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Chiral π-Extended Diindenoperylenes Featuring Dithia[7]helicenes
Georg Berger,a Jan Borstelmann,a Frank Rominger,a and Milan Kivalaa*

Helically chiral π-expanded diindenoperylenes were synthesized and their chiroptical properties characterized. The 
enantiopure synthesis of the perylene framework was achieved by two-fold Yamamoto coupling of π-expanded 
dibromofluoranthenes, each comprising one dithia[7]helicene unit. Oxidation of the thiophene units to the corresponding 
sulfones allowed late-stage modification of the chiroptical and electrochemical properties.

Introduction
The synthesis of non-planar, chiral polycyclic aromatic 
hydrocarbons (PAHs) and nanographenes has sparked 
widespread interest due to their unique optoelectronic and 
physical properties.1–7 Potential applications include spin-
selective electron transport,4,8 as well as circularly polarized 
light detection9 and emission (CPL).10 CPL emitters in the near-
infrared region are of particular interest, as, compared to visible 
light, near-infrared radiation is less absorbed in biological 
tissues and optical fibres, allowing deeper tissue penetration 
and far-reaching signal transfer, which are crucial for novel 
technological and bioimaging applications.11 
Helicenes are a class of inherently chiral PAHs, where 
nonplanarity is achieved through steric strain preventing a 
planar geometry.3,12 The inherent chirality of their π-system 
renders helicenes useful building blocks for chiral optical and 
electronic materials. [4]Helicene is considered the smallest 
helicene. It is only slightly helical due to the steric interactions 
of the hydrogen atoms in the bay region, and the two 
enantiomeric forms rapidly interconvert through a C2v 
symmetric, planar transition state.13 The barrier of racemization 
increases with the length of the helicene and for example 
enantiomers of [5]helicene are isolable, but racemize within 
days at room temperature (rt),14 while [6]helicene is considered 
configurationally stable under ambient conditions.15
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Figure 1: Examples of configurationally stable π-extended helicenes. A) [6]Helicene 
featuring two perylene diimide units.16 B) π-Extended perylene comprising two 
[6]helicene units.17 C) Peropyrene-based X-type double dithia[7]helicene and 
disulfone[7]helicene, demonstrating post-modification of thiophene units.18 
D) Diindenoperylene-embedded double dithia[7]helicene. Perylene units have been 
highlighted in blue color. mCPBA = m-chloroperoxybenzoic acid; Pr = n-propyl.

Examples of helicenes comprising perylene and related 
polycyclic units are shown in Figure 1. The [6]helicene 1 recently 
synthesized by Nuckolls and coworkers features two perylene 
diimide units at its termini (Figure 1A). Interactions of the π-
systems of both perylene diimide units were demonstrated and 
attributed to their spatial proximity.16 Regarding its chiroptical 
properties, compound 1 exhibits an absorption maximum of 
λmax,abs = 516 nm and a dissymmetry factor gabs = 1.5 × 10–3. In 
compound 2, recently synthesized by Wang and coworkers,17 a 
perylene unit is embedded in the center of two [6]helicenes, 
offering an outstanding fluorescence quantum yield of 93% 
(λabs,max = 538 nm, λem,max = 562 nm) and a dissymmetry factor 
of gabs = 7.0 × 10−3 at 360 nm. Compound 3 comprises a 
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Supplementary Information available: Synthetic and computational details, 
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peropyrene unit as centerpiece of an X-type double [7]helicene, 
with each [7]helicene unit featuring two thiophene units. In 
compound 4, these thiophene units were oxidized to the 
respective sulfones, demonstrating late-stage tuning of the 
structural and optoelectronic properties.18 Further noteworthy 
examples include a perylene-comprising double [5]helicene by 
Mastalerz and coworkers,19 showing excellent fluorescence 
quantum yields of 70% (λabs,max = 488 nm, λem,max = 526 nm), and 
heptagon-embedded saddle-shaped nanographenes featuring 
thia[6]helicene units by Hu, Chen, and coworkers,20 further 
exemplifying the utility of oxidative late-stage functionalization 
of the thiophene units.
In this work, we aimed to embed a diindenoperylene between 
two dithia[7]helicenes, unifying the appealing optoelectronic 
properties of diindenoperylene21–23 with the chirality provided 
by the helicenes and the potential of the thiophene units for 
late-stage modification18,24–27 to enable tailored chiroptical 
characteristics. 

