
strength applications. In general, higher CI increases tensile
and flexural strength by 20-60%, because highly crystalline
regions improve fiber stiffness and load transfer to the matrix.
Fibers with CI above 70% (such as flax, hemp, ramie) typically
produce composites with 30-50% higher tensile modulus

Cellulose Hemicellulose Lignin Ashes Density Crystallinity
Natural fiber (Wt%) (Wt%) (Wt%) (Wt%) (gem™?) index (%) Reference
Abaca 56-63 20-25 7.9 — 1.5 68.7 45and 46
Areca sheath fiber 65.32 15.02 8.46 4.4 1.05-1.25 — 4 and 80
Alfa 45.4 38.5 14.9 — — — 47
Bagasse 69.4 21 4.4 0.6 1.25 45.2 48 and 49
Bamboo 33-45 30 20-25 — 0.6-1.1 59.7 45, 46 and 50-52
Banana 60-65 6-8 5-10 1.2 1.5 39 45,51 and 53
Caraua 70.7 21.1 7.5 0.8 1.4 75.6 54
Coir 43-53 14.7 38-40 — 1.2 44 55-59
Corn straw 39.82 23.19 11.98 — — 50.3 45 and 60
Cotton stalk 50 28.4 23.1 — 1.5 74 52
Cytostachys renda (leaf stalk) 38.99 19.15 18.24 — — — 47
Flax 71 18.6-20.6 2.2 — 1.5 86.1 61 and 62
Hemp 72 10 3 2.3 1.5 79.9 57 and 63
Jute 60 22.1 15.9 1.0 1.3-1.4 58 55 and64
Kapok 50.7 49.3 13.4 — — 35.3 65 and 66
Kenaf 72 20.3 9 4 1.5 72.1 57, 67 and 68
Luffa cylindrica 62 20 11.2 0.4 0.82 59.1 69 and 70
Sisal 74-75 10-13.9 7.6-7.9 0.4 1.5 72.2 45 and 58
Sleeve 55 20.6 23.8 — — — 71
Oil palm 65 10.12 17.5 — — — 47
Piassava 31.6 — 48.4 — — — 59
Pineapple 83 — 12 — 0.8-1.6 38 45, 55, 56 and 72
Raffia 44.6 13.5 2.7 — — 64 52
Ramie 80-85 3-4 0.5 — 1.5 62.9 50,53 and 73
Rice straw 43.2 31.7 16.9 9.9 — 77 52 and 60
Weed 69 — 17 — — 74.1 74
Wheat straw 43.2 34.1 22 4.99 — 54.4 48 and 75-77
Wood (soft density) 30-60 20-30 21-37 <1 — — 78
Wood (hard density) 31-64 25-40 14-34 <1 — 71.6 60 and 78
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compared to fibers with moderate crystallinity (50-60%).*
Abaca, flax and hemp have the highest cellulose and crystal-
linity, they offer the best mechanical properties as shown in our
results for making strong durable composite materials.

Another promising fiber for high strength applications is
Caraud, which can contain up to 70.7 of cellulose and has quite
good crystallinity =75.6%. Despite the high cellulose content
(69.4%) in bagasse, its crystallinity (45.2%) is less, and this can
lead to lower wear resistance. Jute and rice straw have
a moderate amount of cellulose and crystallinity that can
balance in many composite applications; hence they are both
considered useful fibers. By contrast, fibers such as Piassava
and Kapok with relatively more lignin may be better used in
certain applications requiring resistance to wear and
degradation.

2.2 Mechanical properties

The mechanical properties of the natural fibers in the table,
shows significant variation, making them suitable for a wide
range of applications. The density of these fibers Table 2 varies
from 0.55 g cm ™ (bagasse) to 1.60 g cm™> (pineapple), which
reflect their weight and compactness properties. Fibers with
higher density, such as abaca (1.5 g cm ™ *) and cotton (1.50-
1.60 g cm’), tend to offer better mechanical properties.
Besides, lighter fibers like bagasse (0.55-1.25 g cm ™) are more
suited for lightweight applications. Elongation at break strongly
affects how natural-fiber composites fail under tensile, impact,
and fatigue loading because it determines how much strain the
material can withstand before breaking. The coir fibers have the
highest elongation at break 47% whereas pineapple fibers are
start form only 0.8%. Coir exhibits an elongation percentage
significantly greater, representing lower Young's modulus, that
provides much desired flexibility 7. Fibers with low elongation
at break (flax (1.2-4.0%),*> hemp (1.5-4.0%),* jute (1.3-3.0%),**
ramie (1.2-4.0%)*') make composites stiff but brittle, leading to
early matrix cracking, sudden fiber breakage in tension, low
impact energy absorption, and faster fatigue crack growth.
Bagasse and pineapple fibers are significantly more rigid; this

Table 2 Mechanical property ranges of natural fibers
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means that they have a lesser yield load they can take before
breaking point.

According to its tensile strength, which is the power of a fiber
not to break when it stretches, fibers go from 20 MPa (bagasse)
up until 1830 MPa (flex). High tensile strength fibers like flex
(345-1830 MPa), pineapple (170-1627 MPa), abaca, 400-
980 MPa, hemp (310-1110 MPa) and banana (500-914 MPa) are
used when high strength, strong and durable composites are
required. On the other hand, fiber such as bagasse (20-290
MPa) and coconut (83-222 MPa) have a low tensile strength
which limited them to high-strength application. Young's
modulus (E) for the fiber stiffness, ranges from 1.44 GPa
(pineapple) to 128 GPa (ramie). Ramie stands out with excep-
tionally high stiffness, followed by flex (27.6-82 GPa) and hemp
(23.5-9 GPa), making these fibers ideal for reinforcing materials
that need to resist deformation. Coir (3-6 GPa) have lower
moduli which make this more flexible but less stiff than other
fibers. Ramie has very high stiffness because of its special
microstructure. It has thick cell walls and a very low microfibril
angle, meaning the cellulose microfibrils are almost straight
along the fiber axis.®® This alignment helps the fiber carry load
easily and reduces deformation. Ramie also has high cellulose
content, high crystallinity, and very low lignin, which make it
even stiffer.”>? Fibers like Ramie, Flex, and Banana offer
a combination of high tensile strength and stiffness, that
making them excellent candidates for applications where
requiring both durability and structural integrity.”>*¢

3. Tribological properties
3.1 Friction co-efficient (COF)

The coefficient of friction (COF) is a measure of the resistance
experienced when two surfaces are moving against each other.
The frictional force that occurs relative motion the two surfaces
to remain as a ratio form of normal force pressing one material
against the other. Natural fiber reinforced epoxy composites
face wear, efficiency, and overall performance issues which this
parameter significantly influence. Composites developed using
natural fibers and epoxy matrices render a set of fascinating

Density, p Elongation at Tensile strength Young's modulus,
Serial Fiber (gem™?) break (%) (MPa) E (GPa) Reference
1 Abaca 1.5 3-12 400-980 12-72 85-90
2 Bagasse 0.55-1.25 0.90-1.1 20-290 2.7-27.1 82, 85, 87, 89 and 91
3 Bamboo 0.6-1.1 1.3-7.0 140-575 11-35.9 87 and 92-94
4 Banana 1.30-1.35 3-10 500-914 7.7-32.0 85, 89 and 83-98
5 Coconut 0.81-1.10 — 83-222 12-32 91 and 93,94,97
6 Coir 1.15-1.25 15-47 106-304 3-6 87 and 99-102
7 Cotton 1.50-1.60 3-10 200-800 5.50-12.6 82, 83 and 31-105
8 Flex 1.40-1.50 1.2-4.0 345-1830 27.6-8 42, 82, 83 and 87
9 Hemp 1.4-1.5 1.5-4.0 310-1110 23.5-9 42, 83, 87, 103 and 104
10 Jute 1.30-1.50 1.3-3.0 187-800 3-55 42, 84, 90, 101 and 103
11 Pineapple 0.8-1.6 0.8-14.5 170-1627 1.44-82 82, 83, 88, 90, 98 and 104
12 Ramie 1.0-1.55 1.2-4.0 220-938 23.0-128 31, 82, 99 and 101
13 Sisal 0.7-1.5 2.0-14.0 350-840 9.0-38.0 87, 83-98 and 101
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Fig. 3 Tribological elements. (a) Coefficient of performance. Reproduced from ref. 108 with permission from Elsevier, Copyright 1993; (b) Turbo
films. Reproduced from ref. 109 with permission from Wiley, Copyright 2022.

tribological behaviors, owing to the inter fiber-matrix interac-
tion governing their applicability in diverse field for
tribology.*¢*%”

The coefficient of friction varies depending on normal load,
sliding velocity, surface roughness and other lubrication
conditions. The normal load/force is one of the main influ-
encing factors on frictional behavior of natural fiber compos-
ites. With the increase in average load, the contact area between
two surfaces increases thereby making a reduction in coefficient
of friction possible (Fig. 3).

