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Photoswitchable anion recognition via synergy
between chalcogen bonding and hydrogen
bonding

Qinhua Rao,a,b Hebo Ye,*a Peng Hea and Lei You *a,b,c

Exploring photoresponsive noncovalent interactions with controllable tunability is of great significance for

advancing supramolecular recognition and smart dynamic materials. Herein, we report light-responsive

hydrazone-based receptors incorporating a telluroazole-derived chalcogen bond donor for photoswitch-

able anion binding. This system undergoes bidirectional E/Z photoisomerization, which modulates an

intramolecular NH⋯N hydrogen bond and hence enhances the electrophilicity of the tellurium center in

the Z-isomer for chalcogen bonding. This structural change leads to a significant increase in the binding

affinity of the Z-isomer toward halide anions (Cl−, Br−, and I−), with binding constants up to 20 times

higher than the E-isomer. The incorporation of electron-withdrawing substituents amplifies the polariz-

ation, allowing the control over binding strength and selectivity. Moreover, anion binding facilitates Z → E

photoisomerization, offering a feedback mechanism between recognition and structural switching. This

study demonstrates a new strategy combining reversible photochemical control and synergistic noncova-

lent interaction modulation, offering an effective approach for the development of stimuli-responsive

supramolecular systems.

Introduction

Stimuli-responsive molecular systems capable of reversibly
modulating noncovalent interactions are essential for the con-
struction of intelligent functional assemblies and
materials.1–11 Among various external stimuli, light has been
attracting intensive attention in view of its non-invasive nature
and high spatiotemporal resolution, enabling dynamic and
active control over molecular conformations and recognition
pockets.12–17 Embedding photoresponsive units, such as
photochromic switches, into receptor frameworks allows for
reversible regulation of intramolecular/intermolecular forces,
such as hydrogen bonding and host–guest recognition,18–21

which has been widely applied in the development of supra-
molecular switches and molecular machines.22–25 However,
achieving efficient light-driven anion recognition remains chal-
lenging, primarily due to solvation effects, geometric mis-
match, and inherently weak binding forces.26–34 Recently, chal-
cogen bonding (ChB),35–45 a blossoming type of noncovalent

interaction with strong directionality and tunable electronic
characteristics, has emerged as a promising alternative to
hydrogen bonding (HB)46–49 and halogen bonding (XB)50–53 for
anion recognition and associated endeavors, offering distinct
selectivity and hydrophobicity. As a result, the development of
novel structures and mechanisms for photoswitchable anion
binding is highly desired.

To achieve photoresponsive anion recognition, various
strategies have been developed that combine molecular photo-
switches with anion binding motifs (Fig. 1). One established
approach takes advantage of light-triggered E/Z switching of
hydrazones and masking/unmasking of intramolecular HB
(Fig. 1a).54–57 Chmielewski reported an acylhydrazone-based
heteroditopic ion pair receptor, wherein light-induced E/Z iso-
merization of the CvN bond controls the ON/OFF states of
both cation and anion binding.58 Very recently, an anion
pump for active transport of chloride was established with a
trimeric hydrazone photoswitch-based receptor by
Aprahamian.59 The so-called molecular tweezers offered
diverse avenues for dynamically regulating binding affinity and
selectivity by altering molecular conformation and spatial posi-
tioning of functional groups (Fig. 1b).60 Integrating E/Z photoi-
somerizable units, such as azobenzene and stiff-stilbene, with
HB/XB/ChB donors enables light-controlled anion recognition
systems, as showcased by Feringa, Wezenberg, Langton, and
others (Fig. 1b).61–70 Zhang designed a visible-light-switchable
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tellurium-based ChB system bearing azobenzene-linked tellur-
otriazole units for light-controlled halide binding and cataly-
sis.71 Through the incorporation of azobenzene into urea-
derived anion coordination cages, photoresponsive anion
binding and further tuning of E/Z isomerization properties
were achieved by Wu and coworkers.72 Despite elegant
advances, the manipulation of cooperative effects between
different types of noncovalent interactions for light-mediated
anion receptors is virtually untouched.

