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ced Fenton-photo systems for the
degradation of petroleum hydrocarbons using
complex neural networks
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and Najeeb Aladwanih

Environmental contamination from petroleum hydrocarbons poses significant challenges, particularly in

regions affected by oil industry activities and conflict-related environmental disasters. This study

investigated AI-optimized photo-Fenton systems for remediation of oil-contaminated desert soils

through three key objectives: (1) systematically evaluating multiple catalysts, particularly iron(III) sulfate

pentahydrate, and EDTA as a chelating agent for TPH removal, determining optimal conditions for

specific reduction thresholds; (2) assessing four advanced photo-Fenton systems incorporating EDTA

and Fe2(SO4)3$5H2O across multiple performance metrics, using statistical validation and machine

learning to identify key performance factors; and (3) employing neural network modeling and

hierarchical clustering to evaluate predictive accuracy, identify influential factors, and discover natural

PAH classifications based on degradation patterns. Soil samples from Kuwait's Great Burgan Field were

treated using various combinations of Fe2(SO4)3$5H2O (5–10 g L−1), Fe2O3 (5–35 g L−1), EDTA (15–20 g

L−1), and H2SO4 (5–25 mL L−1). Fe2(SO4)3$5H2O demonstrated superior catalytic activity, achieving 99%

TPH removal at 10 g L−1, compared to Fe2O3's 92% at 35 g L−1. Advanced photo-Fenton system 3,

combining both catalysts, showed exceptional performance with >98% removal of high-molecular-

weight PAHs. The synergistic effect is proposed to arise from enhanced radical generation through both

hydroxyl (cOH) and sulfate radical (SO4c
−) pathways, based on an established mechanistic precedent for

Fe(III)-sulfate photochemistry. Neural network models successfully predicted PAH removal with R2 > 0.91,

while hierarchical clustering revealed distinct contaminant groupings. Treatment efficiency was primarily

governed by EDTA concentration and Fe2+/H2O2 ratio, with degradation mechanisms varying based on

PAH structure. This AI-driven optimization provides an efficient framework for soil remediation in

petroleum-contaminated desert environments where traditional methods face significant challenges.
1. Introduction

Crude oil (petroleum) is a complex mixture composed primarily
of hydrocarbons and small amounts of nitrogen, sulfur, and
oxygen. Petroleum hydrocarbons include various chemicals
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such as gasoline, diesel, and fuel oil.1,2 Themain components of
crude oil, collectively referred to as total petroleum hydrocar-
bons (TPH), encompass both aliphatic and aromatic
compounds. Within the aromatic group, polycyclic aromatic
hydrocarbons (PAHs) are of particular concern due to their
toxic, genotoxic, mutagenic, and carcinogenic properties.
Regulatory agencies worldwide focus on identifying and
analyzing highly toxic PAHs to evaluate their prevalence and
persistence in the environment.3–7 The United States Environ-
mental Protection Agency (US EPA) designated sixteen PAHs as
priority pollutants: naphthalene (NAP), acenaphthylene (ACY),
acenaphthene (ACE), uorene (FLU), phenanthrene (PHEN),
anthracene (ANTH), uoranthene (FLTH), pyrene (PYR), benzo
[a]anthracene (B[a]A), chrysene (CHRY), benzo[b]uoranthene
(B[b]F), benzo[k]uoranthene (B[k]F), benzo[a]pyrene (B[a]P),
benzo[g,h,i]perylene (B[ghi]P), indeno[1,2,3-c,d]pyrene (IND),
and dibenz[a,h]anthracene (D[ah]A). These are categorized
based on molecular weight and substrate properties into low
RSC Adv., 2026, 16, 1993–2006 | 1993
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molecular weight (LMW) PAHs (two to three rings), interme-
diate molecular weight (IMW) PAHs (four rings), and high
molecular weight (HMW) PAHs (ve or more rings).8,9 The
molecular weight of PAHs signicantly inuences their
behavior and fate in soil systems and their resistance to
conventional remediation approaches.10,11

Advanced oxidation processes (AOPs), introduced in the
1980s, are effective in remediating water contaminants using
powerful, short-lived, oxidizing agents like hydroxyl radicals
(cOH).12,13 These processes involve chemical treatments to
decompose organic and inorganic materials in various envi-
ronmental contexts.13,14 Among the widely studied AOPs, Fenton
reaction generates hydroxyl radicals essential for degrading
organic contaminants, including petroleum hydrocarbons and
heavy metals.13,15–17 Fenton-based AOPs (i.e. Fenton, Fenton-
like, electro-Fenton, and photo-Fenton systems) are appreci-
ated for the high removal efficiency of recalcitrant organic
contaminants under different operational and environmental
conditions.13 In these processes, hydrogen peroxide (H2O2) is
activated by ferrous or ferric iron (Fe2+/Fe3+) under acidic
conditions to produce hydroxyl radicals.18,19 These radicals
degrade organic matter by abstracting hydrogen atoms from
organic carbons or cleaving carbon–carbon bonds and ulti-
mately converting contaminants into carbon dioxide (CO2) and
water (H2O).20,21 The photo-Fenton process, achieved by irradi-
ating Fenton reactions with UV light, further enhances
production of hydroxyl radicals: cost-effective and environ-
mentally friendly AOPs extensively used in soil treatments.21–24

Despite the proven effectiveness of traditional Fenton
processes, signicant challenges remain in their application to
petroleum-contaminated soils, particularly regarding catalyst
stability, pH sensitivity, and removal efficiency for recalcitrant
high-molecular-weight PAHs. Conventional iron catalysts oen
suffer from rapid deactivation, limited reusability, and poor
performance under near-neutral pH conditions typical of
natural soil environments.25,26 These limitations highlight the
need for advanced catalyst systems with enhanced stability,
broader pH operating ranges, and superior oxidative capacity.