The friction coefficient depends on the sliding velocity as
well as normal load. For natural fiber composites, increasing
the sliding velocity typically leads to a decrease in the COF. This
reduction in wear is owing to the formation of a tribo-film:
a thin layer of either wear debris or lubricant that develops on
sliding surfaces. The tribo-film acts as a separator so the
surfaces are not in direct contact, which results in lower friction
coefficient. It is because in boundary lubricated condition the
lubricant film is very thin that it could not create full separation
between surfaces, therefore the tribo-films are generated. Yet,
this behavior could be changed with the addition of nano-
particles or friction modifiers which can assist in a formation of
more stable tribo-film resulting in lower COF and better wear
resistance. For example, the incorporation of TiO, nano-
particles in the composite matrix or lubricants has been shown
to significantly reduce the COF, as these nanoparticles serve as
a solid lubricant due to the absence of direct material-to-
material contact."'*"**

Natural fiber-reinforced epoxy composites usually show
a friction coefficient between 0.2 and 0.5, depending on fiber
type, treatment, and loading conditions. Besides, untreated
fibers shows higher values of 0.4-0.5 due to rough surfaces.
Treatments such as silane and NaOH reduce the friction coef-
ficient nearly to 0.3 by improving fiber-matrix adhesion and
smoothing the surface. Hybrid systems that combine natural
fibers with basalt fibers, metal fillers, or ceramic fillers can show
even lower friction due to tribological effects and the formation
of tribo-films. Surface treatments, friction modifiers, and
nanoparticles also help further reduce friction and improve
overall tribological performance.**>*'¢

1396 | RSC Adv, 2026, 16, 1392-1442

3.2 Wear rate

In order to evaluate the tribological performance of natural
fiber-reinforced composites, wear rate is an important param-
eter. All of these things combine to influence the wear rate,
which can be a function of fiber type and treatment, matrix
material, and operating conditions (such as load, sliding speed
and temperature). Wear rate often goes up with increasing load
though it is not always the same as sliding speed and frictions
couple between fibers and matrix depending on fiber nature of
matrix material used.'” When exceeding a certain critical load,
wear rates were found to increase dramatically in high-speed
applications, sometimes resulting in material adhesion/
failure."*®* Wear rate can be decreased by modifications of the
fiber surface such as fiber treatments and hybrid fibers, which
improves bonding between the fiber and matrix'*® Furthermore,
the addition of reinforcement agents, e.g. hexagonal boron
nitride (h-BN), can improve lubrication effect and significantly
thus reduce wear rate."® As for metallic glass composites those
tend to form the tribo-layer offering better wear resistance at
high temperature due to a tribo-layer that formed at the worn
surface of some alloys."™ Moreover, laser cladding, ultrasonic
assistance and other processing technologies improved the
wear resistance via enhancing particle reinforcement unifor-
mity of the surface layer as well as decreasing particle

Modulus of
Elasticity

Hardness Temperature

»

Composition

Normal Load

Speed of

Sliding

Fig. 4 Factors influence the wear.
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agglomeration. The wear rate is also decreased by the formation
of a mechanically mixed layer during wear, which makes these
composites applicable for high-wear use under different
conditions (Fig. 4).1*#*°

3.3 Lubrication

Another perimeter is lubrication, that plays a critical role in
enhancing the tribological performance of natural fiber rein-
forced epoxy composites. The addition of lubricants signifi-
cantly reduces friction and wear by preventing direct contact
between the sliding surfaces. Under boundary and mixed
lubrication conditions, where such contact is more likely,
lubrication is particularly beneficial. For instance, the addition
of Cu nanoparticles to lubricating oil has been studied, and it
was found that these nanoparticles form a protective copper
film on the worn surface, especially under high temperatures.
This film leads to a substantial reduction in both friction and
wear."’

The presence of a tribo-film formed on the counter-face
during sliding further improves the performance of glass fiber
reinforced epoxy composites under oil lubrication conditions.
The tribo-film acts by separating the friction surfaces, which
reduces wear and helps maintain the composite's integrity.***
The lubrication process itself is aided by the oil, which helps in
the transfer of wear debris and provides a protective barrier
between the composite and counter-face.’* Solid lubricants,
such as SiO, nanoparticles, graphite, and PTFE, also improve
wear resistance in these composites without significantly
affecting the friction coefficient.">****

Metallic and metal-oxide nanoparticles such as Cu, MoS,,
and ZnO enhance the tribological performance of lubricating
oils through several synergistic mechanisms.*"***** During
sliding, nanoparticles form protective tribo-films that fill
asperities and reduce direct surface contact, thereby lowering
friction and wear. Spherical nanoparticles also act as nano ball
bearings, transforming sliding friction into partial rolling
motion. Certain nanoparticles, particularly Cu and ZnO,
participate in surface repair processes by depositing into wear
scars and forming smooth, load-bearing layers.** Furthermore,
metal-oxide nanoparticles improve thermal stability and inhibit
oxidative degradation of the lubricant, while lamellar MoS,
provides exceptional low-shear interlayer sliding."*

The resin phase itself plays a significant role in lubrication.
Due to its lower heat distortion temperature compared to the
fiber phase, the resin softens under frictional heat, allowing it to
migrate to the contact surfaces and act as a lubricant. This
migration reduces friction and enhances wear resistance by
preventing direct fiber-to-fiber contact.”**** Fiber orientation,
fiber type, and the resin phase act together and strongly influ-
ence performance. Surfaces where fiber nodes contact the resin
show higher wear, more roughness, and therefore higher fric-
tion because they undergo direct frictional contact. In contrast,
perpendicular and parallel fiber surfaces give better wear
resistance and lower friction because the resin can act as
a lubricant between sliding surfaces."”® The wear resistance is
increased by the high fiber content in the composite, however

© 2026 The Author(s). Published by the Royal Society of Chemistry
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more amount of fibers may lead to debonding causing higher
rates of wear.""** The matrix phase, fiber orientation and fiber,
filler content also interact to affect the lubrication as well as the
wear mechanism, where loading plays an essential role for
decreasing friction and wear with coatings involved.'””***

3.4 Surface roughness

Surface roughness refers to the microscopic irregularities
present on the surface of a material, which can significantly
impact its tribological performance.’” These surface features,
including peaks and valleys, influence the contact between two
surfaces during sliding or rolling. In the case of natural fiber
reinforced epoxy composites, surface roughness plays a crucial
role in determining how these materials perform under fric-
tional and wear conditions." The topography of the compos-
ite's surface, along with that of the opposing surface, directly
affects the friction and wear behavior, with smoother surfaces
typically offering better performance due to their ability to
promote more uniform interactions.**

Rougher surfaces tend to create more contact points between
the composite and the opposing material, leading to increased
friction and wear. This is because the surface asperities engage
more aggressively, causing higher mechanical interactions
during the initial sliding stages."” Smoother surfaces more
easily form a uniform lubricating film that prevents direct
contact between sliding pairs, thereby reducing friction and
wear. In practice, smooth surfaces promote faster and more
stable development of this protective lubricant layer, which
significantly minimizes friction-related damage.**

In the case of composite materials reinforced with natural
fibers, such as hemp, jute, or sisal, surface roughness also
depends on the fiber type and the treatment applied to these
fibers.”** Chemical treatments, such as hydrogen peroxide or
sodium carbonate, can change the fiber's body structure, which
can then affect the surface, opening/twisting up ends and
loosening some of the bundles, improving the fiber-matrix
interface and the overall wear performance of the composite.**®
As a result, a better fiber-matrix link can help a more effective
protective layer to form during the sliding time, and, thus, the
material's tribology will also be upgraded.****
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Fig. 5 Schematic diagram of a mechanical decorticator.
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4. Chemical, processing, and tribo-
chemical influences on natural fiber
performance

4.1 Fiber extraction methods

4.1.1 Mechanical extraction. Mechanical extraction relies
on physical forces such as shearing, scraping, and ripping to
separate fiber bundles from the plant stem, bark, or pseudo-
stem without significant chemical or biological intervention.?”
The process typically includes decortication, fiber cleaning, and
fiber opening, during which the shive or woody core is
mechanically removed and the remaining fiber bundles are
refined into finer strands.**>*** Although mechanical extraction
offers rapid processing and is scalable for industrial

View Article Online

Review

production, the intense mechanical forces often cause fiber
breakage, reduced fiber length, and inconsistent quality.*** 3¢
Studies on jute, banana, and Sansevieria cylindrica fibers show
that mechanically extracted fibers retain higher lignin and wax
content than retted fibers, resulting in lower flexibility and
variable tensile properties.'* Mechanical extraction is therefore
suitable for applications where fast processing is required, but
the resulting fibers may require additional retting or chemical
treatment to improve their uniformity, cellulose exposure, and
mechanical performance (Fig. 5).'**'*

4.1.2 Biological extraction. Biological extraction uses
naturally occurring microorganisms or targeted enzymes to
decompose pectin, hemicellulose, and other binding compo-
nents that hold fiber bundles to plant tissues.” This method is
slower than mechanical processing but produces cleaner, more

Fig. 6 Water retting process. (A) Retting in the roadside pond, (B) silver color fibers by traditional retting, (C) retting with native microbial
inoculum and (D) golden color fibers. Reproduced from ref. 147 with permission from Excellent, Copyright 2020.

Fig. 7

Image of banana peel cellulose fibers; (a) obtained by chemical treatment and (b) obtained by enzymatic treatment, (scale bar 2000 nm).