With hydrazones as extensively studied molecular reco-
gnition motifs, dynamic covalent bonds, and configurational
switches,73–86 we postulated the introduction of the tellurazole
group87–89 into acylhydrazones toward the goal of constructing
photoresponsive anion receptors (Fig. 1c). As the nearby nitro-
gen and tellurium sites can engage in HB and ChB, respect-

ively, their potential synergy would impact anion binding. The
changes in geometry and HB/ChB upon E/Z photoisomeriza-
tion would therefore provide a potent platform for light-con-
trolled anion recognition. In the current work, we report the
development of a photoresponsive anion receptor system that
integrates hydrazone photoswitches with a benzotellurazole-
based chalcogen bond donor (Fig. 1c). Light-triggered E → Z
isomerization induces the formation of the key intramolecular
NH⋯N HB, which in turn enhances the electrophilicity of the
chalcogen donor and strengthens its binding affinity toward
halide anions. Furthermore, the use of electron-withdrawing
substituents enables fine-tuning of binding strength and
selectivity. Notably, the reverse Z → E isomerization is pro-
moted by halide binding, revealing a feedback mechanism
between anion recognition and E/Z switching. The strategy
combines photochemical control and cooperative noncovalent
interactions, offering versatile tools for light-regulated anion
receptors.

Results and discussion
Synthesis and structures

To realize the design concept, a series of chalcogen-containing
acylhydrazones was constructed via modular synthesis
(Scheme S1 and Fig. S1–S27). The reaction of 2,2′-ditellanediyl-
dianiline with phenylacetyl chloride yielded a benzyl-substi-
tuted benzotellurazole derivative. After oxidation to the corres-
ponding ketone, condensation with the hydrazide afforded the
desired photoswitch molecule (1) (Fig. 2a). The thiazole (2)
and selenazole (3) derivatives were synthesized as controls,
along with varied substituents in tellurium-containing hydra-
zones (4–6). The phenyl group was attached to the CvN as a
“wall” to bias anion binding toward the chalcogen site
(Fig. 1c). As a comparison, benzotellurazole-2-carboaldehyde
derived acylhydrazone (7) was also prepared. The tellurole
ester intermediate was synthesized by reacting 2,2′-ditellane-
diyldianiline with diethyl oxalate. Subsequently, sodium boro-
hydride reduction to give the alcohol and then oxidation with
2-iodoxybenzoic acid (IBX) afforded the aldehyde, which was
then condensed with hydrazide to construct hydrazone 7.

Crystallographic analysis confirmed the formation of E/Z
isomers in telluroazole-based photoswitches (Fig. 2b, S28 and
Table S1). In the E-1 isomer, a Te⋯N chalcogen bond was
observed with a distance of 2.99 Å, while the Z-1 isomer exhi-
bits intramolecular hydrogen bonding with an NH⋯N distance
of 1.79 Å. Additionally, in the E-7 isomer, the Te⋯N distance
was found to be 3.25 Å, with a water molecule bound to hydra-
zone NH and CH via multiple hydrogen bonds. Notably, the Z-
4 isomer forms multiple NH hydrogen bonding with distances
of 1.94 Å and 2.22 Å. These results highlight the impact of geo-
metric isomerization on noncovalent interactions.

E/Z photoswitching studies

Firstly, single-crystal structural analysis validated the presence
of an N–H⋯N hydrogen bond in the Z-1 isomer, while this

