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Helically chiral m-expanded diindenoperylenes were synthesized and their chiroptical properties characterized. The
enantiopure synthesis of the perylene framework was achieved by two-fold Yamamoto coupling of m-expanded
dibromofluoranthenes, each comprising one dithia[7]helicene unit. Oxidation of the thiophene units to the corresponding

sulfones allowed late-stage modification of the chiroptical and electrochemical properties.

Introduction

The synthesis of non-planar, chiral polycyclic aromatic
hydrocarbons (PAHs) and nanographenes has sparked
widespread interest due to their unique optoelectronic and
physical properties.’™” Potential applications include spin-
selective electron transport,*® as well as circularly polarized
light detection® and emission (CPL).1° CPL emitters in the near-
infrared region are of particular interest, as, compared to visible
light, near-infrared radiation is less absorbed in biological
tissues and optical fibres, allowing deeper tissue penetration
and far-reaching signal transfer, which are crucial for novel
technological and bioimaging applications.'?

Helicenes are a class of inherently chiral PAHs, where
nonplanarity is achieved through steric strain preventing a
planar geometry.312 The inherent chirality of their m-system
renders helicenes useful building blocks for chiral optical and
electronic materials. [4]Helicene is considered the smallest
helicene. It is only slightly helical due to the steric interactions
of the hydrogen atoms in the bay region, and the two
enantiomeric forms rapidly interconvert through a G
symmetric, planar transition state.!3 The barrier of racemization
increases with the length of the helicene and for example
enantiomers of [5]helicene are isolable, but racemize within
days at room temperature (rt),'* while [6]helicene is considered
configurationally stable under ambient conditions.*®

2 Organisch-Chemisches Institut, Universitdt Heidelberg, Im Neuenheimer Feld 270,

69120 Heidelberg, Germany. E-mail: milan.kivala@oci.uni-heidelberg.de
Supplementary Information available: Synthetic and computational details,
characterization data. See DOI: 10.1039/x0xx00000x
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Figure 1: Examples of configurationally stable m-extended helicenes. A) [6]Helicene
featuring two perylene diimide units.’® B) m-Extended perylene comprising two
[6]helicene units.'” C) Peropyrene-based X-type double dithia[7]helicene and

disulfone[7]helicene, demonstrating post-modification of thiophene units.1®

D) Diindenoperylene-embedded double dithia[7]helicene. Perylene units have been
highlighted in blue color. mCPBA = m-chloroperoxybenzoic acid; Pr = n-propyl.

Examples of helicenes comprising perylene and related
polycyclic units are shown in Figure 1. The [6]helicene 1 recently
synthesized by Nuckolls and coworkers features two perylene
diimide units at its termini (Figure 1A). Interactions of the m-
systems of both perylene diimide units were demonstrated and
attributed to their spatial proximity.® Regarding its chiroptical
properties, compound 1 exhibits an absorption maximum of
Amax,abs = 516 nm and a dissymmetry factor gaps = 1.5 x 1073, In
compound 2, recently synthesized by Wang and coworkers,” a
perylene unit is embedded in the center of two [6]helicenes,
offering an outstanding fluorescence quantum vyield of 93%
(Aabs,max = 538 NM, Aem,max = 562 nm) and a dissymmetry factor
of Ggabs=7.0x1073 at 360 nm. Compound 3 comprises a
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peropyrene unit as centerpiece of an X-type double [7]helicene,
with each [7]helicene unit featuring two thiophene units. In
compound 4, these thiophene units were oxidized to the
respective sulfones, demonstrating late-stage tuning of the
structural and optoelectronic properties.® Further noteworthy
examples include a perylene-comprising double [S]helicene by
Mastalerz and coworkers,'® showing excellent fluorescence
quantum yields of 70% (Aabs,max = 488 NM, Aem,max = 526 nm), and
heptagon-embedded saddle-shaped nanographenes featuring
thia[6]helicene units by Hu, Chen, and coworkers,?° further
exemplifying the utility of oxidative late-stage functionalization
of the thiophene units.