Articial Intelligence (AI) and Machine Learning (ML) offer
potential improvements in efficiency and effectiveness of envi-
ronmental remediation as technologies that provide time- and
cost-saving solutions to address the complexities of contami-
nated soils. Their versatility and applicability have been
demonstrated across various elds.27–31 Specically, ML aids in
establishing nonlinear relationships between bio-indicators
and the physicochemical properties of contaminated sites,
crucial for developing robust models that predict soil contam-
ination levels and assess phytotoxicity with high accuracy.32

Techniques such as ensemble learning are effective in modeling
soil and image data, enhancing the estimation of heavy metal
distribution and integrating environmental variables to enable
precise predictions about soil reclamation processes.27,30,31,33

Deep learning, a subset of ML, offers a framework for super-
vised learning tasks that involve complex functions. By layering
multiple levels of articial neurons, deep networks can represent
intricate patterns, making them suitable for tasks like pattern
recognition, classication, and prediction.28,34–36 Articial neural
1994 | RSC Adv., 2026, 16, 1993–2006
networks (ANNs), which mimic neural processing in the human
brain, are recognized as robust nonlinear estimators and have
been validated in various domains. Their application in envi-
ronmental science extends to analyzing soil contaminants.
Recent studies show their effectiveness in predicting concentra-
tions of toxic compounds like TPH and PAHs in contaminated
soils.37 ML methods are increasingly used to detect and quantify
heavy metals and petroleum hydrocarbons, providing detailed
insight into the physicochemical parameters of soils.38

Recent studies have demonstrated the potential of articial
neural networks (ANNs) for optimizing Fenton and photo-
Fenton processes in water treatment applications Elmolla
et al. achieved R2 = 0.997 in predicting antibiotic degradation
via Fenton oxidation.39 Sarı et al. applied ANN and NARX-ANN
models to optimize photo-Fenton treatment of textile waste-
water, achieving 94% COD removal.40 Deep reinforcement
learning has been employed for automated parameter optimi-
zation in photo-Fenton disinfection,41 while recent reviews have
highlighted the growing integration of ML techniques in
advanced oxidation processes.42,43

However, these applications have predominantly focused on
wastewater treatment with operational parameters as model
inputs. Critical gaps remain in: (1) ML-driven optimization of
photo-Fenton systems for soil remediation, where soil matrix
interactions introduce additional complexity; (2) integration of
molecular descriptors to predict compound-specic degrada-
tion based on chemical structure; and (3) systematic evaluation
of novel catalyst systems such as Fe2(SO4)3$5H2O. This study
addresses these gaps by developing a comprehensive neural
network framework that combines molecular descriptors with
treatment parameters to predict PAH-specic removal efficiency
in contaminated soils. The complex interactions between
multiple catalysts, chelating agents, and target contaminants
present an ideal scenario for advanced computational modeling
approaches that can identify non-obvious relationships and
optimization pathways beyond traditional experimental
design.44,45

Comprehensive site characterization is essential for effective
remediation design, particularly in heterogeneous contami-
nated environments. Electrical resistivity methods have
emerged as powerful non-invasive tools for delineating
subsurface hydrocarbon contamination, providing critical
spatial information that complements point-based chemical
sampling.46,47 The high electrical resistivity of petroleum
hydrocarbons relative to water-saturated soils creates distinct
geophysical signatures that enable three-dimensional mapping
of contamination plumes.48,49 Recent advances integrate resis-
tivity surveys with machine learning algorithms to predict
contamination severity and optimize sampling strategies,
demonstrating the synergy between geophysical characteriza-
tion and computational modeling.50,51 For weathered hydro-
carbon sites, resistivity variations also reect biodegradation
processes, as microbial activity produces conductive metabo-
lites that alter bulk soil conductivity.52,53 This multi-scale char-
acterization approach combines surface observations,
subsurface geophysics, and advanced computational analysis.
The integrated methodology provides comprehensive
© 2026 The Author(s). Published by the Royal Society of Chemistry
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understanding necessary for designing targeted remediation
strategies in complex contaminated environments.

The Gulf War (1990–1991) resulted in one of the most severe
environmental disasters in history, leading to a massive
hydrocarbon spill in Kuwait. It is estimated that approximately
6–8million barrels of crude oil were released into terrestrial and
marine ecosystems causing extensive ecological damage.54,55

Despite receiving $460 million in compensation for environ-
mental restoration, Kuwait's oil elds remain contaminated
with residual oil lakes and tarcrete formations.54,55 Reports from
the Kuwait Environmental Public Authority (KEPA) and the
Kuwait Oil Company (KOC) have documented signicant
alterations in soil texture, loss of local wildlife, and deep
penetration of oil into soil strata reaching freshwater aqui-
fers.54,56 Studies suggest that the consequences of this oil-
induced pollution may persist for decades and pose long-term
environmental challenges.55,57,58 In response, the United
Nations Compensation Commission (UNCC) allocated $3
billion to Kuwait to initiate a remediation project aimed at
cleansing oil-contaminated soil.59 Despite these efforts, clean-
up operations remain nancially burdensome and logistically
complex, especially when applied to extensive areas of
contaminated soil. Some of the employed remediation strate-
gies have served as temporary measures and highlight the need
for more effective, sustainable solutions.60

The goal of this research is to develop and validate an opti-
mized, AI-enhanced photo-Fenton system for the efficient, cost-
effective remediation of petroleum hydrocarbon-contaminated
soils, particularly those impacted by oil industry activities and
conicts. It aims to provide a widely applicable solution to
address persistent environmental contamination caused by
petroleum hydrocarbons.

The central aim is to conduct a thorough investigation into
the efficacy of various advanced Fenton-photo system congu-
rations, utilize multiple catalysts and chelating agents to
enhance the oxidation process, and employ deep learning and
other statistical techniques to analyze the results. By combining
experimental work with advanced computational methods, the
study seeks to identify the optimal treatment parameters that
maximize contaminant removal and understand the underlying
mechanisms. The research is structured around the following
key objectives:

(1) Systematically evaluate and compare the effectiveness of
multiple catalysts, particularly iron(III) sulfate pentahydrate,
and EDTA as a chelating agent in Fenton and modied Fenton
processes for TPH removal.

This objective focuses on determining the optimal condi-
tions (concentration, reaction time) for each catalyst and
chelating agent to achieve specic TPH reduction thresholds,
with particular emphasis on investigating iron(III) sulfate
pentahydrate, a catalyst previously employed in wastewater
treatment, in the novel context of petroleum-contaminated soil
remediation, and its strategic combination with Fe2O3 for
enhanced synergistic performance.

(2) Assess and compare four advanced photo-Fenton systems
incorporating EDTA and iron(III) sulfate pentahydrate for
remediating oil-contaminated soil.
© 2026 The Author(s). Published by the Royal Society of Chemistry
This objective focuses on evaluating multiple performance
metrics including TPH removal efficiency and PAH degradation
capabilities, using statistical validation and machine learning
approaches to identify key performance factors, and establish-
ing optimal operating conditions for eld applications.

(3) Employ neural network modeling and hierarchical clus-
tering analysis to gain deeper insight into PAH removal across
the four treatment systems.

This objective seeks to evaluate predictive model accuracy,
identify inuential factors affecting removal efficiency, deter-
mine optimal operational parameters, discover natural group-
ings of PAHs based on treatment responses, and provide
comprehensive comparative evaluation of the treatment
systems for specic PAH proles in contaminated
environments.