Reproduced from ref. 152 with permission from Elsevier, Copyright 2014.
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uniform fibers with minimal structural damage."*® Because
biological extraction preserves fiber length and reduces harsh
mechanical forces, the resulting fibers generally show improved
flexibility, higher spinnability, and more consistent mechanical
properties.***

4.1.2.1 Retting extraction. Retting is the most traditional
form of biological extraction, where stems or leaves are placed
in water, on the ground, or in controlled microbial baths to
allow bacteria and fungi to break down pectin-rich tissues.*®
Water-retted fibers typically display higher cellulose and
hemicellulose content and lower lignin content compared to
mechanically extracted fibers, resulting in greater flexibility and
better tensile performance.***** However, retting is highly
dependent on environmental conditions and timing under-
retting results in incomplete separation, while over-retting
weakens fibers and reduces stiffness. Despite these limita-
tions, retting remains a widely used method for producing high-

Impurities: Lignin,
Hemicellulose

\ @
) ) Wax, Wax,
) Oils
—4 :

Degradation of ~ Cellulose
Hemicellulose /,

View Article Online
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quality bast fibers."*® Microbial activators like molasses and
fertilizers accelerate retting and it gives golden fiber color in 14—
30 days (Fig. 6).*°

4.1.2.2 Enzyme extraction process. Enzymatic extraction
applies controlled mixtures of pectinase, cellulase, and hemi-
cellulase to selectively dissolve the gummy materials that bind
fibers, offering more precise control than traditional retting.
This method enhances fiber surface cleanliness while mini-
mizing damage to the cellulose structure, leading to fibers with
higher stiffness, improved uniformity, and better interfacial
bonding in composite applications.™*® Enzyme retting is also
environmentally friendly, requiring less water and producing
less pollution than conventional retting, while yielding fibers
with consistent fineness and mechanical performance.™*

4.1.3 Chemical extraction. Chemical extraction involves
using alkaline, acidic, or oxidative solutions, most commonly
sodium hydroxide (NaOH), potassium hydroxide (KOH),

Exposure Cleaned Fibers
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Fig. 8 Schematic illustration of the chemical treatments on natural fiber.
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Fig. 9 Schematic representation of the silane treatment on natural fiber.
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sodium carbonate (Na,CO;), or mild acid systems.*® This
process dissolve pectin, hemicellulose, waxes, and portions of
lignin that bind fibers within plant tissues. In a typical process,

7

N
RS

R
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plant stems or leaves are immersed in an alkali solution at
controlled temperature and duration, allowing the chemicals to
penetrate the cell wall matrix and selectively remove amorphous

R
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Fig. 10 Schematic of tribological mechanism of short glass fiber/epoxy composites under oil lubrication conditions. Reproduced from ref. 98

with permission from Elsevier, Copyright 2016.
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Fig. 11 Tribological properties of epoxy/abaca composite (EAC) after two applied loads, and 800 m of sliding distance. (a) Coefficient of friction;
(b) wear volume of the EAC's and NE. Reproduced from ref. 190 with permission from MDPI, Copyright 2022.
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components, after which the fibers are washed and neutralized
to restore pH balance. This treatment effectively increases fiber
purity and exposes more cellulose microfibrils, resulting in
improved surface roughness, better fibrillation, and enhanced
fiber-matrix adhesion in composite applications.***** Mechan-
ically, the removal of hemicellulose and lignin increases cellu-
lose crystallinity and stiffness, while the reduction of
amorphous regions generally lowers fiber elongation due to
decreased flexibility."** If treatment is excessively strong,
however, chemical degradation of cellulose may occur, leading
to reduced tensile strength and fiber brittleness. Therefore,
optimized chemical extraction is crucial for producing high-
performance natural fibers with balanced stiffness, strength,
and elongation characteristics (Fig. 7).***

4.2 Different type of treatments

Chemical treatments are used to make natural fibers more
compatible with polymer matrices. They remove surface impu-
rities, change chemical groups, and help the fibers bond better
with the resin. The quality of the natural fibers relies on the
extraction techniques and different processing methods.*
Alkali, silane, and enzymatic treatments are especially effective
because they clean the fiber surface and expose more cellulose
for bonding.*®* NaOH increases surface roughness and removes
hemicellulose and lignin. Silane forms strong chemical bridges
between the fiber and the polymer.' Enzymes remove pectin
and waxes without damaging the cellulose. These treatments
improve interfacial bonding, stiffness, and the overall
mechanical performance of composites. However, too much
treatment can damage the cellulose and weaken the fibers
(Fig. 8).

4.2.1 Sodium hydroxide treatment (NaOH). Alkaline treat-
ment is a simple, low-cost, and effective method used to
improve the water resistance, adhesion, and mechanical,
thermal, and acoustic properties of natural fibers in thermo-
plastic and thermoset composites.*****” This treatment changes
the size, shape, and strength of the fibers.** It causes fibrilla-
tion, where fiber bundles separate into smaller units. As
a result, the aspect ratio increases, and more cellulose surfaces
become exposed for bonding with the polymer matrix. These
effects improve surface wetting and lower water absorption.
Sodium hydroxide is widely used because it converts cellulose-I
to cellulose-Il more effectively than other chemicals.*® In
aresearch by Bar and Chaudhary, stem fibers subjected to alkali
treatment showed an increase in cellulose content from 55% to
64%, significantly enhancing their crystallinity and tensile
strength.®

During alkaline treatment, fibers are soaked in a NaOH or
KOH solution. The concentration, temperature, soaking time,
and applied tension control the swelling of the fibers and the
changes in their structure, morphology, dimensions, and
mechanical behavior. The treatment also creates a rougher
surface, which strengthens the fiber-matrix bond and further
enhances mechanical properties.” In addition, mercerization
increases active bonding sites on the fiber surface and removes
non-cellulosic materials such as lignin, hemicellulose, pectin,

© 2026 The Author(s). Published by the Royal Society of Chemistry
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wax, and oil. Removing lignin and hemicellulose, which bind
microfibrils, can reduce tensile stress in natural fiber
composites.

4.2.2 Potassium per manganate treatment (KMnO,).
Permanganate treatment is used to improve the bonding
between natural fibers and polymer matrices. Potassium
permanganate reacts with cellulose and lignin, creating new
hydroxyl, carbonyl, and carboxyl groups that enhance adhesion
and reduce water absorption. As an oxidizing agent, KMnO,
etches the fiber surface, removes amorphous regions, and
increases surface roughness. This roughness provides more
mechanical anchoring points, improves load transfer, and
strengthens interfacial bonding. Functional groups formed
during oxidation also promote covalent and secondary inter-
actions with the polymer matrix, improving wettability and
fiber-matrix compatibility.

Kudva et al.*** showed that bamboo fibers treated with 0.5%
KMnO, had higher tensile strength, along with alkali-treated
fibers. The treatment cleaned the surface and produced slight
fibril separation. Abisha et al'®®* found that KMnO,-treated
Butea parviflora fibers had increased tensile strength (92-198
MPa), higher Young's modulus (2.16-4.40 GPa), and thermal
stability up to 240 °C. SEM and FTIR analyses confirmed
improved roughness and changes in cellulosic functional
groups. KMnO, treatment is usually applied for 1-3 minutes
after alkaline pretreatment. Increasing KMnO, concentration
reduces hydrophilicity and water absorption, but concentra-
tions above 1% can degrade fibers. The formation of cellulose-
manganate complexes supports graft copolymerization and
enhances interfacial chemical bonding.

Kulandaiyappan et al.'® reported higher tensile and impact
strength in nanocomposites made from palm leaf stalk fibers
treated with 5% KMnO,. Acharya et al.*** found that KMnO,-
treated Helicteres isora fibers showed the best physical proper-
ties, highest thermal stability, and lowest water absorption.
Studies also show notable improvements in mechanical
strength, modulus, impact resistance, thermal stability, and
durability after permanganate treatment.'®>7°

4.2.3 Benzoylation treatment. Benzoyl chloride or benzoic
anhydride is an effective chemical method for improving the
thermal stability, mechanical strength, fiber-matrix adhesion,
and hydrophobicity of natural fibers. It also reduces water
absorption in composites.””*”* The process begins with alkali
pretreatment, which removes extractives such as waxes, oils,
and lignin and exposes more hydroxyl groups. These exposed
groups then react with benzoyl chloride during benzoylation.
The reaction replaces hydrophilic hydroxyl groups with hydro-
phobic benzoyl groups, creating a rougher surface and
promoting fibrillation. This modification improves fiber-matrix
compatibility and increases the hydrophobic behavior of the
fibers. Benzoylation also enhances interaction with aromatic
polymer matrices because the benzoyl group contains
a benzene ring capable of electron interactions with polymer
aromatic structures.

While the treatment improves water resistance, strength,
and durability, it also has disadvantages, including toxicity,
environmental hazards, higher processing cost, and the risk of

160
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fiber degradation. Benzoyl chloride is highly corrosive and
poses serious risks to the skin, eyes, and respiratory system. Its
reaction with fibers produces hydrochloric acid, which must be
handled and disposed of as hazardous waste to prevent envi-
ronmental damage.

Sheeba et al.'’® reported that benzoyl chloride treatment of
Acacia pennata fibers improved tensile strength, thermal
stability, modulus, microfibrillar angle, and elongation at
break. These improvements depended on benzoyl chloride
concentration, fiber loading, and immersion time. XRD and
SEM confirmed higher crystallinity and smoother surfaces in
treated fibers. Thamarai Selvi et al.*”” found similar benefits for
Agave americana fibers treated with NaOH followed by benzoy-
lation. The treatment reduced cellulose (3.49%), lignin
(13.46%), and moisture content (11.61%), while increasing fiber
strength (12.16 N mm) and thermal stability. Surface
morphology also showed clear modification after treatment.