In this work, we aimed to embed a diindenoperylene between
two dithia[7]helicenes, unifying the appealing optoelectronic
properties of diindenoperylene?!-23 with the chirality provided
by the helicenes and the potential of the thiophene units for
late-stage modification!®2427 to enable tailored chiroptical
characteristics.

Results and discussion
Synthesis
As shown

in Figure 2, the synthesis started from the

diarylnaphthylenecyclopentadienones 5 and 6, which were
methyl

obtained from commercially available 2-(3,4-

7 8: X = H (84%)
r 9: X = Br (85%)

dihydroxyphenyl)acetate using established methgdolegy dsee
the Electronic Supplementary InformatioRQESP |28 R DieR0OMekr
reaction with bis(benzothiophen-3-yl)ethyne?® (7) yielded the
precursors 8 and 9. Subsequent oxidative cyclization using 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) and
trifluoromethanesulfonic acid (TfOH) yielded the
dithia[7]helicenes rac-HT and rac-HT-Br,. While an oxidative
dimerization of rac-HT was not achieved, a reductive Yamamoto
dimerization of rac-HT-Br; yielded an inseparable mixture of
stereoisomers. Therefore, the two enantiomers of HT-Br; were
separated by chiral HPLC (for details, see ESI). The subsequent
Yamamoto coupling allowed the dimerization to the
enantiopure double dithia[7]helicenes (P,P)-DT (76%) and
(M, M)-DT (81%) under mild conditions, avoiding racemization.
Thiahelicenes rac-HT-Br. and rac-HT were oxidized with
m-chloroperoxybenzoic acid (mCPBA) to the corresponding
S,S,5,S-tetroxides rac-HS-Br, (49%) and rac-HS (43%).'® The
subsequent Yamamoto dimerization employing rac-HS-Br;
yielded double [7]helicenedisulfone DS as an inseparable
mixture of diastereomers, albeit in a low yield (14%). To avoid
the low-yielding Yamamoto dimerization of HS-Br,, double
[7]1helicenedisulfones (P,P)/(M,M)-DS were synthesized by the
oxidation of (P,P)/(M,M)-DT with mCPBA in yields of 35% and
23%, respectively. For reference, enantiopure (P)/(M)-HS were
obtained by oxidation of the
(P)/(M)-HT.

respective enantiopure

rac-HT: X =H, Y = S (55%)
rac-HT-Bry: X =Br, Y = S (34%)

P,P)-DT: Y =
M)-DT: Y =

(M

(d) E ¢
(P,P)-DS: Y = SO, (35%)
(M,M)-DS: Y = SO, (23%)

S (76%)
S (81%)
rac-HS: X =H, Y = SO, (43%)

rac-HS-Bry: X = Br, Y = SO, (49%)

Figure 2: Synthesis of diindenoperylene-embedded double dithia[7]helicene DT and double [7]helicenedisulfone DS, and of monohelicenes HT, HT-Br;, HS, HS-Br,. (a) 200-220 °C,
14-18 h. (b) DDQ, TfOH, CH,Cl,, 0 °C, 30 min. (c) [Ni(COD),], COD, DMAP, THF, 60 °C, 2 h. (d) m-chloroperoxybenzoic acid, CH>Cl,, 0 °C, 5-24 h. COD = 1,5-cyclooctadiene; DDQ = 2,3-
dichloro-5,6-dicyano-1,4-benzoquinone; DMAP = 4-dimethylaminopyridine; Pr = n-propyl; THF = tetrahydrofuran; TfOH = trifluoromethanesulfonic acid.