This work represents a signicant advancement in materials
chemistry applied to environmental remediation through the
novel integration of established iron catalysts (Fe2(SO4)3$5H2O
and Fe2O3) with AI-based optimization frameworks. While Fe(III)
sulfate has been previously utilized in modied Fenton systems
for wastewater treatment, its strategic combination with Fe2O3

coupled with neural network modeling for petroleum
hydrocarbon-contaminated soil remediation has not been
systematically investigated. This dual-catalyst approach creates
synergistic reactive interfaces that overcome the limitations of
traditional single-catalyst Fenton systems while enabling effi-
cient oxidation under near-neutral pH conditions. By eluci-
dating the structure–activity relationships governing photo-
Fenton PAH degradation and developing predictive computa-
tional models, this research contributes fundamental insights
to the eld of advanced photocatalytic oxidation while
addressing a critical environmental challenge.

2. Materials and methods
2.1 Overall methodology

We investigated the remediation of oil-contaminated soil from
the Great Burgan Field in Kuwait using both Fenton-like and
advanced photo-Fenton oxidation processes. A multi-faceted
approach was employed, combining eld sampling, laboratory
experiments, analytical chemistry, statistical analysis, and
computational modeling.

Soil samples were collected using a stratied random
sampling approach, with triplicate samples taken from
contaminated and uncontaminated (control) sites. Samples
were prepared following standard protocols, including air-
drying, homogenization, and sieving. Soil physicochemical
properties (pH, alkalinity, specic conductance, moisture
content, total organic matter, and total organic carbon) were
characterized.

Fenton-like experiments assessed the individual impacts of
Fe2SO4, Fe2O3, H2SO4, and EDTA on contaminant removal,
using predetermined dosages of H2O2 and Fe2+. Four advanced
photo-Fenton systems were developed, combining H2O2, Fe2(-
SO4)3$5H2O, Fe2O3, EDTA, Fe

2+, and H2SO4 in various congu-
rations and concentrations. Experiments were conducted in soil
slurries (1 : 100 soil-to-water ratio) under controlled conditions,
RSC Adv., 2026, 16, 1993–2006 | 1995
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with a full-spectrum halogen lamp providing irradiation.
Treatment durations ranged from 5 to 30 minutes.

Total Petroleum Hydrocarbons (TPH) were analyzed using
a modied USEPA Method 3540C with Soxhlet extraction and
GC-FID. Polycyclic Aromatic Hydrocarbons (PAHs) were
analyzed using the same extraction method, with additional
cleanup steps, followed by GC-MS in selected ion monitoring
mode. Rigorous quality control measures, including method
blanks, matrix spikes, and certied reference materials, were
implemented throughout.

Statistical analysis was performed using R (version 4.2.0).
Repeated measures ANOVA, mixed-effects modeling, and prin-
cipal component analysis (PCA) were used to evaluate treatment
effects and degradation patterns. Power analysis and effect size
calculations were performed.

A comprehensive computational framework (Python 3.9.12)
was developed to analyze PAH degradation, including: calcu-
lating 14 molecular descriptors (using RDKit), performing PCA,
and developing neural network models to predict removal effi-
ciency. Feature importance analysis (Random Forest Regressor)
and visualization techniques (violin plots, 3D surface plots)
were used to interpret the model results. A complementary
machine learning approach used molecular ngerprints
(ECFP4, MACCS keys, Atom Pair ngerprints) and a separate
neural network architecture. Hierarchical clustering and
network graphs were used to analyze molecular similarities. All
computational methods were rigorously validated.

2.2 Site description and sample collection

Soil samples were collected from the heavily impacted Great
Burgan Field in Kuwait, which experienced severe oil contami-
nation during the 1990–1991 Gulf War. Initial characterization
revealed TPH concentrations ranging from 129 726–86 653 mg
kg−1 and total PAH concentrations between 500 and 800 mg
kg−1. Control samples obtained from an uncontaminated
proximate area contained less than 50 mg kg−1 TPH and PAH
concentrations below the detection limit of 5 mg kg−1. A strati-
ed random sampling approach was implemented to account
for spatial variability, with triplicate samples collected from
three distinct locations within each designated stratum using
a stainless-steel soil corer (5 cm diameter) at depths of 10–
15 cm. This sampling depth was selected based on previous
studies indicating peak concentrations of weathered petroleum
hydrocarbons in this horizon. Detailed site characteristics,
sampling coordinates, and soil properties are provided in SI
(Table S1 and Fig. S1).

2.3 Geophysical site characterization

Electrical resistivity surveys were conducted to complement
surface sampling and provide comprehensive subsurface
contamination assessment. Vertical Electrical Sounding (VES)
measurements at 15 locations across the study area employed
Wenner array conguration with electrode spacings ranging
from 1 to 10 m. The survey revealed extreme heterogeneity in
resistivity values (1.51–464.72 U m), reecting complex
subsurface contamination patterns from the 1991 oil spill.
1996 | RSC Adv., 2026, 16, 1993–2006
Three distinct contamination signatures were identied: heavy
surface contamination, moderate contamination with moisture
inuence, and low contamination or degraded zones. Complete
geophysical characterization methodology and results are
detailed in SI Section S6.

2.4 Sample preparation and characterization

Collected samples were stored in pre-cleaned amber glass
containers and transported at 4 °C. Samples were air-dried,
homogenized, sieved through 2 mm mesh, and stored at
−20 °C until analysis. Characterization revealed pH 7.8, organic
matter content 4.5%, and particle size distribution of 60% sand,
25% silt, and 15% clay. Detailed preparation protocols are
provided in SI Section S7.

2.5 Fenton-like and advanced Fenton-photo systems

This study investigated both Fenton-like and advanced photo-
Fenton systems for remediation of oil-contaminated soil
(Table 1). Fenton-like experiments were conducted using 8 g soil
samples, while advanced photo-Fenton experiments utilized
20 g samples. In the Fenton-like experiments, the impact of
varying concentrations of Fe2SO4, Fe2O3, H2SO4, and EDTA on
contaminant removal was individually assessed. These experi-
ments were performed with predetermined doses of H2O2

(0.349 M and 0.419 M) and Fe2+ (0, 0.01 M, 0.02 M, and 0.03 M)
(Table 2).