4.2.4 Silane treatment (SiH,). Silanes are inorganic
compounds with the formula Si,H,,., and are closely related to
silicon alkoxides. They are hydrophilic and contain functional
groups attached to silicon. Silane treatment usually begins by
dissolving an amine-based silane derivative in an acetone or
alcohol solution. When natural fibers are immersed in this
solution, they develop stronger interactions with polymer
matrices than fibers treated only with alkali. This leads to
improvements in thermal stability, flexural stiffness, tensile
strength, and tensile modulus.””® In this process, the alkox-
ysilane end of the coupling agent reacts with hydroxyl groups on
natural fiber surfaces, while the opposite end bonds with the
polymer, creating better adhesion and reducing water
absorption.'*

Silane coupling agents lower the number of cellulose
hydroxyl groups at the interface. In the presence of water, alkoxy
groups hydrolyze to form silanols. These silanols then bond
with fiber hydroxyl groups, creating covalent linkages that
strengthen the fiber surface. Fig. 9 presents the method of
treatment of natural fibers by silane. Research'”® showed that
silane modification of coconut fibers (GLYMO, VTMS, TEOS)
increased interaction with a PLA matrix and raised PLA crys-
tallinity from 48.95% to over 60%. Matykiewicz et al.'®® also
reported that silane-treated composites using 3-chloro-
propylmethyldimethoxysilane and N-(2-aminoethyl)-3-
aminopropyltrimethoxysilane improved impact strength and
flexural modulus. Another study'®* found similar benefits in
hemp fiber composites, including higher glass transition
temperatures (79.9-90.8 °C), elastic moduli above 3400 MPa,
and reduced water absorption (49% to 38%).

Silane performance depends on factors such as hydrolysis
time, pH, temperature, and silane functionality. The treatment
mechanism occurs in four stages: (a) hydrolysis of silane
monomers to form silanols, (b) limited self-condensation of
silanols to maintain reactivity, (c) adsorption of silanol mono-
mers or oligomers onto fiber surfaces through hydrogen
bonding, and (d) grafting at elevated temperatures, where
hydrogen bonds convert into strong Si-O-C linkages with water
released during condensation.®®

© 2026 The Author(s). Published by the Royal Society of Chemistry
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4.2.5 Maleated coupling agents. A coupling agent acts as
a bridge between the hydroxyl groups of natural fibers and the
polymer matrix. It contains two reactive groups: one that bonds
with cellulose -OH groups and another that reacts with the
polymer. Maleic anhydride is particularly effective because it
modifies both the fiber surface and the polypropylene (PP)
matrix, resulting in stronger interfacial bonding and better
mechanical performance. Maleic anhydride-grafted poly-
propylene, poly-diphenylmethane diisocyanate, and modified
polyethylene are commonly used to enhance mechanical prop-
erties by improving adhesion and reducing water absorption.
Frequently used coupling agents include isocyanates,'®
silanes,'® and copolymer anhydrides such as PP grafted with
maleic anhydride*®* and acetic anhydride.

Maleic anhydride reacts with fiber hydroxyl groups to form
covalent ester bonds, which significantly strengthen the fiber-
matrix interface. This strong chemical attachment improves
load transfer from the polymer to the fibers, increasing tensile
strength and modulus. Better adhesion also distributes applied
stress more evenly throughout the composite, resulting in
enhanced impact resistance.

4.3 Tribo-chemical mechanisms

Tribo-chemical mechanisms describe how chemical reactions
and surface interactions during sliding affect friction and wear
in natural fiber composites.” Chemical treatments such as
alkali and silane increase the number of reactive hydroxyl or
silanol groups on the fiber surface, which improves bonding
with epoxy through covalent or hydrogen bonding. Stronger
fiber-epoxy interfaces reduce fiber pull-out and create smoother
load transfer during friction."® During sliding, treated fibers
and epoxy can also form thin tribo-films made of polymer
debris, oxidized material, or compacted cellulose fragments.
These films act as protective layers that reduce direct contact
and help lower friction."® Oxidative wear can occur at high
temperatures or long sliding durations, causing degradation of
lignin and epoxy, which produces more brittle wear debris. The
chemistry of cellulose and lignin strongly affects friction
behavior: cellulose-rich fibers tend to form stable, smooth tribo-
layers that reduce friction, while lignin-rich surfaces generate
harder, more brittle debris that increases roughness and fric-
tion.” Overall, tribo-chemical interactions, surface chemistry,
and film formation play key roles in controlling friction, wear,
and long-term performance of natural fiber composites
(Fig. 10).>*

5. Tribological behavior of epoxy-
natural fiber reinforced composite
5.1 Single fiber reinforced epoxy composites

5.1.1 Leaf fibers. Leaf fibers are obtained from the long,
stiff vascular bundles found in the leaves of monocot plants.**®
Common leaf fibers include sisal, abaca, pineapple leaf fiber
(PALF), and agave fibers. These fibers usually contain high
amounts of cellulose and lignin, making them strong, coarse,
and highly durable.’® Leaf fibers often show higher tensile
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strength and stiffness than many seed and fruit fibers because
of their thick cell walls and high microfibril alignment.*>***”
However, they are typically less flexible than bast fibers due to
high elongation at break.'® Their natural rigidity, moisture
resistance, and abrasion strength make them suitable for rope,
cordage, bio-composites, automotive parts, and structural
panels.’®”®® Compared with stem fibers such as bamboo or
banana, leaf fibers often provide better consistency and higher
strength-to-weight ratio, but they may require more surface
treatment to achieve strong bonding with polymers.'®”

5.1.1.1 Abaca. Abaca fiber, a relative of the banana plant, is
useful for reinforcement in composites due its high mechanical
properties.'® After alkali treatment with 6% NaOH, the fiber's
tensile strength is recorded at 762.36 MPa, with an elastic
modulus of 42.58 GPa, and an elongation of 1.68%."° Addi-
tionally, the mechanical strength of fiber after NaOH treatment
is improved obviously; tensile strength from 723.65 MPa grows
to 762.36 MPa and elastic modulus from 31.24 MPa elevates to
42.58 MPa.™"

The tribological and mechanical properties of abaca fiber-
reinforced epoxy composites are highly sensitive to fiber
content and chemical treatment.'® For the best wear perfor-
mance, composites with 20% fiber content exhibit the lowest
wear rate and optimal wear resistance Fig. 11. The performance
improves with increased fiber content up to 20%, after which it
declines with higher content. SEM analysis further corroborates
these findings, highlighting the importance of fiber pull-out
and interfacial bonding in the overall wear resistance. For
lower fiber contents (3%), wear rates are significantly reduced,
making abaca fiber composites a viable option for applications
requiring both strength and wear resistance.”** The
summarized data of tribological properties of abaca reinforced
epoxy composite are listed at Table 3.

5.1.1.2 Pineapple. Pineapple leaf fiber is a natural fiber ob-
tained from the leaves of the pineapple plant (Ananas comosus).
The fiber is known for its strength and durability, making it an
ideal material for composite applications. It is a sustainable and
eco-friendly alternative to synthetic fibers, often used in textiles,
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bio-composites, and industrial products. Pineapple leaf fibers
are so rich in cellulose, which contributes to their excellent
mechanical properties, such as high tensile and flexural
strength. Due to its natural origin, pineapple fiber is biode-
gradable and offers an environmentally friendly option for
various industrial applications (Table 4).**

There is less research on pineapple fibers tribological
behavior. The key findings from the tribological analysis of
pineapple leaf fiber composites show that the fiber orientation
significantly impacts the wear rate and friction properties. The
lowest wear rate and optimal performance for both wear resis-
tance and friction are achieved at a 90° fiber orientation. This
orientation provides improved durability and mechanical
properties. In contrast, the worst performance is observed at
a 45° fiber orientation, where the wear rate is highest, and
mechanical strength is reduced.’”

5.1.1.3 Sisal. Sisal fiber, derived from the agave plant, shows
improved mechanical and tribological properties when treated
with sodium citrate and stearic acid (Table 5). These chemical
treatments reduce surface impurities and enhance fiber-matrix
adhesion, leading to significant improvements in wear resis-
tance and friction. According to Venkatesh R. et al.*®* epoxy
hybrid composite with effective incorporations of 20 wt% sisal
fiber and 5 wt% of nano-size SiC recorded superior tensile and
flexural, and fracture toughness of 62.5 MPa, 54 MPa, and
1.55 MPa. At 25 wt% fiber content, treated sisal composites
exhibit the lowest wear rate and friction coefficient, with
sodium citrate treatment showing the best performance.*** Sisal
composites with 30 wt% fiber content also demonstrate
improved wear resistance, with wear rates decreasing by 43.07-
40.57% compared to neat epoxy at various load conditions.**®
The tribological performance of sisal fiber composites are
influenced by fiber content, load, sliding velocity, and distance.
The wear rate increases with load, sliding velocity, and distance,
indicating the importance of these factors in performance. Sisal
composites fabricated with compression molding and coconut
shell powder show enhanced mechanical properties, including
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increased compression strength and improved wear resistance
as fiber content increases (Fig. 12).*

5.1.2 Bast fibers. Bast fibers come from the inner bark
(phloem) of dicot plant stems, making them one of the stron-
gest natural fiber categories.””* Typical bast fibers include jute,
flax, hemp, kenaf, and ramie, all known for their high cellulose
content, long fiber length, and superior tensile strength.?*>>*
Bast fibers usually have excellent stiffness, moderate flexibility,
and low density, giving them a very high reinforcement poten-
tial for polymer composites. Among all natural fiber groups,
bast fibers are often considered to have the best mechanical
performance, especially in tensile strength and modulus.?**->%
Their balanced combination of strength and flexibility makes
them widely used in packaging, textiles, automotive interior
parts, construction boards, and biodegradable composites.'®*
Compared with leaf, fruit, and stem fibers, bast fibers typically
offer the best fiber-matrix bonding performance after treatment
because of their high cellulose purity and uniform microfi-
brillar structure.>**%

5.1.2.1 Hemp. Hemp fiber, derived from the Cannabis sativa
plant, known for its good strength, durability, and versatility. It
has been around for thousands of years in textiles, ropes, and
numerous composite materials. Because of its sustainable
nature, hemp fiber is becoming more widely used in green
composites. Hemp fiber composites show improved wear
resistance and friction performance with increasing fiber
content and treatment. The incorporation of hemp fiber into
the epoxy composites improves their wear properties and
generally maximum effect occurs at 5 wt% fiber content. NaOH
is treated and other treatments of chemical removal can
improve the mechanical properties, wear resistance were
significantly increased. In addition of fillers such as carbon or
polyamide, increases the mechanical stability and wear resis-
tance of the composites (Table 6).