Structure and aromaticity

Single crystals suitable for X-ray diffraction analysis were
obtained of racemic helicenes HT (gas phase diffusion from
CDCl3/MeOH), HT-Br, (gas phase diffusion, 1,2-
dichloroethane/MeCN) and HS-Br; (gas phase diffusion, o-
dichlorobenzene/MeOH) (Figure 3A and Table 1). The impact of
the oxidation of the thiophene units can be observed by
comparison of HT-Br, with HS-Br,. The most notable changes
concern the bond lengths in the thiophene unit. The average C—
S bond length increases by 0.05 A, the C—C bond length in the 5-
membered ring opposite to the sulfur atom increases by 0.05 A.
Both changes can be explained through the loss of aromaticity
in the thiophene ring upon oxidation, as indicated by the
HOMA303! indices and NICS(1),;,avg values (GIAO32738-CAM-
B3LYP39/D3BJ4%/def2-TZVP*142/ SMD(CH,Cl,)*3)* (Table 1 and
Figure 3B). The increased helical pitch may result from the

2| J. Name., 2012, 00, 1-3

increased bond lengths. The steric demand of the sulfone
oxygen atoms should not directly influence the geometric
properties of the helicene unit due to their considerable
distance. Apart from the thiophene ring, DT and DS exhibit
comparable aromaticity with rings A, A’, D, and D’ of the
helicene subunits being highly aromatic (Figure 3B). In the
diindenoperylene unit, HOMA and NICS(1);,ag Values indicate
low aromaticity of the 5-membered rings (F) and the central 6-
membered ring (H), while the other rings (E, G, G’) are indicated
as aromatic.

The strongly helical structure and considerable spatial overlap
between the terminal benzene rings suggest configurational
stability. In this study,
successfully separated without special precautions using chiral

the enantiomers were indeed
HPLC and no indication of racemization was observed. To verify
the configurational stability, the process of racemization was

investigated computationally (r2SCAN-3c,*® ESI) using HT as

This journal is © The Royal Society of Chemistry 20xx
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model compound. The calculated, approximately C;-symmetric
transition state lies approximately 159 kJ mol™! above the
minima, consistent with negligible racemization and excellent
configurational stability at rt. In contrast, the [5]helicene units,
formed by ringsD,C, E,F,Gand D’, C’, E, F, G’, respectively, have
a considerably lower calculated barrier of racemization of only
51 kJ mol™l. The expected rapid interconversion at ambient
conditions is consistent with the apparent C; symmetry in NMR
studies. The heterochiral diastereomer of the [S]helicene units
was found energetically favored over the homochiral
diastereomer by 2 kJ mol=2, consistent with the observed crystal
structures.

Govg = 17.6°

ristry-Frontiers -

ARTICLE

Table 1: Aromaticity indices of thiophene units of the investigated\helicengse HRMA
indices are derived from single crystal X-ray structlires): UnI&ss3ndeédlethénwise:
NICS(1)zz,avg Values computed at the GIAO-CAM-B3LYP/def2-TZVP/D3BI level of theory.*

davg = 15.5°

Avg. HOMA Index of Avg. NICS(1),;,avg Index of

Compound Thiophene Units Thiophene Units®
HT 0.55 -13.8
HT-Br, 0.62 -13.9
Hs 0.23° 113
HS-Br, -0.17 11.2
DT 0.63° -13.8
DS 0.24° 11.2

a) Computational geometry (CAM-B3LYP/def2-TZVP/D3BJ) was utilized. PFor
simplicity average NICS(1),avg Of NICS(1),; and NICS(-1),; of all thiophene units in
the molecules was calculated (for specific values, see ESI).

Gavg = 19.2°

Opp =65.1 O = 533

81A

30
20

NICS(1),7,avg
o

Figure 3: A) ORTEP representation of the single crystal X-ray structures of HT, HT-Br,, and HS-Br.. For clarity, hydrogen atoms are omitted and alkyl chains represented as wireframe.