Four distinct advanced photo-Fenton systems were devel-
oped to explore synergistic effects of different reagent combi-
nations (detailed in Table 1). System 1 consisted of H2O2,
Fe2(SO4)3$5H2O, and EDTA. System 2 combined H2O2, Fe2(-
SO4)3$5H2O, EDTA, Fe

2+, and H2SO4. System 3 was formulated
with H2O2, Fe2(SO4)3$5H2O, Fe2O3, EDTA, Fe2+, and H2SO4.
System 4 utilized H2O2, Fe2O3, EDTA, and Fe2+. These
advanced systems were tested under varying concentrations of
H2O2 (0, 0.349 M, 0.419 M), Fe2+ (0, 0.01, 0.02, and 0.03 M), and
EDTA (15 and 20 g L−1).

All experiments were conducted under controlled laboratory
conditions using soil slurries prepared with a soil-to-water ratio
of 1 : 100 (w/v). The reaction pH, maintained at 6.5 using dilute
NaOH or H2SO4, based on preliminary studies that identied
this pH as optimal for Fenton reaction efficiency. A full-
spectrum 500 watt halogen lamp (Halco ProLume H500Q/CL),
positioned 30 cm above the reaction vessels, provided consis-
tent irradiation at an intensity of 1000 mW cm−2. Treatment
durations of 5, 10, 15, and 30minutes were evaluated. Reactions
were terminated at the designated time points by the addition
of sodium thiosulfate, effectively quenching the Fenton process.
All reagents used in this study, including Fe2(SO4)3$5H2O,
Fe2O3, H2O2, EDTA, and FeSO4$7H2O, are commercially avail-
able at industrial scale from multiple suppliers, facilitating
potential scale-up and eld implementation.

2.6 Analytical methods

TPH analysis employed modied USEPA Method 3540C with
Soxhlet extraction and GC-FID analysis. PAH analysis utilized
the same extraction method with additional cleanup steps,
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Overview of experimental parameters for various Fenton-like systems

Fenton-like systems
Soil
(g) pH

Time
(minutes)

Fe2(SO4)3$5H2O
(g L−1)

Fe2O3

(g L−1)
EDTA
(g L−1)

H2SO4

(mL L−1)
Fe2+

(M)
H2O2

(M)

Iron(III) sulfate pentahydrate 8 6.5 10 5 0 0 0 0
10 0.01

0.02
0.03

Iron(III) oxide 0 5 0 0 0
15 0.01
25 0.02
35 0.03

Ethylenediaminetetraacetic acid (EDTA) 0 0 15 0 0
0.01

20 0.02
0.03

Sulfuric acid 0 0 0 5 0
10 0.01
15 0.02 0
25 0.03 0.349

Advanced photo-Fenton system 1 20 30 10 0 15 0 0 0.419
20

Advanced photo-Fenton system 2 10 0 15 25 0
0.01

20 0.02
0.03

Advanced photo-Fenton system 3 10 15 15 25 0
0.01

20 0.02
0.03

Advanced photo-Fenton system 4 0 15 15 0 0
0.01

20 0.02
0.03
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followed by GC-MS in selected ion monitoring mode. Method
detection limits were 5 mg kg−1 (TPH) and 0.05–0.1 mg kg−1

(individual PAHs). Complete analytical protocols, instrument
parameters, and quality assurance procedures are detailed in SI
Section S8.
Table 2 Optimal treatment parameters for different TPH reduction leve

Treatment

Low

(70% reduction)

Time to
reduction
(minutes)

Optimal
H2O2 (M)

Optima
Fe2+ (M

EDTA (15 g L−1) 10 0.349 0
EDTA (20 g L−1) 30 0.349 0
Iron(III) oxide (5 g L−1) 10 0.349 0
Iron(III) oxide (15 g L−1) 30 0.419 0.01
Iron(III) oxide (25 g L−1) 10 0.349 0.01
Iron(III) oxide (35 g L−1) 30 0.349 0.03
Iron(III) sulfate pentahydrate (5 g L−1) 10 0.419 0.02
Iron(III) sulfate pentahydrate (10 g L−1) 30 0.349 0.03
Sulfuric acid (5 mL L−1) 30 0.349 0.03
Sulfuric acid (10 mL L−1) 30 0.419 0.03
Sulfuric acid (15 mL L−1) — — —
Sulfuric acid (25 mL L−1) — — —

© 2026 The Author(s). Published by the Royal Society of Chemistry
2.7 Quality control and statistical analysis

Quality control measures included method blanks, matrix
spikes, certied reference materials with recovery studies (80–
120% acceptable range), and precision measurements (#20%
ls across various catalyst systems

Medium High

(80% reduction) (90% reduction)

l
)

Time to
reduction
(minutes)

Optimal
H2O2 (M)

Optimal
Fe2+ (M)

Time to
reduction
(minutes)

Optimal
H2O2 (M)

Optimal
Fe2+ (M)

10 0.349 0.01 30 0.349 0.01
30 0.419 0.03 10 0.419 0.02
10 0.349 0.01 30 0.349 0
30 0.349 0.01 10 0.419 0.02
30 0.419 0.02 10 0.419 0.03
10 0.349 0 30 0.349 0
10 0.349 0 30 0.419 0.02
30 0.349 0.01 10 0.419 0.02
10 0.419 0 30 0.349 0
— — — 10 0.419 0.02
— — — 10 0.349 0
— — — 10 0.419 0
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RSD). Statistical analysis employed R (version 4.2.0) with
repeated measures ANOVA, mixed-effects modeling, and PCA.
Power analysis validated sample size adequacy (b = 0.80). Full
quality control procedures and statistical methodologies are
provided in SI Section S9.
2.8 Neural network modeling

2.8.1 Advanced computational framework for PAH analysis
and degradation assessment. A comprehensive computational
framework was developed to analyze PAH degradation patterns,
integrate molecular descriptor analysis, machine learning, and
statistical visualization. Fourteen molecular descriptors were
calculated for each PAH using RDKit, including molecular
weight, log P, hydrogen bond acceptors, and various topological
indices. These were validated against experimental values with
maximum acceptable deviation of 5%. These descriptors were
selected based on their established mechanistic relationships
to oxidative degradation processes. Analysis revealed that X Log
P governs the transition between reaction-controlled kinetics
(time-dependent, X Log P < 5.2) and catalyst-limited kinetics (Fe
concentration-dependent, X Log P > 5.8), reecting the role of
hydrophobicity in controlling aqueous-phase availability.
Molecular dimensions (width, length) correlate with optimal
treatment system selection, with extended molecules (length >
13 Å) requiring dual-catalyst System 3. The complexity index
encodes ring fusion patterns that determine reactive site
accessibility for radical attack. Detailed descriptor–kinetics
correlations and mechanistic interpretations are provided in SI
Section S17 and Table S3.