Hemp fiber composites treated with 5% NaOH and rein-
forced with 2.5% or 7.5% hemp filler exhibit the minimum wear
and superior mechanical characterization.”® For composites
with varying fiber content, 5 wt% hemp fiber shows the highest
friction performance, the lowest wear, and the least friction
variability, while 20 wt% fiber composites show a reduction in
friction performance.””® Hemp composites reinforced with
carbon fiber or pyrolyzed at 1000 °C reduce wear rates by 80%
and friction coefficients by 21%, improving thermal stability
and mechanical properties.>” For optimal wear resistance and
friction performance, hemp fiber composites should be rein-
forced with 5 wt% hemp fiber, particularly for composites
treated with NaOH. The addition of carbon fiber or pyrolysis at
high temperatures offers significant improvements in wear
resistance and thermal stability, making it ideal for applications
requiring high mechanical properties. For composites using
polyamide and NaClO, treatments, enhanced wear perfor-
mance is achieved through better fiber-matrix interaction,
which improves both wear rate and friction coefficient.>*®

5.1.2.2 Jute. Another common fiber of Asian subcontinent is
jute. Jute fiber has a cellulose content ranging from 60-70%,
with hemicellulose at 22.1% and lignin at 15.9%. It has
a density of approximately 1.3-1.4 g cm ™ and a crystallinity
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index of 58%. Its mechanical properties include a tensile
strength range of 187-800 MPa and an elongation at break of
1.3-3% [Table 2]. With a Young's modulus ranging from 3 to
55 GPa, jute fiber is considered to be a stiff and relatively strong
natural fiber.

Jute fiber's tribological performance is influenced by factors
such as fiber content, treatment processes, and filler mate-
rials.*® For example, short jute fiber reinforced in epoxy resin
exhibits a friction coefficient ranging from 0.0930 to 0.2700. The
wear rate of jute composites varies between 1.81 x 10> (low
fiber content at 144 cm s * velocity) and 2.84 x 10 (high fiber
content at 144 cm s~ ' velocity), with the wear rate decreasing at
higher fiber content and velocity.>® Alkali-treated jute fibers
(25% fiber, 75% epoxy) show improved wear resistance with
varying fiber orientations, with the best wear resistance
observed at a 90° fiber orientation.”'® The wear rate increases
with load, and the best performance is seen at a 10 N load.*"*
Additionally, the introduction of nano fly ash as a filler (up to
3%) significantly improves wear resistance, with the lowest wear
rate observed at 3% nano fly ash content.”** The inclusion of
TiO, as a filler also affects the wear performance of jute
composites. Composites with TiO, show a significant increase
in flexural strength, particularly at 2% TiO, content, and
demonstrate the lowest wear rate at a 90° fiber orientation.”*
Similarly, the addition of SiC filler improves wear resistance,
with the highest erosion rates observed at 60° and 75° angles.***

In summary, jute fiber composites perform best with
a higher fiber content (30-40%) and are particularly sensitive to
fiber orientation and filler material. Fiber loading and treat-
ment methods, such as alkali treatment and the addition of
fillers like nano fly ash and TiO,, play significant roles in
enhancing the wear resistance and mechanical properties of
jute composites. These composites show potential for applica-
tions requiring moderate strength and wear resistance. The
summarized data of tribological properties of jute reinforced
epoxy composites are listed at Table 7.

5.1.2.3 Kenaf. Kenaf (Hibiscus cannabinus) is a fast-growing,
renewable plant that has gained popularity as a source of
natural fiber in various applications, including textiles,
composites, and bioplastics.*® Native to tropical and subtropical
regions, kenaf is known for its high cellulose content and
impressive mechanical properties, making it a suitable alter-
native to synthetic fibers. Moreover, Kenaf's fast growth cycle
and ability to thrive in diverse climatic conditions make it an
eco-friendly and sustainable resource.

Kenaf fiber composites exhibit strong mechanical proper-
ties, which improve with fiber loading. This fiber has also great
tribological properties. There are many researches upon the
fiber. From the common findings of the research it can be say
that, the best wear performance is often achieved with 30-35%
fiber content, especially in composites treated with NaOH. The
addition of carbon nanotubes or silane coupling agents further
enhances wear resistance and friction reduction. From other
research, kenaf fiber composites treated with 6% NaOH and
with 30-35% fiber content exhibit the best wear performance,
particularly in normal orientation (N-O) composites, where
wear resistance significantly improves.”*® When treated with
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ilane, kenaf fiber composites show reduced wear and friction
coefficients, especially in bi-directional orientations.** NaOH-
treated composites with up to 70% fiber content show good
mechanical properties, but higher fiber loading may increase
wear due to fiber agglomeration.”” The addition of carbon
nanotubes improves wear resistance, with 1 wt% PMWCNT
composites showing the best results.>*® The summarized data of
tribological properties of kenaf reinforced epoxy composites are
listed at Table 8.

5.1.3 Fruit/seed fibers. Fruit and seed fibers originate from
the husk, shell, or seed hairs of fruits and seeds. Major exam-
ples include coconut coir (fruit husk), cotton (seed hair), and
kapok (seed floss). These fibers often have lower stiffness and
strength than bast and leaf fibers but offer unique properties
such as high elasticity, excellent moisture resistance (coir), and
very low density (kapok) 9. Cotton is soft and flexible with very
high cellulose content, making it ideal for textiles but less
suitable as a structural reinforcement. Coir, in contrast,
contains more lignin, giving it excellent impact resistance and
damping properties.**® Fruit and seed fibers generally perform
best in lightweight composites, cushioning materials, thermal
and acoustic insulation, and impact-absorbing applications,
but are rarely used for high-strength structural purposes.**
Compared to stem and leaf fibers, fruit/seed fibers offer better
thermal stability and resilience, but lower stiffness.***?
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5.1.3.1 Areca nut. Areca nut, commonly known as betelnut is
a well-known fiber, is a significant agricultural resource in
South and Southeast Asia with strong tribological relevance.**
The areca nut fiber and areca sheath fiber has strong potential
as a reinforcement material in polymer composites, particularly
for low-strength applications, such as artistic furniture and
automobile interiors.**® Areca nut fiber is short length fiber but
has a great impact resistance.””® Treated with NaOH, betel nut
fiber exhibits significant improvements in tensile, flexural
strengths and hardness as fiber surface improvement makes.**”
Researches by Srinivasa C. V. showed that alkali (NaOH), or
other treatments improve fiber-matrix bonding and mechan-
ical properties.®*®**® In multi-layered composites, 10% NaOH-
treated ALS-epoxy showed peak tensile strength of 20.51 MPa
and flexural strength of 115.27 MPa.**® Best wear performance is
often achieved at 20-36% fiber loading, and excessive fiber
content leads to a reduction in mechanical properties.**”*** The
tensile strength peaks with higher fiber content, demonstrating
the fiber's contribution to the composite's structural integrity.
The wear resistance also improves with higher fiber content
(Fig. 13).>%°

Treated with 5% NaOH and processed using a hand lay-up
method, areca-nut fiber exhibits improvements in tensile
strength (20.20-28.5 MPa) and flexural strength (42.35 MPa)
with increasing fiber content, peaking at 20%.?** The material's

b - 10% Treated Areca |
Il - 15% Treated Areca
o0 Il - 20% Treated Areca

IV - 25% Treated Areca
V - 30% Treated Areca

4000

Flexural Modulus(MPa)

Material Combination

0N
I 15N
[ 20 N

n v A\

Fig. 13 Mechanical and tribological properties of various percentile loaded areca nut fiber composites. (a) Tensile properties, (b) flexural
properties, (c) wear rate at different load. Reproduced from ref. 231 with permission from Elsevier, Copyright 2021.
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Fig. 14 Average friction coefficient for the three different bamboo
fibre orientations (R, P and AP) and neat epoxy (NE) at 30 N of hormal
load at different counter face sliding velocities. Reproduced from ref.
240 with permission from Elsevier, Copyright 2012.

limitations, such as potential degradation temperatures around
200 °C, necessitate chemical modification.?”® The summarized
data of tribological properties of betel nut reinforced epoxy
composites are listed at Table 9.