Results and discussion
Synthesis

As shown in Figure 2, the synthesis started from the 
diarylnaphthylenecyclopentadienones 5 and 6, which were 
obtained from commercially available methyl 2-(3,4-

dihydroxyphenyl)acetate using established methodology (see 
the Electronic Supplementary Information (ESI)).28 A Diels-Alder 
reaction with bis(benzothiophen-3-yl)ethyne29 (7) yielded the 
precursors 8 and 9. Subsequent oxidative cyclization using 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and 
trifluoromethanesulfonic acid (TfOH) yielded the 
dithia[7]helicenes rac-HT and rac-HT-Br2. While an oxidative 
dimerization of rac-HT was not achieved, a reductive Yamamoto 
dimerization of rac-HT-Br2 yielded an inseparable mixture of 
stereoisomers. Therefore, the two enantiomers of HT-Br2 were 
separated by chiral HPLC (for details, see ESI). The subsequent 
Yamamoto coupling allowed the dimerization to the 
enantiopure double dithia[7]helicenes (P,P)-DT (76%) and 
(M,M)-DT (81%) under mild conditions, avoiding racemization. 
Thiahelicenes rac-HT-Br2 and rac-HT were oxidized with 
m-chloroperoxybenzoic acid (mCPBA) to the corresponding 
S,S,S’,S’-tetroxides rac-HS-Br2 (49%) and rac-HS (43%).18 The 
subsequent Yamamoto dimerization employing rac-HS-Br2 
yielded double [7]helicenedisulfone DS as an inseparable 
mixture of diastereomers, albeit in a low yield (14%). To avoid 
the low-yielding Yamamoto dimerization of HS-Br2, double 
[7]helicenedisulfones (P,P)/(M,M)-DS were synthesized by the 
oxidation of (P,P)/(M,M)-DT with mCPBA in yields of 35% and 
23%, respectively. For reference, enantiopure (P)/(M)-HS were 
obtained by oxidation of the respective enantiopure 
(P)/(M)-HT. 
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Figure 2: Synthesis of diindenoperylene-embedded double dithia[7]helicene DT and double [7]helicenedisulfone DS, and of monohelicenes HT, HT-Br2, HS, HS-Br2. (a) 200–220 °C, 
14–18 h. (b) DDQ, TfOH, CH2Cl2, 0 °C, 30 min. (c) [Ni(COD)2], COD, DMAP, THF, 60 °C, 2 h. (d) m-chloroperoxybenzoic acid, CH2Cl2, 0 °C, 5–24 h. COD = 1,5-cyclooctadiene; DDQ = 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone; DMAP = 4-dimethylaminopyridine; Pr = n-propyl; THF = tetrahydrofuran; TfOH = trifluoromethanesulfonic acid.

Structure and aromaticity

Single crystals suitable for X-ray diffraction analysis were 
obtained of racemic helicenes HT (gas phase diffusion from 
CDCl3/MeOH), HT-Br2 (gas phase diffusion, 1,2-
dichloroethane/MeCN) and HS-Br2 (gas phase diffusion, o-
dichlorobenzene/MeOH) (Figure 3A and Table 1). The impact of 
the oxidation of the thiophene units can be observed by 
comparison of HT-Br2 with HS-Br2. The most notable changes 
concern the bond lengths in the thiophene unit. The average C–
S bond length increases by 0.05 Å, the C–C bond length in the 5-
membered ring opposite to the sulfur atom increases by 0.05 Å. 
Both changes can be explained through the loss of aromaticity 
in the thiophene ring upon oxidation, as indicated by the 
HOMA30,31 indices and NICS(1)zz,avg values (GIAO32–38-CAM-
B3LYP39/D3BJ40/def2-TZVP41,42/ SMD(CH2Cl2)43)44 (Table 1 and 
Figure 3B). The increased helical pitch may result from the 

increased bond lengths. The steric demand of the sulfone 
oxygen atoms should not directly influence the geometric 
properties of the helicene unit due to their considerable 
distance. Apart from the thiophene ring, DT and DS exhibit 
comparable aromaticity with rings A, A’, D, and D’ of the 
helicene subunits being highly aromatic (Figure 3B). In the 
diindenoperylene unit, HOMA and NICS(1)zz,avg values indicate 
low aromaticity of the 5-membered rings (F) and the central 6-
membered ring (H), while the other rings (E, G, G’) are indicated 
as aromatic.
The strongly helical structure and considerable spatial overlap 
between the terminal benzene rings suggest configurational 
stability. In this study, the enantiomers were indeed 
successfully separated without special precautions using chiral 
HPLC and no indication of racemization was observed. To verify 
the configurational stability, the process of racemization was 
investigated computationally (r2SCAN-3c,45 ESI) using HT as 
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model compound. The calculated, approximately Cs-symmetric 
transition state lies approximately 159 kJ mol–1 above the 
minima, consistent with negligible racemization and excellent 
configurational stability at rt. In contrast, the [5]helicene units, 
formed by rings D, C, E, F, G and D’, C’, E, F, G’, respectively, have 
a considerably lower calculated barrier of racemization of only 
51 kJ mol–1. The expected rapid interconversion at ambient 
conditions is consistent with the apparent C2 symmetry in NMR 
studies. The heterochiral diastereomer of the [5]helicene units 
was found energetically favored over the homochiral 
diastereomer by 2 kJ mol–1, consistent with the observed crystal 
structures.