The dataset comprised PAH removal efficiency measurements
for 16 EPA priority PAHs across four treatment systems, with
varying concentrations of EDTA (15, 20 g L−1), H2O2 (0.349, 0.419
M), Fe2+ (0, 0.01, 0.02, 0.03 M), and treatment times (0, 10, 30
minutes), totaling 7488 data points (triplicate measurements).
The 14 molecular descriptors were combined with 4 treatment
parameters as input features (18 total), with PAH removal effi-
ciency (%) as the output variable. Data preprocessing included
outlier detection using Mahalanobis distance (p < 0.001) and
StandardScaler normalization. Detailed dataset composition and
preprocessing steps are provided in SI Section S10.

A neural network model with four hidden layers was devel-
oped to predict PAH removal efficiency, using molecular
descriptors and treatment parameters as inputs. The model
achieved mean absolute error < 0.1 for normalized descriptor
predictions through nested cross-validation. Feature impor-
tance analysis was conducted using a complementary Random
Forest Regressor, a standard approach for interpreting black-
box models, with results validated through permutation
importance (30 repetitions).

A complementary machine learning approach utilized
molecular ngerprints (ECFP4, MACCS keys, Atom Pair nger-
prints) with a six-layer neural network architecture. The dataset
was partitioned using stratied approach (90% training/
validation, 10% testing) with ve-fold cross-validation.
Detailed neural network architecture, training procedures,
and validation methods are provided in SI Section S10.
1998 | RSC Adv., 2026, 16, 1993–2006
To ensure reproducibility and transparency, all codes neces-
sary for reproducing the results are publicly available at https://
github.com/SAAAHco/PhotoFenton-PAH-Remediation-ML.
3. Results
3.1 Subsurface contamination architecture

Electrical resistivity surveys at 15 VES stations revealed extreme
heterogeneity in subsurface contamination, with resistivity
values ranging from 1.51 to 464.72 U m. Three distinct
contamination signatures were identied: heavy surface
contamination (>60 U m at shallow depths), moderate
contamination with moisture inuence (10–80 U m), and low
contamination or degraded zones (<20 U m). The spatial
distribution and subsurface architecture of the contamination
were visualized through resistivity cross-sections (SI Fig. S2 and
S3) and horizontal slice maps (SI Fig. S4). The resistivity data
provided critical insight to understanding variable photo-
Fenton performance across the study area, with high resis-
tivity zones requiring higher catalyst concentrations and
moderate resistivity zones showing optimal treatment condi-
tions. Complete geophysical characterization results, including
spatial distribution analysis and treatment implications, are
provided in SI Section S12 with Table S2.
3.2 Comparative performance of multiple photocatalysts
and EDTA chelation in Fenton-based TPH removal

This study investigated the inuence of various catalysts and
chelating agents in Fenton and modied Fenton processes for
TPH removal from oil-contaminated soil, with particular
emphasis on iron(III) sulfate pentahydrate (Fe2(SO4)3$5H2O) as
a novel catalyst addition. The experimental matrix encompassed
EDTA chelation, iron(III) catalysis, acid-enhanced oxidation, and
systematic evaluation of Fe2(SO4)3$5H2O's catalytic performance,
with removal efficiency assessed across three reduction thresh-
olds (70%, 80%, and 90% TPH removal) (Table 2).

The chelating agent EDTA demonstrated complex coordi-
nation chemistry at different concentrations. At 15 g L−1, EDTA
achieved 70% and 80% reduction within 10 minutes using
0.349 M H2O2. The higher EDTA concentration (20 g L−1)
exhibited different reaction kinetics, achieving 90% removal in
10 minutes with 0.419 M H2O2 and 0.02 M Fe2+. Iron(III) oxide
demonstrated concentration-dependent catalytic activity, with
optimal performance at 15 g L−1 achieving 90% reduction in 10
minutes. Iron(III) sulfate pentahydrate's performance revealed
insights into slurry-phase Fenton chemistry, with 10 g L−1

concentration achieving 90% reduction in 10 minutes with
0.419 M H2O2. Sulfuric acid's role extended beyond pH modi-
cation, with superior performance at higher concentrations
(15–25 mL L−1) achieving 90% reduction in 10 minutes. The
observation that 25 mL L−1 required only H2O2 without addi-
tional Fe2+ suggests acid-catalyzed H2O2 decomposition as
a signicant pathway.

The results demonstrate that optimal performance depends
on achieving the right balance between radical generation,
catalyst availability, and mass transfer processes. Higher catalyst
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 3 Comparative analysis of advanced photo-Fenton systems for PAH degradation in contaminated soil

System
Optimal
conditions

TPH
removal (%)

PAH degradation
characteristics Statistical signicance PCA results

System 1: H2O2 + Fe2(SO4)3$
5H2O + EDTA

H2O2: 0.419 M 99 Rapid degradation of
low MW PAHs

p < 0.05 for H2O2 PC1: 72.3% (time)

EDTA: 20 g L−1 >95% removal of 4–6
ring PAHs at 30 minutes

4 = 0.55 PC2: 18.7% (H2O2)

Fe2(SO4)3$5H2O: 25 g L−1 Rebound effect observed R2 = 0.902
pH: 6.5

System 2: H2O2 + Fe2(SO4)3$
5H2O + Fe2+ + H2SO4 + EDTA

H2O2: 0.419 M 99 Enhanced degradation
of 5–6 ring PAHs

F(15, 30) = 5.55,
p < 0.001

PC1: 68.5% (time)

EDTA: 15 g L−1 >97% removal of
benzo[a]pyrene

4 = 0.61 PC2: 22.3%
(H2O2 + Fe2+)

Fe2+: 0.02 M Improved selectivity R2 = 0.928
H2SO4: 25 g L−1

System 3: H2O2 + Fe2(SO4)3$
5H2O + Fe2O3 + Fe2+ +
H2SO4 + EDTA

H2O2: 0.419 M 99 Best performance
for high MW PAHs

F(15, 30) = 5.55,
p < 0.001

PC1: 75.6% (time)

EDTA: 15 g L−1 >98% removal of
recalcitrant PAHs

4 = 0.63 PC2: 15.8% (catalysts)

Fe2O3: 15 g L−1 Accelerated degradation
in the rst 10 minutes

R2 = 0.923
Fe2+: 0.02 M

System 4: H2O2 + Fe2O3 +
Fe2+ + H2SO4 + EDTA

H2O2: 0.419 M 92 >95% removal of 2–3
ring PAHs in 10 minutes

F(15, 30) = 5.55,
p < 0.001

PC1: 70.2%
(time + Fe2+)

EDTA: 15 g L−1 Slower degradation of
high MW PAHs

4 = 0.54 PC2: 19.5% (EDTA)

Fe2+: 0.02 M Uniform EDTA
effect across PAHs

R2 = 0.896
Fe2O3: 15 g L−1
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concentrations generally enhanced removal rates through
increased active site availability. Detailed mechanistic discus-
sions and extended analysis are provided in SI Section S13.
3.3 Performance evaluation of advanced photo-Fenton
systems for TPH and PAH degradation

A comprehensive evaluation of four advanced photo-Fenton
systems was conducted utilizing EDTA as a core chelating
agent across all congurations, with iron(III) sulfate penta-
hydrate incorporated in three systems (Tables 3 and 4).