5.1.3.2 Coir. Coir is classified as a cellulose-based natural
vegetable fiber.>*>** It offers several advantages, including high
strength, significant strain at break, medical safety, and avail-
ability, all of which contribute to its low cost (approximately
0.50 USD per kg).>** The chemical composition of coir consists
of 43-53 wt% cellulose, 14.7 wt% hemicellulose, and 38-40 wt%
lignin, contributing to its unique structural characteristics.
With a density of 1.2 g cm™ and a crystallinity index of 44%,
coir exhibits a relatively high degree of rigidity compared to
other natural fibers, which supports its use in composite
materials Table 2. In terms of mechanical properties, coir fiber
demonstrates a tensile strength range of 106-304 MPa, elon-
gation at break between 15 and 47%, and a Young's modulus
ranging from 3 to 6 GPa. These properties indicate that coir has
moderate strength and flexibility, making it suitable for appli-
cations where durability and stiffness are required, particularly
in composite materials.

Impact of specific wear rate(S.W.R.) with load on sliding
velocity 2 m/s and sliding distance 2000 m
S,

o

—e—Untreated Banana Fiber

=5
g Reinforced Epoxy
é 4 3.801 Composite (BFREC)
K] —o—Treated With Cold
= 2.744 g2 e Plasma Nitrogen BFREC
HE 80 W (30 min.)
- 2.8435
na 2343
ﬂ_ 2211
Z1
w

o

o 10 20 30 40 50
Load (N)
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The key findings from the tribological studies on coir fiber
composites highlight the significant role of fiber content,
length, and treatment processes in influencing wear resistance
and mechanical performance Table 10. Coir fiber composites
reinforced with 10% Al,O; filler show enhanced wear resistance,
especially at higher impact velocities, with the best performance
observed at a fiber length of 12 mm. This suggests that the
combination of coir fiber with Al,O; filler offers a promising
solution for improving the durability of the composite under
dynamic conditions.*®® In terms of filler content, alkali-treated
coir fibers demonstrate the best wear resistance at 5 wt%
filler, although higher filler content (10-12.5 wt%) results in
increased wear rates. This indicates that the fiber-matrix
interaction and filler content play crucial roles in optimizing
wear properties. Additionally, the tensile strength of the
composites improves with alkali treatment, with brown coir
exhibiting a more significant increase in strength compared to
white coir.>***%7

From a performance standpoint, coir composites containing
5-25% fiber content yield the best results, particularly at 5%
fiber, where wear resistance is optimized. Interestingly, wear
rates decrease as fiber lengths increase, suggesting that longer
fibers improve the composite's durability. On the other hand,
coir composites with high fiber content (36%) show a signifi-
cantly higher wear rate due to the coarse nature of the fiber, yet
these composites are advantageous in thermal insulation
applications due to their low thermal conductivity.>»***

5.1.4 Stem fibers. Stem fibers come from the structural
tissues of plant stems, especially from monocot species that do
not produce true bast fibers.*® Well-known stem fibers include
bamboo culm fibers, banana pseudo-stem fibers, rice straw
fibers, and rattan fibers.*® These fibers are made of vascular
bundles surrounded by parenchyma, resulting in variable
mechanical properties depending on plant species and growing
conditions. Many stem fibers have high stiffness and good
rigidity, especially bamboo. This is one of the stiffest natural
fibers due to its high silica and cellulose content."*® Banana and
straw fibers tend to be less stiff but more flexible, which make
them suitable for lightweight or semi-structural composites.
Stem fibers generally perform better than fruit/seed fibers in
terms of strength and modulus but are less uniform and less
flexible than bast fibers. They are often used in construction

Variation of coefficient of friction(COF) with load at
sliding velocity 2 m/s and sliding distance 2000 m

-
2
g 0.6 |
0471

€ os 046 043 042 ~e—Untreated Banana Fiber
E 0.4 Reinforced Epoxy
s 0.42 0.41 Composite (BFREC)
- 03 .37
B 03425
g o= ~e—Treated With Cold Plasma

0.1 Nitrogen BFREC 80 W (30
g in
O )

0 20 40 60
Load (N)

Fig.15 Variation of specific wear rate and COF with load (N) on 2 m s~*and S.D. 2000 m for untreated banana fiber reinforced epoxy composites
(BFREC) and low-pressure N,-modified BFREC. Reproduced from ref. 118 with permission from Elsevier, Copyright 2025.
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boards, particle composites, packaging, furniture, and medium-
strength polymer composites.”® Compared with leaf fibers,
stem fibers show greater variability but often provide better
specific strength-to-density ratios in properly processed
composites.'*¢>%°

5.1.4.1 Bamboo. Bamboo is a fast-growing, renewable plant
which is well known for its strength, flexibility, and sustain-
ability. It has been used for centuries in various applications,
from construction and furniture to textiles. Bamboo fibers from
the bamboo stem are currently applied in composites as
a natural reinforcement material owing to their high mechan-
ical properties and environmental friendliness. Bamboo fiber
composites present a sustainable option to the hazardous
synthetic materials, since bamboo is widespread everywhere, it
is biodegradable and has low carbon footprints. In composite
material research, bamboo fiber show improved wear resistance
and reduced friction when treated with chemical treatments
like alkali treatment or surface modifications [Table 11]. With
addition of fillers such as red mud, SiC, or carbon, the
mechanical properties like tensile and flexural strength with
wear resistance improving as fiber content and filler concen-
tration increase.*” The fiber orientation also has very significant
effect on performance, different orientations of fibers exhibit
the enhanced wear and friction performance like anti-parallel
orientations (AP-O) (Fig. 14).>*

Composites with a bamboo fiber content of approximately
30-35% are found to exhibit the most efficient wear perfor-
mance, particularly when they are treated utilizing anti-parallel
orientations.>*® Addition of SiO, increases wear resistance and
tensile & flexural strength.**? The addition of red mud improves
the wear resistance and bender strength, with optimal perfor-
mance obtained at 10-20% red mud incorporation.*** Further-
more, bamboo composites reinforced with SiC fillers show
improved wear resistance, especially at 10 wt% SiC content.>*®
The summarized data of tribological properties of bamboo
reinforced epoxy composites are listed at Table 11.

5.1.4.2 Banana. Banana fiber, derived from the banana
plant, is known for its high tensile and flexural strength,
making it an ideal material for reinforcement in composite
applications. After alkali treatment with 5% NaOH, banana
fiber shows an increase in tensile strength and flexural strength
with higher fiber content. The tensile strength and flexural
strength increase with higher fiber content, with a tensile
strength of 23.79 MPa at 0° orientation and 7.58 MPa at 90°
orientation, showing reduced mechanical strength at the 90°
position due to increased fiber contact and tensile stress
(Fig. 15).27

The tribological properties of banana fiber composites
depend on fiber content, orientation, and treatment processes.
The lowest wear rate and friction coefficient (0.0121) are
observed at 25% fiber content in anti-parallel orientation (AP-
0), where wear resistance improves by 29.4%, and the friction
coefficient decreases by 48.9% compared to neat epoxy.”
Nitrogen treatment significantly reduces wear rate (4%) and
friction coefficient (up to 26.47%) at 30% fiber content, with
SEM analysis showing improved surface morphology and
minimal fiber pull-out.*® The wear rate increases by 235% at
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a 20 N load and 2801% at a 50 N load when transitioning from
0° to 90° orientation.”” The addition of nano-clay improves
wear resistance, reduces friction, and enhances the mechanical
properties, with the lowest wear rate observed in 20 wt% NC-BF
composites.”*® In summary, for the best wear resistance and
friction performance, 25% fiber content in anti-parallel orien-
tation is recommended. Nitrogen treatment improves wear
performance at 30% fiber content, while nano-clay infusion
enhances wear resistance and mechanical properties, especially
in 20 wt% NC-BF composites. The summarized data of tribo-
logical properties of banana reinforced epoxy composites are
listed at Table 12.

5.1.4.3 Palm. Palm fiber, obtained from the palm tree, is
a natural fiber widely used in composite materials due to its
strength, durability, and environmental sustainability. It comes
from different parts of the palm tree, such as date palm, palm
kernel, and palm bunch fibers. Palm fiber composites demon-
strate improved wear resistance and friction properties when
treated with NaOH or infused with graphite or carbon. The
addition of graphite and activated carbon has a significant
impact on enhancing the wear and friction properties of date
palm and palm kernel fiber composites. Moreover, increasing
fiber content typically leads to improved mechanical properties,
although it may also result in higher wear rates under certain
conditions.

In terms of key findings, date palm fiber composites show
improved wear rate and friction coefficient with the addition of
fiber, especially when 3% graphite is incorporated, which
further enhances wear properties.”® For palm kernel fiber
composites, particularly those with activated carbon, there is no
significant effect on the coefficient of friction at temperatures
below 90 °C, but they have great potential as self-lubricating
materials.”®* Palm bunch fiber composites exhibit the highest
friction at 25 wt% bunches and 20 wt% aluminum, with slight
improvements in friction when copper is included.***

Based on the data, for optimal performance in wear resis-
tance and friction, date palm fiber composites with 35% fiber
content and the addition of 3% graphite should be considered.
Palm kernel composites with activated carbon show promise as
self-lubricating materials, especially in environments below 90 ©
C. For palm bunch fiber composites, increasing fiber content
improves strength; however, careful selection of filler materials
is crucial to maintain a balance between wear performance and
friction. The summarized data of tribological properties of palm
reinforced epoxy composites are listed at Table 13.