Fig. 1 Representative strategies for photoswitchable anion recognition.
(a) HB masking/unmasking. (b) Molecular tweezers. (c) This work of ChB
activated by intramolecular NH⋯N HB with telluroazole-derived
hydrazones.
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interaction is absent in the E-1 isomer. As a result, the two
isomers could be readily distinguished by the position of the
NH peak in 1H NMR spectroscopy. With this difference in
mind, photoswitching behaviors were next investigated
(Fig. S29–S58). Upon irradiation of E-1 (a of Fig. 3A) in DMSO-
d6 at 313 nm for 30 minutes, E → Z isomerization was
achieved, as evidenced by the emergence of a new NH signal at
15.31 ppm and a decrease in the original NH signal at
10.79 ppm (b of Fig. 3A). In the photostationary state (PSS), the
content of 60% was found for the Z-isomer (Table 1). Further
irradiation at 425 nm for 5 min induced efficient Z → E iso-
merization, affording 95% E-isomer in the PSS (c of Fig. 3A).
The E/Z isomerization process was further corroborated by
monitoring UV-vis spectra under 313 nm and 425 nm
irradiation (Fig. 3B). Moreover, reversible interconversion
between E and Z isomers was successfully realized through
multiple cycles of alternating irradiation at 313 and 425 nm,
demonstrating excellent reversibility and fatigue resistance for
bidirectional photoswitching. In addition, the Z-1 isomer
exhibited high thermal stability, with a half-life (t1/2) of 52 days
at 25 °C (Fig. S40). The E/Z photoisomerization of other com-

Fig. 2 (a) The hydrazone-based photoswitches studied in the current
work. (b) Crystal structures of E-1, Z-1, Z-4, and E-7, with the distances
of supramolecular contacts listed.

Fig. 3 (A) 1H NMR spectra of E-1 (5 mM) in DMSO-d6 (a) upon
irradiation at 313 nm (b) and then 425 nm (c). (B) Change of the absor-
bance spectra of E-1 (50 μM) in DMSO upon irradiation at 313 nm and
then 425 nm, with multiple cycles of switching in the inset.

Table 1 Summary of E/Z isomer ratios in the photostationary state
(PSS) upon irradiation of hydrazone photoswitches

Compound
Isomer yield in the PSSa (at irr. λ in nm, time
to reach the PSS in min)

1 60% Z (313, 30), 95% E (425, 5)
2 60% Z (313, 20), 95% E (425, 6)
3 67% Z (313, 15), 70% E (425, 9)
4 40% Z (313, 35)
5 50% Z (313, 25), 100% E(425, 4)
6 50% Z (313, 25), 100% E(425, 4)
7 60% Z (313, 40), 92% E (425, 5)

a To estimate PSS composition, 1H NMR spectral data were recorded in
DMSO-d6 at a concentration of 5 mM.
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pounds was also investigated under 313 nm and 425 nm
irradiation in DMSO (Table 1). The results showed that most
compounds afforded moderate E → Z isomerization efficiency
upon 313 nm irradiation, with Z-isomer contents in the PSS
ranging from 45% to 67%. Compound 3 gave the highest
Z-isomer percentage (67%) under these conditions. With
425 nm illumination, most compounds exhibited highly
efficient Z → E isomerization, yielding E-isomer contents
between 92% and 100%. In particular, compounds 5 and 6
achieved nearly quantitative Z → E conversion (∼100% E)
under 425 nm irradiation. In contrast, compounds 3 and 4
showed lower Z → E conversion efficiency, affording 60% and
70% E-isomer, respectively. Overall, these results demonstrate
that the studied acylhydrazone compounds exhibit bidirec-
tional configurational photoswitching, with the substituents
playing a significant role in modulating E/Z isomerization
efficiency.

Anion binding studies

Having attained E/Z photoswitching, we further systematically
evaluated the anion binding affinity of E and Z isomers
through 1H NMR titration experiments combined with binding
isotherm analysis (Fig. 4a and S59–S75, Table S2).
Tetrabutylammonium salts (TBACl, TBABr, and TBAI) were
used as anionic guests. Initially, the anion binding properties
of E-1 (Fig. 4b) and Z-1 (Fig. 4c) were examined in DMSO-d6.
The anion recognition was followed by tracking peak move-

ment of aromatic protons (Ha) adjacent to tellurium, and the
binding constants (Ka) were obtained by fitting into a 1 : 1
binding model according to the Job’s plot (Fig. S59 and S60).
Compared to E-1 and chloride (Ka,E(Cl) = 1.00 M−1) (Table 2),

Fig. 4 (a) Schematic illustration of halide anion recognition modes for E-1 and Z-1. 1H NMR spectra of E-1 (5 mM) (b) and Z-1 (5 mM) (c) with
different equivalents of TBACl in DMSO-d6. (d) The comparison of changes in aromatic proton (Ha) chemical shifts of E-1 and Z-1 upon titrating
TBACl.