System 1 achieved 99% TPH removal within 10 minutes
under optimal conditions (0.419 M H2O2, 20 g L−1 EDTA, 25 g
L−1 Fe2(SO4)3$5H2O), with excellent removal of low molecular
weight PAHs and >95% removal of 4–6 ring PAHs aer 30
minutes. Statistical analysis revealed signicant H2O2 concen-
tration effects (p < 0.05, R2 = 0.902). Principal component
analysis identied treatment time as the primary factor (PC1:
72.3%) and H2O2 concentration as secondary (PC2: 18.7%).

System 2 achieved 99% TPH removal in 30 minutes,
demonstrating better high molecular weight PAH degradation,
Table 4 Comparative performance metrics of modified photo-Fenton s

Performance indicator System 1

Maximum TPH removal (%) 99
Time to max removal (minutes) 10
Optimal EDTA concentration (g L−1) 20
High MW PAH removal Good
Low MW PAH removal Excellent
Process stability Moderate
Model performance (R2) 0.902

© 2026 The Author(s). Published by the Royal Society of Chemistry
particularly >97% removal of benzo[a]pyrene. The system
exhibited high process stability and superior model perfor-
mance (R2 = 0.928). Statistical analysis showed signicant
treatment effects (F(15, 30) = 5.55, p < 0.001). PCA revealed
treatment time (PC1: 68.5%) and combined H2O2/Fe

2+ effects
(PC2: 22.3%) as primary performance drivers (SI Fig. S4).

System 3 achieved 99% TPH removal in 10 minutes with the
best performance for high MW PAHs (>98% removal). This
system demonstrated strong model performance (R2 = 0.923)
and robust temporal dependence (4 = 0.63). Statistical analysis
conrmed signicant treatment effects (F(15, 30) = 5.55, p <
0.001). PCA indicated treatment time dominance (PC1: 75.6%)
with catalyst interactions as secondary factors (PC2: 15.8%) (SI
Fig. S7). A minimal rebound effect was observed in some
treatment conditions between 10 and 30 minutes (Fig. S5 and
S8), attributed to oxidized intermediate formation as discussed
in SI Section S5. The relatively small magnitude of this effect in
the dual-catalyst systems supports sustained radical generation
that promotes complete mineralization rather than interme-
diate accumulation.
ystems

System 2 System 3 System 4

99 99 92
30 10 30
15 15 15
Better Best Moderate
Excellent Excellent Excellent
High High Moderate
0.928 0.923 0.896

RSC Adv., 2026, 16, 1993–2006 | 1999
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Table 5 Comparative evaluation of PAH treatment systems with performance metrics and compound clustering analysis

System Model performance Feature importance (top 5) Removal rates PAH clustering analysis

System 1 MSE: 0.0342 � 0.0028 (1) Benzo[b]uoranthene (B
[b]F)

EDTA (15 g L−1): 92.1� 2.8%
– optimized radical
generation and stability

Group 1 (known
carcinogens)

R2: 0.912 � 0.024 (2) Pyrene (PYR) EDTA (20 g L−1): 88.4� 3.1% Compounds: NAP–CHRY
Convergence: 800 epochs (3) Treatment time H2O2 (0.349 M): 93.2 � 2.5%

– optimized peroxide
stability

Similarity: 0.85

Silhouette width: 0.72 (4) EDTA concentration H2O2 (0.419 M): 87.6 � 3.2% Silhouette score: 0.72
(5) H2O2 concentration Treatment time: increased

efficiency over time
Mechanism
� Shared carcinogenicity
� Similar chemical
properties
Group 2A (probable
carcinogens)
Compounds: B[a]A and D
[ah]A
Similarity: clustered together
Silhouette score: 0.72
Mechanism
� Higher probability of
carcinogenicity
� Similar genotoxicity
� Similar inammatory
potential
Non-carcinogenic
Compounds: ACY
Similarity: distinct
clustering
Silhouette score: 0.72
Mechanism
� Divergent treatment
response
� Unique degradation
pattern

System 2 MSE: 0.0315 � 0.0024 (1) Anthracene (ANTH) EDTA (15 g L−1): 92.3� 3.2% Unique cluster
R2: 0.934 � 0.021 (2) Pyrene (PYR) EDTA (20 g L−1): 89.1� 2.9% Compounds: B[a]P
Convergence: 750 epochs (3) Fluorene (FLU) Fe2+ (0.030 M): maximum

efficiency achieved
Similarity: 0.81

Silhouette width: 0.75 (4) Benzo[a]pyrene (B[a]P) H2O2 (0.349 M): 90.5 � 2.8% Silhouette score: 0.75
H2O2 (0.419 M): 94.2 � 2.4% Mechanism

� Distinct degradation
pattern
� Molecular ngerprint
correlation r > 0.82
Group 2A
Compounds: B[a]A–D[ah]A
Similarity: 0.78
Silhouette score: 0.75
Mechanism
� Similar removal
mechanisms
� Moderate efficiency
Mixed group
Compounds: ACY–ACE–
FLU–ANTH
Similarity: clustered together
Silhouette score: 0.75
Mechanism
� Interconnected
degradation pathways
� Uncertain carcinogenic
risks

2000 | RSC Adv., 2026, 16, 1993–2006 © 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 5 (Contd. )

System Model performance Feature importance (top 5) Removal rates PAH clustering analysis

System 3 MSE: 0.0298 � 0.0021 (1) Pyrene (PYR) EDTA (15 g L−1): 94.2� 2.1% Distinct cluster
R2: 0.945 � 0.018 (2) Acenaphthylene (ACY) EDTA (20 g L−1): 96.4� 1.8% Compounds: B[a]A–ANTH
Convergence: 800 epochs (3) Fe2+ concentration Fe2+ (0.030 M): 95.1 � 2.0% Similarity: 0.83
Silhouette width: 0.76 (4) H2O2 concentration H2O2 (0.349 M): 92.8 � 2.4% Silhouette score: 0.76