5.1.5 Other filler

5.1.5.1 Rice husk. Rice husk fiber as an agricultural waste
obtained from the husk of rice during milling and it is a natural
fiber. However, owing to its high cellulose content, eco-
friendliness and availability rice husk is finding utility in the
reinforcement material of composites applications.?*® With the
help of different treatment techniques such as benzoylation,
carbonization and functionalization, mechanical properties of
fiber can be improved which helps to increase its overall
alignment with matrix materials and eventually results in
advance wear resistance, strength and friction performance.
With the incorporation of rice husk, epoxy composites show an

© 2026 The Author(s). Published by the Royal Society of Chemistry
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increased wear resistance performance with high value usually
obtained at 10-30% fiber content. Incorporation of carbon or
ceramic fillers with rice husk fiber, this adds a higher
mechanical stability and wear resistance. In combination with
functionalization as stated RHAnp provides a pronounced effect
on surface properties and abrasion resistance on composites
(Table 14).

For rice husk fiber composites, the benzoylation treatment
reduces friction and wear rates, with 10 wt% fiber showing the
best performance. Carbonization at 950 °C produces the best
wear performance, with lower wear rates and improved tribo-
logical properties at fiber contents up to 30 wt%.>***** The
addition of 2 wt% modified RHAnp significantly reduces
surface roughness by 78.07%, while improving hardness and
wear resistance.*®* When combined with Al,O; and Fe,O; fillers,
rice husk fiber composites show improved thermal stability and
wear resistance, with a reduced wear rate of 4% compared to

pure epoxy.>*’

5.2 Natural fiber reinforced epoxy hybrid composites

5.2.1 Jute/banana fiber reinforced epoxy composites. Jute
and banana fibers are natural fibers known for their sustain-
ability, low cost, and strong mechanical properties. These fibers
are increasingly used in composite materials, particularly in
combination with epoxy resins, to create hybrid composites that
offer superior performance compared to individual fibers.
Hybrid composites take advantage of the unique properties of
each fiber, enhancing the overall mechanical strength, wear
resistance, and environmental benefits.** Jute and banana
fibers, when combined in varying ratios with epoxy, create
composites with improved properties for diverse applications,
including automotive and construction materials. For optimal
wear resistance and friction performance, jute/banana hybrid
composites with 15-20% fiber content, particularly with
molybdenum disulfide fillers, should be wused.*®® These
composites show the best balance of wear resistance, friction,
and mechanical strength, especially with fiber orientations such
as AP-O. Additionally, composites with 16 wt% jute and banana
fibers (EP16) provide superior performance, making them
suitable for applications requiring high durability and wear
resistance.”® The summarized data of tribological properties of
jute/banana fiber reinforced epoxy composites are listed at
Table 15.

5.2.2 Jute/coir fiber reinforced epoxy composites. The
widely used natural fibers: jute & coconut coir have good
mechanical properties and sustainability. Jute: a natural bast
fiber derived from the Corchorus plant that is strong and 100%
biodegradable. Coconut coir: a natural fiber extracted from the
husk of coconuts which is known for its toughness and elas-
ticity. Combining with epoxy resin, these fibers form hybrid
composites that offer a balance of strength, stiffness, and
environmental friendliness. It presents that 75% of jute/20% of
coconut coir and 3% graphite is an ideal combination for better
wear resistance and friction performance when reinforced with
epoxy as a hybrid composite. It offers the best mechanical and
tribological performance for that matter.”” Tribological

© 2026 The Author(s). Published by the Royal Society of Chemistry
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properties of jute/coir fiber reinforced epoxy composites
summarized at Table 16.

5.2.3 Jute/glass fiber reinforced epoxy composites. Jute and
glass fibers are two of the best choices for reinforcement
materials in composite applications, especially due to their
excellent mechanical properties, low cost, and renewable
nature.* If these fibers combine with epoxy resin, they create
hybrid composites that offers advantages of both the materials:
economical green nature of jute and mechanical properties
performance from glass and simultaneously same property
modification being made to resins also improve significantly
tribological properties of the composites. Jute/glass/epoxy
hybrid composites can achieve best wear resistance and fric-
tion performance at 40% jute/60% glass fiber content.>® The
addition of fillers SiC enhances the wear resistance and these
composites are suitable for high-wear applications.*® Tribolog-
ical properties of jute/glass fiber reinforced epoxy composites
summarized at Table 17.

5.2.4 Jute/sisal fiber reinforced epoxy composites. Jute/
Sisal/Epoxy hybrid composites show significant improvements
in wear resistance, friction performance, and mechanical
strength.”®> When combined with appropriate fillers there are
a rapid enhancement of mechanical and tribological properties
of this composites.”® These composites generally exhibit lower
friction coefficients and wear rates compared to individual fiber
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composites (jute/epoxy, and sisal/epoxy). The jute-sisal hybrid
composite with 20 wt% fiber content shows the best perfor-
mance in terms of wear resistance and mechanical strength.
The wear rate decreases proportionally with increased fiber
content, with the 20 wt% hybrid composites exhibiting the
lowest wear.'”” For the sisal/jute/E glass composites, increasing
filler content results in improved friction performance and wear
resistance.”®® From Fig. 16, the combination of jute, sisal, and
fillers like coconut shell powder offers an eco-friendly alterna-
tive to conventional materials like asbestos.?** The summarized
data of tribological properties of jute/sisal fiber reinforced epoxy
composites are listed at Table 18.

6. Applications of natural fiber
reinforced composites

Natural fiber reinforced composites have achieved extensive use
across diverse industries, demonstrating its adaptability and
capacity to reduce environmental effect.***>*® Hybrid fiber
design follows several established rules that enable tailoring of
composite performance for automotive, aerospace, and
construction applications. Stiff, high-crystallinity fibers such as
flax, hemp, and ramie are commonly combined with high-
elongation fibers like coir, banana, or sisal to create

a balanced synergy of strength, stiffness, and impact

J2 J3 S1+J1 S2+J2 S3+J3 ABCBP

0.083 0.0852

0.079

J2 J3 S1+J1  S2+J2 S3+J3 ABCBP

Fig. 16 Mechanical properties of pure jute/epoxy, pure sisal/epoxy, sisal/jute/epoxy reinforcement composite, and asbestos-based commercial
brake pads (ABCBP). (a) Compressive strength of asbestos free brake friction material (AFBFM); (b) impact strength of AFBFM. Reproduced from

ref. 264 with permission from Springer, Copyright 2024.

1428 | RSC Adv, 2026, 16, 1392-1442

© 2026 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra07843a

View Article Online
RSC Advances

Review

dAIBUId)E

ped ayeiq A[puslij-009
durstwoad e st ayrsodwo) -
33uans aarssardwod

pue 1eam pasoiduur

1opmod [[ays INuod0) -
sped aye1q [BIOISWTHOD

0} 9SO[D SeM OURWLIOJI -
sayisodwod 1aqy

-9[3UIS UBY) UOTIOLIJ JoMO]
pUE 90UBISISAI Team 19139
¥9T pamoys prqAy anf-[esis -
[9A9] JUIUOD II[[Y WINWIXEBW
9Y3 38 paA1asqo st asuodsax
rewndo oy, *s1039€j 19730
03 paredwod saysodwod
p1agAy padofaaap a3 jo a3e1
Ieam dY1ads pue JUIdYJe0d
uondLIy 9Y) Yloq uo

joedwir 1978213 B SBY JUU0d
€97 I9[[y 38y’ 3sad3ns s)nsa1 oyl
y13uans pue Ieam Jo ddue[eq
159q a3 2ae3 s19qy PHqAH -
souewIojrad

dunyeiq pajoage A[duomns
[9A3] JUSWIADIOJUIDY -

IeaM 3SaMO] a3

PaMoySs %07 IUNUO0d 19qY
I9Y31Y YI1M PISBIIOIP JBIM -

20UB)SISAI IBIM pUE
33uans uorssardwod 10139q
/6T pamoys priq4y resis-amf -

souewnroyrad 3saq

) pamoys sajisoduwod
PHgAY 3duamns [eInxa[d
saj1sodwod

19qQY %M ST 03 paredwod
9%S9°9T Aq paseaIour
1sodwos prigAy
:3Suamns aarssardwion

(%M 0¢) 3w £8°8T
‘(% 07) SW £p'ze
‘(%M 0T) Sw 92°96

0%/%ST/%ST 05
1€0  /%0T/%0T ‘%09/%S/%S

Axoda axe jsa1
— %ST/%0T/%0T 19q14

0%/%ST/%ST 05
80  /%0T/%O0T ‘%09/%S/%S

%T 2reydns
Auownue

‘% 1D ‘%FO%V
‘oreyd[ns winiieq
‘047 1eUOQIRD
wniofed

‘060T Iopmod
[19YS Inu0d0D

Kepd ouru %(6-€)

%T 9reydns
Auownue

‘%7 1D ‘% OV
‘areydns winrreq
‘047 1eUOQIRD
wnioed

‘060T Iopmod
[19Ys INu050)

prag4Ay resis-an[

sse[3d g/oml/resis

PLIgAY Tesis-an[

EBLENEIEN | sdurpuy Aoy

sonxadoid TedstueydaN

97l IBIM

JUIIOYJ9-09 UONDLI]

omnex Axoda/ests/amn(

12qy Y 13[[1d

19q14

aysodwod pughy Axoda/jesis/ainl jo sanuadoud jedibojoqui] 8T d1qel

'80US217 PaNoduN '€ [ RJBWWODUON-UO NG LMY suowiwoD aaieas) e sopun pasusol|stapnesiyl |IIETEEL (o)