Table 2 Binding constants (Ka, M
−1) of hydrazone compounds 1–7 with

halide anions in DMSO-d6 and Z/E binding affinity ratios (using Cl− as
the example)

Compound

Ka (M
−1)

Selectivitya

Cl− Br− I− Cl−

E-1 1.00 0.62 ndb 4.79
Z-1 4.79 3.22 1.22
E-2 nd nd nd nd
Z-2c 1.09 0.30 nd
E-3c nd nd nd nd
Z-3c 0.58 nd nd
E-4 0.98 0.57 nd 4.65
Z-4 4.56 2.82 1.05
E-5 0.70 nd nd 9.40
Z-5c 6.55 4.45 1.94
E-6 0.76 nd nd 11.12
Z-6 8.45 5.80 2.12
E-7 5.36 nd nd 0.48
Z-7 2.55 nd nd

a Selectivity = Ka,Z/Ka,E.
b “nd” indicates that the binding constant is too

small to be determined by fitting. c Titration was performed under con-
ditions where both Z and E isomers coexist. The error of Ka was within
10%.
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Z-1 exhibited significantly enhanced binding affinity toward
chloride (Ka,Z(Cl) = 4.79 M−1) (Fig. 4d). A similar trend was
revealed for bromide, with a higher K value for Z-1 (Ka,Z(Br) =
3.22 M−1) over E-1 (Ka,E(Br) = 0.62 M−1). In addition, measur-
able affinity for Z-1 and iodide was found (Ka,Z(I) = 1.22 M−1),
but not for E-1.

The enhancement in anion binding affinity for Z-1 over E-1
is rationalized with the electrophilic activation of the tellura-
zole unit in Z-1 by NH⋯N HB, which increases its electron
deficiency and thereby enhances its ability to recognize halide
anions via ChB. Moreover, anion-induced ChB would also
strengthen NH⋯N HB, leading to a synergistic effect between
noncovalent interactions. Such activation is infeasible in E-1
due to its extended geometry.

For compounds 2 and 3 the binding affinity decreases sig-
nificantly as the chalcogen atom is sequentially replaced from
Te to Se and then to S, reflecting gradual weakening of the
ChB strength across the series (Table 2). In DMSO-d6, Z-2
exhibited a K value of 1.09 M−1 with Cl− and a K value of 0.30
M−1 with bromide, and no detectable binding was observed
for iodide. The binding affinity of 3 is further reduced, with Z-
3 showing a K value of only 0.58 M−1 with chloride and negli-
gible binding toward bromide and iodide. This trend indicates
a progressive decline in anion recognition capability as the
chalcogen bond donor shifts from tellurium to selenium to
sulfur.

Halide binding was observed for Z-4 (Ka,Z(Cl) = 4.56 M−1,
Ka,Z(Br) = 2.82 M−1, Ka,Z(I) = 1.05 M−1), showing a comparable
affinity to Z-1 (Table 2). The incorporation of electron-with-
drawing substituents (E-5/Z-5 and E-6/Z-6) resulted in enhance-
ment in binding affinity. Z-5 afforded a K value of 6.55 M−1 for
chloride, along with increased affinity for bromide (Ka,Z(Br) =
4.45 M−1) and iodide (Ka,Z(I) = 1.94 M−1). Z-6 exhibited the
strongest binding affinity in the series (Ka,Z(Cl) = 8.45 M−1,
Ka,Z(Br) = 5.80 M−1, Ka,Z(Br) = 2.12 M−1). Compared to their
corresponding E isomers (Ka,E(Cl) = 0.70–0.76 M−1), both Z-5
and Z-6 showed significant enhancement, with up to an
11-fold increase in binding affinity. Overall, in DMSO-d6, Z
isomers from the ketone-derived hydrazones consistently
exhibited stronger chloride binding than their E counterparts.
Z-6 displayed the highest chloride binding constant (8.45
M−1), with a Ka,Z/Ka,E ratio of 11.1. Opposite to 1–6, a higher K
value with chloride was apparent for the aldehyde-derived
hydrazones E-7 (5.36 M−1) over Z-7 (2.55 M−1). With HB from
NH of the hydrazone contributing to anion recognition in E-7
but not Z-7, the trend would be reversed. Nearly no NH move-
ment was found for E-1 upon adding an anion, whereas a
notable one was apparent for E-7 (Fig. S76).58,59 Such a differ-
ence supports the effect of the phenyl group directing anion
binding toward chalcogen. These results demonstrate that E →
Z isomerization enhances halide recognition, essentially
accomplishing light-responsive anion receptors.