Table 1: Aromaticity indices of thiophene units of the investigated helicenes. HOMA 
indices are derived from single crystal X-ray structures, unless noted otherwise. 
NICS(1)zz,avg values computed at the GIAO-CAM-B3LYP/def2-TZVP/D3BJ level of theory.44

Compound
Avg. HOMA Index of 

Thiophene Units
Avg. NICS(1)zz,avg Index of 

Thiophene Unitsb

HT 0.55 –13.8

HT-Br2 0.62 –13.9

HS 0.23a 11.3

HS-Br2 –0.17 11.2

DT 0.63a –13.8

DS 0.24a 11.2

a) Computational geometry (CAM-B3LYP/def2-TZVP/D3BJ) was utilized. b)For 
simplicity average NICS(1)zz,avg of NICS(1)zz and NICS(–1)zz of all thiophene units in 
the molecules was calculated (for specific values, see ESI). 
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Figure 3: A) ORTEP representation of the single crystal X-ray structures of HT, HT-Br2, and HS-Br2. For clarity, hydrogen atoms are omitted and alkyl chains represented as wireframe. 
Color code: (C: grey, O: red, S: yellow, Br: orange). Shown are average torsion angles of cove region C–C–C–C bonds (φavg), dihedral angles between terminal rings A, A’ (ΘA,A’), and 
helical pitch (for detailed definition, see ESI). B) Calculated NICS(1)zz,avg (color coded) and HOMA (written) indices at the GIAO-CAM-B3LYP/def2-TZVP/D3BJ level of theory for 
compounds DT and DS.
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Figure 4: UV/Vis absorption and emission spectra of monohelicenes (A) and double helicenes (B). CD spectra of monohelicenes (C) and double helicenes (D). All measurements in 
CH2Cl2, rt, approx. 10–5 M.

Chiroptical and electrochemical properties

The optoelectronic and chiroptical properties of mono- and 
double helicenes are summarized in Figure 4 and Table 2. The 
substitution and oxidation state of the monohelicenes impacts 
their UV/vis absorption properties (Figure 4A). The bromination 
leads to a bathochromic shift of the lowest-energy absorption 
maximum from 493 nm (HT) to 513 nm (HT-Br2), and from 
513 nm (HS) to 526 nm (HS-Br2). Oxidation of the sulfur atoms 
leads to red-shifts of 13 nm (HS-Br2 vs HT-Br2) or 20 nm (HS vs 
HT), as well as an increase in the molar extinction coefficient of 
the lowest-energy absorption maximum (ε = 1.68 × 104 M–1cm–

1 (HS-Br2) vs 6.86 × 103 M–1cm–1 (HT-Br2); ε = 1.42 × 104 M–1cm–

1 (HS) vs 8.11 × 103 M–1cm–1 (HT)). Unsubstituted helicene HT 
shows fluorescence (λem,max = 614 nm), albeit with low quantum 
yield (1.9%). HS shows fluorescence at λem,max = 610 nm with 
higher quantum yield (9.0%). After dimerization to the perylene 
DT, the lowest-energy absorption maximum drastically shifts to 
660 nm (ε = 5.69 × 104 M–1cm–1, Figure 4B). Despite its oxidized 
thiophene units, DS shows nearly the same low-energy 
absorption bands (λabs,max = 657 nm, ε = 5.58 × 104 M–1cm–1). 
Time-dependent density functional theory (TD-DFT) 

calculations (CAM-B3LYP(D3BJ)/def2-TZVP/SMD(CH2Cl2), for 
details, see ESI) indicate that the lowest-energy absorption 
band is dominated by a HOMO–LUMO transition, with both 
molecular orbitals being localized mostly on the 
diindenoperylene unit.
Neither DT nor DS show any detectable photoluminescence 
between 600 and 1600 nm. In general, the extended structures 
comprising highly flexible [5]helicene units may facilitate non-
radiative relaxation processes, outcompeting fluorescence.46

All enantiopure helicenes showed circular dichroism (CD) 
(Figure 4C, D and Table 2). The absolute configurations were 
assigned based on TD-DFT (CAM-B3LYP(D3BJ)/def2-
TZVP/SMD(CH2Cl2)) simulated CD spectra (for details see ESI). 
Out of the monomeric helicenes, the unsubstituted HS has the 
highest absolute Δε (212 M–1cm–1 at 250 nm), while HT, HT-Br2 
and HS-Br2 show their highest Δε in the range 321 nm–332 nm. 
HT offers the highest gabs,max (3.62 × 10–3 at 331 nm). The double 
helicene DT shows even higher Δε (376 M–1cm–1 at 310 nm) and 
gabs,max (5.68 × 10–3 at 311 nm), values significantly higher than 
those of DS (Δε = 132 M–1cm–1 at 340 nm, gabs,max = 2.13 × 10–3 

at 343 nm). These values are comparable to those reported for 
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[6]helicene 1 (gabs,max = 1.5 × 10–3)16 and for double [6]helicene 
2 (gabs = 7.0 × 10−3).17