Color code: (C: grey, O: red, S: yellow, Br: orange). Shown are average torsion angles of cove region C—C—C—C bonds (¢avg), dihedral angles between terminal rings A, A’ (Oa ), and
helical pitch (for detailed definition, see ESI). B) Calculated NICS(1),,av (color coded) and HOMA (written) indices at the GIAO-CAM-B3LYP/def2-TZVP/D3BJ level of theory for

compounds DT and DS.

This journal is © The Royal Society of Chemistry 20xx
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Figure 4: UV/Vis absorption and emission spectra of monohelicenes (A) and double helicenes (B). CD spectra of monohelicenes (C) and double helicenes (D). All measurements in

CH,Cly, rt, approx. 10> M.

Chiroptical and electrochemical properties

The optoelectronic and chiroptical properties of mono- and
double helicenes are summarized in Figure 4 and Table 2. The
substitution and oxidation state of the monohelicenes impacts
their UV/vis absorption properties (Figure 4A). The bromination
leads to a bathochromic shift of the lowest-energy absorption
maximum from 493 nm (HT) to 513 nm (HT-Brz), and from
513 nm (HS) to 526 nm (HS-Br;). Oxidation of the sulfur atoms
leads to red-shifts of 13 nm (HS-Brz vs HT-Brz) or 20 nm (HS vs
HT), as well as an increase in the molar extinction coefficient of
the lowest-energy absorption maximum (g = 1.68 x 10* M~cm~
1 (HS-Br3) vs 6.86 x 103 M~lcm™ (HT-Bry); € = 1.42 x 10* M~cm~
1 (HS) vs 8.11 x 103 M~cm™ (HT)). Unsubstituted helicene HT
shows fluorescence (Aem,max = 614 nm), albeit with low quantum
yield (1.9%). HS shows fluorescence at Aemmax = 610 nm with
higher quantum yield (9.0%). After dimerization to the perylene
DT, the lowest-energy absorption maximum drastically shifts to
660 nm (g = 5.69 x 10* M~*cm™, Figure 4B). Despite its oxidized
thiophene units, DS shows nearly the same low-energy
absorption bands (Aabsmax = 657 nm, € =5.58 x 10* M~*cm™).
Time-dependent density functional theory (TD-DFT)

4| J. Name., 2012, 00, 1-3

calculations (CAM-B3LYP(D3BJ)/def2-TZVP/SMD(CH,Cl,), for
details, see ESI) indicate that the lowest-energy absorption
band is dominated by a HOMO-LUMO transition, with both
molecular orbitals being mostly on the
diindenoperylene unit.

Neither DT nor DS show any detectable photoluminescence
between 600 and 1600 nm. In general, the extended structures
comprising highly flexible [S]helicene units may facilitate non-

localized

radiative relaxation processes, outcompeting fluorescence.*®

All enantiopure helicenes showed circular dichroism (CD)
(Figure 4C, D and Table 2). The absolute configurations were
assigned based on TD-DFT (CAM-B3LYP(D3BJ)/def2-
TZVP/SMD(CH,Cl,)) simulated CD spectra (for details see ESI).
Out of the monomeric helicenes, the unsubstituted HS has the
highest absolute As (212 M~cm™! at 250 nm), while HT, HT-Br;
and HS-Br; show their highest A€ in the range 321 nm—332 nm.
HT offers the highest gapsmax (3.62 x 103 at 331 nm). The double
helicene DT shows even higher Ag (376 M~lcm™! at 310 nm) and
Gabs,max (5.68 x 1073 at 311 nm), values significantly higher than
those of DS (As = 132 M~cm™ at 340 NnM, Gabsmax = 2.13 x 1073
at 343 nm). These values are comparable to those reported for

This journal is © The Royal Society of Chemistry 20xx
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[6]helicene 1 (gabsmax = 1.5 x 1073)%¢ and for double [6]helicene
2 (Gabs = 7.0 x 1073).77