As a means of enhancing binding affinity discrimination
between E/Z isomers, anion recognition was evaluated in
various solvents, including DMSO-d6, CD2Cl2, and CD3CN/
DMSO-d6 (4 : 1). In CD2Cl2, the K values of Z-1 with Cl− were

found to be 3.90 M−1, respectively (Fig. S68). The value is
smaller than the data in DMSO-d6. Although intramolecular
HB could be favored in solvents of lower polarity, the polariz-
ation of the N–H bond and hence HB activation would be com-
promised. For 1 the chloride binding constant of Z-1 reached
10.15 M−1 in CD3CN/DMSO-d6 (4 : 1), significantly higher than
that of E-1 (1.27 M−1) and giving a Ka,Z/Ka,E ratio of approxi-
mately 8.0 (Table 3). Similarly, Z-4 exhibited a K value of 9.52
M−1 for Cl− in CD3CN/DMSO-d6 (4 : 1), whereas E-4 showed a
lower binding constant of 1.24 M−1 (a Ka,Z/Ka,E ratio of around
7.68). Interestingly, further introduction of electron-withdraw-
ing substituents led to an increase in both the Ka,Z value and
Ka,Z/Ka,E ratio. Z-5 showed a Cl− binding constant of 21.03 M−1

in CD3CN/DMSO-d6 (4 : 1), much higher than that of E-5 (1.08
M−1) and corresponding to a Ka,Z/Ka,E ratio of 19.5. Again Z-6
exhibited the highest Cl− binding constant among the series,
reaching 25.66 M−1, while E-6 with Cl− remained at 1.28 M−1

(a Ka,Z/Ka,E ratio of around 23.0). Similar trends were observed
in the binding of Br− and I−. In CD3CN/DMSO-d6 (4 : 1), Z-5
showed K values of 12.71 M−1 (Br−) and 6.79 M−1 (I−), while Z-
6 gave K values of 14.17 M−1 (Br−) and 8.83 M−1 (I−), surpass-
ing the other Z isomers.

Density functional theory (DFT) calculations further shed
light on the molecular conformation and anion binding mode
(Fig. S77–S81). The optimized structures of compound 1 fall in
line with the crystal data, and E-1 is energetically favored over
Z-1 by 0.28 kcal mol−1 (Fig. 5a). Intriguingly, anion binding
induces the reversal of energy, stabilizing Z-1 by 0.71 kcal
mol−1. E-1(Cl−) displays Te⋯Cl− ChB (3.04 Å) and C–H⋯Cl−

HB (2.53 Å) with natural bonding orbital (NBO) analysis giving
the estimation of interacting strength of ChB (16.13 kcal
mol−1) and HB (2.67 kcal mol−1) energies (Fig. 5b). While
maintaining C–H⋯Cl− HB (2.53 Å, 2.57 kcal mol−1), Z-1(Cl−)
exhibits a stronger ChB (2.96 Å, 21.05 kcal mol−1). This is due
to the synergistic effect between ChB and N–H⋯N HB (1.80 Å,
19.83 kcal), leading to the stabilization of the Z isomer
complex. Upon chloride bonding, the N–H⋯N HB (19.83 kcal

Table 3 Binding constants (Ka, M
−1) of hydrazone compounds 1, 4, 5,

and 6 with halide anions in CD3CN/DMSO-d6 (4 : 1) and Z/E binding
affinity ratios (using Cl− as the example)

Compound

Ka (M
−1)