The electrochemical properties of all compounds were 
investigated by cyclic voltammetry measurements in CH2Cl2 
with n-Bu4NPF6 as supporting electrolyte versus 
ferrocene/ferrocenium (vs. Fc/Fc+). The redox potentials of the 
dimeric helicenes were impacted by oxidation of the thiophene 
units (Table 2, Figure 5). Sulfone DS is both oxidized and 
reduced at higher potentials than DT with the thiophene units. 
The anodic shift is in agreement with the electron-withdrawing 
nature of the sulfone moieties. Hence, the first oxidation is 
shifted by +340 mV (+0.44 V (DT) vs. +0.78 V (DS) (vs. Fc/Fc+)) 
and the first reduction by +230 mV (–1.24 V (DT) vs. –1.01 V 
(DS)). In the monomeric helicenes HT and HS, the effect of 
oxidation of the thiophene units is even more pronounced. The 
first oxidation potential occurs anodically shifted by +480 mV 
(0.52 V (HT) vs. 1.00 V (HS)) and the first reduction by +490 mV 
(–1.86 V (HT) vs. –1.37 V (HS)). In contrast, the bromo 
substitution in the monomeric helicenes HT-Br2 and HS-Br2 has 
only a negligible impact on the redox potentials, which all occur 
within a range of 0.1 V compared to parent HT and HS (for 
details, see ESI). All discussed redox events for helicenes and 
double helicenes were reversible or quasi-reversible with the 
exception of HT-Br2, where the reduction is irreversible (see 
ESI).

Figure 5: Cyclic voltammetry (CV, middle), differential pulse voltammetry (DPV, top) and 
square wave voltammetry (SWV, bottom) measurements of single and double helicenes 
in CH2Cl2 at rt (approx. 2 mM, n-Bu4NPF6 as supporting electrolyte, CV: scan rate 
149 mVs–1. DPV: step potential 20 mV, pulse width 50 ms, pulse period 200 ms, pulse 
amplitude 50 mV. SWV: step potential 10 mV, square-wave amplitude 25 mV and 
square-wave frequency 15 Hz). 

Table 2: Experimental optoelectronic, chiroptical, and electrochemical data of the title compounds. UV/Vis absorption and CD spectra recorded in CH2Cl2 at rt. Reduction and 
oxidation potentials were measured by cyclic voltammetry in CH2Cl2 at rt with n-Bu4NPF6 as supporting electrolyte and are referenced versus Fc/Fc+.

Compound
λmax [nm]

(ε(λmax) [M–1cm-1])
λΔεmax [nm] 

(Δεmax [M–1cm–1])
λg,abs,max [nm] 

(gabs,max)
Ered,1 [V] Eox,1 [V]

HT 493 (8.11 × 103) 332 (139) 331 (3.62 × 10–3) –1.86 +0.52

HT-Br2 513 (6.86 × 103) 321 (83.2) 321 (3.33 × 10–3) –1.77 +0.58

HS 513 (1.42 × 104) 250 (212) 334 (2.80 × 10–3) –1.37 +1.00

HS-Br2 526 (1.68 × 104) 321 (123) 319 (3.26 × 10–3) –1.34 +0.98

DT  660 (5.96 × 104) 310 (376) 311 (5.68 × 10–3) –1.24 +0.44

DS 657 (5.58 × 104) 340 (132) 343 (2.13 × 10–3) –1.01 +0.78

Conclusions
π-Extended double dithia[7]helicenes DT and DS with a 
diindenoperylene core were synthesized and investigated for 
their structural, chiroptical and electrochemical properties. Our 
newly developed synthetic route involving Diels-Alder and 
Scholl reactions followed by Yamamoto coupling as the key step 
opens a versatile access to a broad range of functionalized 
helicenes. The oxidation of the thiophene units to the 
corresponding sulfone acceptors further modulates the 
photophysical and redox properties of the compounds. While 
no fluorescence was detected for both DT and DS, intense 
bathochromically shifted UV/vis absorption maxima up to 
660 nm and considerable dissymmetry factors reaching 

5.68 × 10–3  were observed for DT. Computational analysis 
revealed excellent configurational stability of the [7]helicene 
unit (ΔE‡ = 159 kJ mol–1), potentially enabling long-term 
applications of our π-extended [7]helicenes without risk of 
racemization.
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