"INV 02:€Y:Z 9202/E2/T UO papeojumoq 90z Afenuier G0 UO paus!iand 3[01MY sse00y uedo

RSC Adv, 2026, 16, 1392-1442 | 1429

© 2026 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ra07843a

Open Access Article. Published on 05 January 2026. Downloaded on 1/23/2026 2:43:20 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

RSC Advances

Flax, Hemp, Jute, Sisal,
Ramie

Automobiles (engine
hoods, dashboards, and
storage tanks)
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Applications of Natural Fiber W
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Furniture, Appliance

Fig. 17 Application of plant fiber reinforced composites at various industrial sectors.

tolerance.”” Fibers with complementary chemical composi-
tions, high-cellulose fibers for load-bearing capacity and high-
lignin fibers for damping and moisture resistance, are paired
to achieve multifunctional behavior. Multilayer stacking
designs place stiff fibers on the outer skins and tougher fibers in
the core, improving bending strength and controlling failure
modes.”® Environmental durability can be tuned by integrating
thermally stable fibers (basalt, treated flax)**® with moisture-
resistant fibers (coir or bamboo). In high-performance sectors,
natural-synthetic hybrids such as carbon/flax or glass/jute are
preferred to reduce weight while maintaining structural integ-
I'ity (Fig. 17)‘188,261,270

Products like animal bedding, laptop and mobile cases,
insulating materials, soilless potting mixes, packaging mate-
rials, and clothing-grade fabrics, for instance, frequently use
kenaf fiber reinforced composites.””* Similarly, ramie fiber
reinforced composites are utilized in paper products, fishing
nets, filter cloths, sewing threads, and household furnish-
ings.””? In packaging, Enkev has employed coir fiber reinforced
in natural latex rubber composites for items like trays,
containers, and packaging boxes. Flexform Technologies
combines natural fibers such as hemp, kenaf, and jute with
thermoplastic polymers to create shields for trucks and cars,
containers for shipping and storage, and office and home
furnishings. Tech Wood International incorporates wood-
plastic composites for modular house construction.?”??”* In
the automotive industry, composites made from flax, sisal,
hemp, wood, and other natural fibers are used in components
such as headliner panels, floor mats, seat backs, and boot liners
for vehicles like the Volkswagen Passat, Bora, Golf, A4, and
BMW 3, 5, and 7 series.””® Additionally, oil palm fiber reinforced
composites are used in building materials like fencing, door

1430 | RSC Adv, 2026, 16, 1392-1442

frames, and roofing.””®* Hemp fiber composites are also applied
in a variety of products, including geotextiles, furniture, textiles,
and construction materials.?”’

Natural fiber epoxy bio-composites are particularly prom-
inent in the automotive industry, where they are used in parts
like door panels, engine and transmission covers, seat back-
rests, and underbody panels. Specific components such as
engine hoods, dashboards, and storage tanks are made using
natural fibers like flax, hemp, jute, sisal, and ramie.?”*>** The
automotive sector has made considerable progress in using
these materials to address economic and environmental chal-
lenges, aiming to reduce mass, fuel consumption, and emis-
sions.”®® Areca sheath fibers can be considered as a very
promising material for locomotive parts, packaging industry
and office furniture.”® In aerospace, fiber-reinforced epoxy
composites are essential due to their mechanical strength and
lightweight nature, making them ideal for aircraft inte-
riors.”®»?*** Marine applications include the use of these
composites in constructing ship hulls, propeller blades, and
wind and tidal turbine blades,*® while in the oil and gas
industry, they are applied in underground pipes and boat
building.**”

Innovative developments have led to the creation of
specialized composite materials. For instance, Sumesh et al.**>
investigated the use of pineapple, banana, and coir fiber ash as
fillers in epoxy-based bio-composites, which improved
mechanical properties and suitability for lightweight automo-
tive applications. Likewise, Rajeshkumar et al>** developed
sodium hydroxide-treated Phoenix Sp fiber/epoxy composites
with enhanced impact properties, making them ideal for auto-
motive panels. Hybrid composites using bacterial cellulose
from coconut fibers and Kevlar have been found to exhibit

© 2026 The Author(s). Published by the Royal Society of Chemistry
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exceptional strength and impact resistance, making them
suitable for marine and ballistic applications.”® In thermal
insulation, Chowdari et al.**° showed that areca/coconut shell
powder epoxy composites provide excellent thermal insulation.
Furthermore, hemp fiber/epoxy composites, especially those
containing 20-30 wt% hemp fibers, are highly effective in
ballistic applications.>””

Epoxy-based bio-composites are also finding use in the
construction sector. Jawaid et al.*** created hybrid date fiber/
bamboo epoxy composites that offer impressive mechanical
properties and thermal stability, making them suitable for
building materials. Additionally, rice husk and sawdust epoxy
bio-composites, known for their excellent acoustic properties,
are ideal for sound absorption applications in ceilings and
walls.>? Natural fiber-reinforced epoxy composites have
expanded their reach to several other fields, including civil
engineering for structural elements like roofs, pipes, and tanks,
sporting goods like golf club shafts, tennis rackets, and bicycle
frames, and medical applications such as prosthetic devices
and imaging.**

7. Conclusion

The development of plant fiber-based polymer hybrid
composite has drawn a considerable interest from some
decade, although several issues still exist. Thus, an attempt is
taken in this review to explore the issues related to the tribo-
logical behavior of epoxy polymer composite with various plant
fibers. The key findings of this review can be shortlisted as
follows:

o The studies of plant fiber reinforced epoxy composite show
that the tribological and mechanical properties of composites
are significantly depending on fiber loading. In general,
increasing fiber content enhances the tensile strength, wear
resistance, and stiffness of the composite, with optimum
performance observed at 20-30% fiber concentrations. Beyond
this threshold, excessive fiber content leads to decreased matrix
adhesion, agglomeration, and an increase in wear rates.
Therefore, hence, balanced fiber loading is key to getting the
best of the behavior in term of mechanical property and
durability.

e Surface treatments substantially improve the tribological
and mechanical characteristics of plant fiber-reinforced epoxy
composites with an aid to enhance the fiber-matrix interface.
Common methods include alkali treatment (NaOH), which
removes surface impurities, increases fiber roughness,
enhancing interfacial bonding and ultimately wear resistance;
silane treatment drives the fibers closer to the matrix due
adhesion improvement resulting in tensile strength enhance-
ment and reducing friction; and nanoparticle incorporation,
such as silica (SiO,), carbon nanotubes (CNTs), and titanium
dioxide (TiO,), significantly reduce wear thickness and hence
coefficient of friction while improving thermal stability by
formation of a protective tribo-film.

e Fillers can be incorporated into fiber composites to
improve the overall tribological behavior such as friction coef-
ficient and wear resistance. Metal fillers, such as aluminum or

© 2026 The Author(s). Published by the Royal Society of Chemistry
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graphite, or others fillers like SiC, TiO,, Al,03, carbon nano
tubes, or graphene, fly ash etc. contribute to a stronger, more
durable composite by reducing the void spaces as well rein-
forcing the fiber-matrix interface.

e Hybrid composites have been reported to give sprouts to
increased wear resistance, strength and applicability as against
plain fiber composites. These hybrid systems take advantage of
the individual properties of each fiber, offering a synergistic
enhancement in overall performance. For instance, jute/banana
and jute/coir hybrid composites significantly decrease wear
rates, reduce the frictional force, and improve the mechanical
strength.

e Abaca, palm, sisal and banana are the best overall fibers
identified in this review, with respect to combined superior
mechanical properties, excellent wear resistance, and environ-
mental benefits. These fibers provide exceptional performance
in terms of tensile strength, wear resistance, and durability
particularly when treated and incorporated in hybrid compos-
ites because of their high cellulose and crystallinity. They show
promise in replacing conventional synthetic materials.

e The current review further strengthened that the plant fiber
composites are an efficient substitute for synthetic fibers like
glass and asbestos due to their deleterious influence on human
health and environment. Although synthetic fibers have been
the dominant reinforcement in composites for several years,
natural fibers like jute, banana, abaca and coir do not only have
similar mechanical properties than synthetic one but some-
times even better when used as reinforcement providing also an
environmentally friendly way to recycle vegetal wastes with
reduced cost. These fibers have shown the prospect of offering
innovative solutions for performance and sustainability in
expensive applications such as automotive parts, mounting
materials, and construction components.

Overall, this review highlights that plant-fiber-reinforced
epoxy composites consistently benefit from proper fiber selec-
tion, optimized treatment, and balanced fiber or filler loading. A
unified trend observed across studies is that improved interfa-
cial bonding, higher cellulose content, and appropriate rein-
forcement levels directly enhance friction reduction, wear
resistance, and mechanical stability. Future research should
focus on multi-scale modeling, advanced hybridization strate-
gies, nano-modified interphases, and durability assessments
under thermal, moisture, and fatigue loading. Such efforts will
help establish reliable design guidelines and unlock broader
industrial applications for sustainable plant-fiber/epoxy tribo-
composites.
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