H2O2 (0.419 M): 95.1 � 2.0% Mechanism
� Enhanced removal under
high EDTA
� Molecular ngerprint
correlation r > 0.88
Linked compounds
Compounds: NAP–CHRY, B
[k]F–IND
Similarity: 0.79
Silhouette score: 0.76
Mechanism
� Consistent degradation
patterns
� Strong correlation with
operational parameters
Mixed group
Compounds: FLU, PYR, B
[ghi]P
Similarity: grouped together
Silhouette score: 0.76
Mechanism
� Similar degradation
patterns
� Concentration-dependent
efficiency

System 4 MSE: 0.0325 � 0.0023 (1) Pyrene (PYR) EDTA (15 g L−1): 90.5� 2.6% Group 2A
R2: 0.928 � 0.019 (2) Acenaphthylene (ACY) EDTA (20 g L−1): 93.2� 2.2% Compounds: B[a]A–D[ah]A
Convergence: 800 epochs (3) Fe2+ concentration Fe2+ (0.030 M): 91.8 � 2.4% Similarity: 0.81
Silhouette width: 0.74 (4) H2O2 concentration H2O2 (0.349 M): 89.8 � 2.7% Silhouette score: 0.74

H2O2 (0.419 M): 91.8 � 2.4% Mechanism
� Highest removal efficiency
� Requires high oxidant
concentration
� Molecular ngerprint
correlation r > 0.84
Mixed group
Compounds: CHRY–IND
Similarity: 0.77
Silhouette score: 0.74
Mechanism
� Moderate removal rate
� EDTA-dependent efficiency
Uncertain status
Compounds: FLU, PHEN,
PYR, B[ghi]P
Similarity: clustered together
Silhouette score: 0.74
Mechanism
� Ambiguous carcinogenic
status
� Similar chemical behaviors
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System 4 achieved 92% TPH removal in 30 minutes, showing
excellent efficiency for low MW PAHs but moderate performance
for high MW PAHs (R2 = 0.896). Statistical analysis showed
signicant treatment effects (F(15, 30) = 5.55, p < 0.001). PCA
© 2026 The Author(s). Published by the Royal Society of Chemistry
identied combined time/Fe2+ effects (PC1: 70.2%) and EDTA
concentration (PC2: 19.5%) as key performance factors.

Comparative analysis revealed that three systems achieved
equivalent maximum TPH removal (99%), with Systems 1 and 3
demonstrating superior treatment speed. System 3's
RSC Adv., 2026, 16, 1993–2006 | 2001
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exceptional performance can be attributed to synergistic inter-
action between homogeneous Fe2(SO4)3$5H2O and heteroge-
neous Fe2O3 catalysts. Extended PAH-specic degradation
analysis and detailed statistical results are provided in SI
Section S14.
3.4 Neural network modeling and hierarchical clustering
analysis of PAH removal systems

Neural network modeling coupled with hierarchical clustering
analysis revealed signicant correlations between treatment
parameters, PAH characteristics, and removal efficiencies
(Table 5) (SI Fig. S5, S6, S8, and S9). System 3 demonstrated the
highest predictive accuracy (MSE: 0.0298 ± 0.0021, R2: 0.945 ±

0.018), followed by System 2 (R2: 0.934 ± 0.021), System 4 (R2:
0.928 ± 0.019), and System 1 (R2: 0.912 ± 0.024).

Feature importance analysis highlighted pyrene as consistently
inuential across all systems. Treatment parameters, particularly
EDTA and H2O2 concentrations, were consistently among the top
ve features. System 3 demonstrated superior performance at both
EDTA concentrations tested, achieving 94.2± 2.1% removal at 15 g
L−1 and 96.4 ± 1.8% at 20 g L−1. The superior performance of
System 3 can be attributed to synergistic interactions between the
dual catalysts operating through complementary mechanisms.
The soluble Fe3+ from Fe2(SO4)3$5H2O enables rapid homoge-
neous Fenton chemistry, while Fe2O3 provides a stable heteroge-
neous surface for sustained H2O2 activation at near-neutral pH
conditions where homogeneous catalysts lose activity.61 This dual-
pathway approach ensures continuous radical generation through
both solution-phase and surface-mediated mechanisms. Further-
more, EDTA chelation maintains iron solubility and forms pho-
toactive Fe(III)–EDTA complexes that undergo rapid
photoreduction under UV irradiation, accelerating the rate-
limiting Fe3+/Fe2+ cycle.21 The sulfate moiety may additionally
contribute sulfate radicals (SO4c

−, E° = 2.5–3.1 V), which exhibit
higher selectivity for electron-rich aromatic compounds like PAHs
compared to cOH alone.62 This synergistic enhancement between
the dual iron catalysts aligns with recent advances in iron-
promoted oxidation chemistry, where cooperative interactions
between iron and complementary elements have been demon-
strated to signicantly improve catalytic efficiency for PAH
degradation, including anthracene oxidation.63

Hierarchical clustering analysis revealed distinct patterns in
PAH behavior across treatment systems. System 1 demonstrated
clear clustering based on carcinogenic potential, with known
carcinogens (NAP–CHRY) grouping together with high simi-
larity (0.85). Probable carcinogens (Group 2A: B[a]A and D[ah]A),
referenced by studies, formed a distinct cluster. System 2
identied B[a]P as forming its own unique cluster with simi-
larity index of 0.81, while ACY–ACE–FLU–ANTH compounds
clustered together, showing interconnected degradation path-
ways and uncertain carcinogenic risks (SI Fig. S6). System 3
showed the most rened clustering with B[a]A–ANTH forming
a distinct group with similarity of 0.83, NAP–CHRY and B[k]F–
IND compounds showing similarity of 0.79, while FLU, PYR,
and B[ghi]P clustered together. System 4 revealed B[a]A–D[ah]A
clustering with similarity of 0.81, CHRY–IND forming a distinct
2002 | RSC Adv., 2026, 16, 1993–2006
cluster with similarity of 0.77, while FLU, PHEN, PYR, and B[ghi]
P clustered together, exhibiting ambiguous carcinogenic status
and similar chemical behaviors as supported by reference risks
(SI Fig. S9). The observed clustering patterns correlate strongly
with molecular topology and electronic properties rather than
simply molecular weight or ring number.

System 3 emerged as the most effective treatment approach,
combining highest predictive accuracy with well-dened clus-
tering and superior removal efficiencies. These results demon-
strate that treatment system optimization must consider both
operational parameters and PAH-specic characteristics with
clearer correlation analysis. Complete molecular ngerprint
analysis, detailed clustering results, and extended statistical
evaluations are provided in SI Section S15.