The electrochemical properties of all compounds were
investigated by cyclic voltammetry measurements in CH,Cl,
with n-BusNPFs as  supporting  electrolyte  versus
ferrocene/ferrocenium (vs. Fc/Fc*). The redox potentials of the
dimeric helicenes were impacted by oxidation of the thiophene
units (Table 2, Figure 5). Sulfone DS is both oxidized and
reduced at higher potentials than DT with the thiophene units.
The anodic shift is in agreement with the electron-withdrawing
nature of the sulfone moieties. Hence, the first oxidation is
shifted by +340 mV (+0.44 V (DT) vs. +0.78 V (DS) (vs. Fc/Fc*))
and the first reduction by +230 mV (-1.24V (DT) vs. —-1.01V
(DS)). In the monomeric helicenes HT and HS, the effect of
oxidation of the thiophene units is even more pronounced. The
first oxidation potential occurs anodically shifted by +480 mV
(0.52 V (HT) vs. 1.00 V (HS)) and the first reduction by +490 mV
(-1.86V (HT) vs. —1.37V (HS)). In contrast, the bromo
substitution in the monomeric helicenes HT-Br. and HS-Br; has
only a negligible impact on the redox potentials, which all occur
within a range of £0.1 V compared to parent HT and HS (for
details, see ESI). All discussed redox events for helicenes and
double helicenes were reversible or quasi-reversible with the
exception of HT-Br, where the reduction is irreversible (see
ESI).

Organic-:Chemistry-Frontiers
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Figure 5: Cyclic voltammetry (CV, middle), differential pulse voltammetry (DPV, top) and
square wave voltammetry (SWV, bottom) measurements of single and double helicenes
in CHyCl, at rt (approx. 2 mM, n-BusNPFg as supporting electrolyte, CV: scan rate
149 mVs™. DPV: step potential 20 mV, pulse width 50 ms, pulse period 200 ms, pulse
amplitude 50 mV. SWV: step potential 10 mV, square-wave amplitude 25 mV and
square-wave frequency 15 Hz).

Table 2: Experimental optoelectronic, chiroptical, and electrochemical data of the title compounds. UV/Vis absorption and CD spectra recorded in CH,Cl, at rt. Reduction and

oxidation potentials were measured by cyclic voltammetry in CH,Cl; at rt with n-BusNPFs as supporting electrolyte and are referenced versus Fc/Fc*.

Amax [nm Aaemax [NM A x[nm
Compound (e e e (igbm[) ] Fras V] Fora V1
HT 493 (8.11 x 10%) 332 (139) 331(3.62x1073) -1.86 +0.52
HT-Br; 513 (6.86 x 10%) 321(83.2) 321(3.33x1073) -1.77 +0.58
HS 513 (1.42 x 10%) 250 (212) 334 (2.80 x 1073) -1.37 +1.00
HS-Br, 526 (1.68 x 10%) 321 (123) 319 (3.26 x1073) -1.34 +0.98
DT 660 (5.96 x 10%) 310 (376) 311 (5.68 x 1073) -1.24 +0.44
DS 657 (5.58 x 10%) 340 (132) 343 (2.13 x 1073) -1.01 +0.78
5.68 x 103 were observed for DT. Computational analysis
revealed excellent configurational stability of the [7]helicene
Conclusions unit

n-Extended double dithia[7]helicenes DT and DS with a
diindenoperylene core were synthesized and investigated for
their structural, chiroptical and electrochemical properties. Our
newly developed synthetic route involving Diels-Alder and
Scholl reactions followed by Yamamoto coupling as the key step
opens a versatile access to a broad range of functionalized
helicenes. The oxidation of the thiophene units to the
corresponding sulfone acceptors further modulates the
photophysical and redox properties of the compounds. While
no fluorescence was detected for both DT and DS, intense
bathochromically shifted UV/vis absorption maxima up to
660 nm and considerable dissymmetry factors reaching

This journal is © The Royal Society of Chemistry 20xx

(AE* =159 kl mol™!), potentially enabling long-term
applications of our m-extended [7]helicenes without risk of
racemization.
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