4. Conclusion

This comprehensive investigation demonstrates the effective-
ness of iron(III) sulfate pentahydrate (Fe2(SO4)3$5H2O) in
advanced Fenton and photo-Fenton systems for oil-
contaminated soil remediation, with particular emphasis on
its novel synergistic combination with Fe2O3 and the applica-
tion of AI-based optimization for treatment parameter identi-
cation. Through rigorous mechanistic analysis, multivariate
statistical evaluation, and advanced machine learning tech-
niques, we uncovered important relationships between catalyst
congurations and remediation performance that advance the
eld's theoretical understanding and practical applications.

Our research demonstrates that themulti-catalyst photo-Fenton
system (System 3) provides signicant improvements in remedia-
tion technology, achieving 99% TPH removal within 10 minutes
while simultaneously delivering superior degradation of recalci-
trant high molecular weight PAHs (>98% removal efficiency). This
notable performance is supported by strong statistical reliability
metrics (MSE: 0.0298± 0.0021, R2: 0.945± 0.018, silhouette width:
0.76), validating its effectiveness across diverse contamination
scenarios. Synergistic combination of Fe2(SO4)3$5H2O and Fe2O3

catalysts creates a multi-phase reaction system that overcomes the
limitations of single-catalyst approaches, offering enhanced
performance under environmentally relevant conditions (pH 6.5)
and minimizing the formation of iron sludge waste.

Neural network modeling revealed valuable insights into
structure–activity relationships, with System 3 demonstrating
well-dened PAH clustering patterns (B[a]A–ANTH forming
a distinct group with similarity of 0.83) and robust molecular
ngerprint correlations (r > 0.88). These ndings establish
quantiable connections between molecular structure and
degradation mechanisms in Fe2(SO4)3$5H2O-catalyzed systems,
providing useful biomarkers for monitoring remediation
effectiveness and optimizing treatment parameters.

Principal component analysis identied treatment time as the
primary performance driver across all systems (PC1: 68.5–75.6%),
while feature importance analysis highlighted pyrene as
a consistently inuential compound with signicant predictive
value. The optimal balance of catalysts in System 3 created
synergistic radical generation pathways that maintained effective
oxidative capacity throughout the treatment process, addressing
© 2026 The Author(s). Published by the Royal Society of Chemistry
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limitations of single-catalyst approaches for complex contami-
nantmixtures. From amaterials chemistry perspective, this study
demonstrates that rationally designed catalyst systems can
dramatically enhance treatment efficiency through strategic
manipulation of surface properties, redox potentials, and coor-
dinated electronic environments. The integration of Fe2(SO4)3-
$5H2O with Fe2O3 in an AI-optimized framework represents
a signicant advancement in applying established Fenton cata-
lysts to soil remediation challenges. While Fe(III) sulfate has been
utilized in wastewater treatment, its combination with hetero-
geneous iron oxide catalysts and neural network-guided optimi-
zation provides optimal catalytic activity through complementary
reaction pathways, offering signicant practical advantages
including cost-effectiveness, environmental compatibility, and
operational stability under near-neutral conditions.

This research contributes to the mechanistic understanding
of catalyst-driven remediation processes and provides a foun-
dation for designing improved treatment technologies. The
enhanced performance of the Fe2(SO4)3$5H2O-based systems,
particularly when combined with complementary catalysts,
represents a valuable advancement in addressing persistent
organic pollutants in soil environments. These ndings have
important implications for improving remediation efficiency,
reducing treatment times, and enhancing the degradation of
carcinogenic compounds in environmental restoration efforts.

This study has certain limitations that warrant acknowledg-
ment. The proposed sulfate radical involvement was inferred from
literature precedent rather than directly veried through EPR
spectroscopy or radical quenching experiments. Additionally,
while sludge formation was observed during treatment, quantita-
tive assessment of Fe leaching and catalyst reusability were not
performed. Future research should employ spin-trappingmethods
and selective scavenger studies to quantify the relative contribu-
tions of cOH and SO4c

− to PAH degradation, alongside compre-
hensive evaluation of Fe leaching kinetics and catalyst recovery for
environmental safety assessment. Scale-up validation, techno-
economic analysis, and life cycle assessment will be essential to
evaluate practical implementation potential for large-scale envi-
ronmental restoration projects. Although this study focused on
petroleum hydrocarbons in desert soils, Fenton-based processes
have demonstrated effectiveness for diverse organic contaminants
including pesticides, polychlorinated biphenyls (PCBs), and chlo-
rinated solvents across various soil matrices.14,64 The fundamental
chemistry and machine learning framework developed here are
therefore potentially transferable to other contamination
scenarios, provided site-specic calibration is performed. The use
of commercially available, low-cost reagents further supports
economic feasibility for eld-scale applications. The promising
results achieved in this study offer new pathways for developing
more effective, sustainable solutions to address petroleum
hydrocarbon contamination in soil environments worldwide.
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Data availability

The code for neural network modeling and PAH degradation
analysis can be found at https://github.com/SAAAHco/
PhotoFenton-PAH-Remediation-ML. The repository includes
all Python scripts for molecular descriptor calculations, neural
network architectures, hierarchical clustering analysis, and
visualization tools employed in this study. Additional
experimental data, including TPH and PAH concentration
measurements, treatment parameters, and statistical analyses
have been included as part of the supplementary information
(SI). Supplementary information: extended theoretical
frameworks, detailed methodological protocols, and
additional experimental results supporting the main
manuscript. Specically, it includes: (1) theoretical
framework (Sections S1–S5) providing extended discussion on
advanced oxidation processes, catalytic mechanisms of
Fe2(SO4)3$5H2O and Fe2O3, the role of EDTA chelation, and
the rebound effect in Fenton-like systems; (2) materials and
methods (Sections S6–S11) detailing geophysical site
characterization protocols, sample preparation procedures,
complete analytical methods for TPH and PAH analysis (GC-
FID and GC-MS), quality control procedures, and
comprehensive neural network architecture specications
including molecular descriptor calculations and machine
learning validation procedures; (3) results (Sections S12–S17)
presenting electrical resistivity survey data revealing
subsurface contamination architecture, extended catalyst
performance analysis, PAH-specic degradation kinetics for
all four treatment systems, and molecular ngerprint
correlations. Supporting tables include soil sample
characteristics (Table S1), electrical resistivity measurements
at 15 VES locations (Table S2), and comprehensive molecular
descriptor analysis (Table S3). Supporting gures include site
location maps (Fig. S1), resistivity cross-sections and depth-
slice maps (Fig. S2–S4), and complete analysis results for
advanced Fenton-photo systems 2–4 including TPH removal
efficiency, PCA plots, feature importance analysis, violin plots,
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and hierarchical clustering dendrograms (Fig. S5–S10). See DOI:
https://doi.org/10.1039/d5ra07305g.
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