Selectivitya

Cl− Br− I− Cl−

E-1 1.27 1.19 1.05 7.99
Z-1 10.15 6.07 4.35
E-4 1.24 1.09 0.94 7.68
Z-4 9.52 5.69 4.20
E-5c 1.08 ndb nd 19.47
Z-5c 20.03 12.71 6.79
E-6c 1.28 nd nd 23.12
Z-6 25.66 14.17 8.83

a Selectivity = Ka,Z/Ka,E.
b “nd” indicates that the binding constant is too

small to be determined by fitting. c Titration was performed under con-
ditions where both Z and E isomers coexist. The error of Ka was within
10%.
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mol−1) in Z-1(Cl−) is strengthened over that in Z-1 (15.36 kcal
mol−1), further supporting the cooperativity between HB and
ChB. Two σ-holes locate on the chalcogen atom, with this
arrangement of Cl− energetically favored over the other site
(>4 kcal mol−1) for both E and Z isomers (Fig. S79). The non-
covalent interaction plot further validated the attractive inter-
action of chloride anion lone pairs with different electron
acceptors (Fig. S81). The N–H⋯N HB from pyridine in Z-4 has
a competitive effect on N–H⋯N (telluroazole) HB, slightly
weakening the ChB (Fig. S78 and S80). Differently, the intro-
duction of electron-withdrawing groups in Z-5 strengthens the
N–H⋯N HB and ChB, resulting from the enhanced polariz-
ation of the N–H bond (Fig. S78 and S80). These compu-
tational results are consistent with the trend of the anion reco-
gnition affinity.

Altogether, the systematic studies demonstrate that E → Z
isomerization of the ketone-derived acylhydrazones enhances
anion binding affinity across a range of chalcogen-containing
receptors and solvents. The binding constant increases with
the heavier chalcogen atoms (Te > Se > S), matching the intrin-
sic trend of chalcogen bond strength. The introduction of elec-
tron-withdrawing substituents further amplifies the binding
enhancement by increasing bond polarization. Across different
solvents studied, Z isomers show superior binding over E
isomers, with the most significant enhancements observed in
CD3CN/DMSO-d6 (4 : 1). In solvents of medium polarity, a deli-
cate balance would be reached for NH activation, maintaining
intramolecular HB against competition from solvents. The par-
ticipation of NH HB in binding anions with Z isomers of 1–6 is
unlikely due to the hindrance arising from the phenyl group.
These findings underscore the collective role of chalcogen

bonding, hydrogen bonding, electronic modulation, and steric
effects toward achieving photoresponsive anion recognition.

The effects of anions on photoswitching

Finally, we explored the impact of anion binding and ChB on
E/Z isomerization.90–93 In CD3CN/DMSO-d6 (4 : 1), compound 1
underwent E → Z isomerization upon irradiation at 313 nm,
reaching the PSS with 70% of the Z isomer (Fig. S82–S102).
Conversely, irradiation at 425 nm induced Z → E isomerization
(Fig. 6A), yielding 60% of the E isomer in the PSS. The Z → E
photoisomerization efficiency at 425 nm was significantly
enhanced in the presence of anions: upon addition of 10
equivalents of Cl−, the Z → E conversion in the PSS reached
98% (Fig. 6B). The improvement in Z → E switching was also
feasible with Br− and I−. This phenomenon is interpreted with
anion-induced electronic effects. Spectroscopically, halide
coordination leaves absorption maxima (λmax) virtually
unchanged but amplifies the E/Z dipole moment difference
(Δμ) 9.5-fold (1.4 → 13.3 Debye, Table S3), reflecting significant
polarity redistribution upon switching. Considering the
enhanced anion binding for the Z isomer, the increased polar-
ization of the receptor alters the electronic environment of the
photoswitchable acylhydrazone unit,94–96 thereby improving its
responsiveness to 425 nm light and facilitating the Z → E iso-
merization process. UV-vis spectral measurement after 313 nm
and 425 nm irradiation further confirmed the reversible
nature of E/Z photoisomerization in the presence of anions.

Fig. 5 The molecular conformation and anion binding mode for com-
pound 1. (a) Optimized structures of E and Z isomers for compound 1 (a)
and complex 1 (Cl−) (b), with the relative energies and NBO energies
(kcal/mol) listed, respectively.

Fig. 6 (A) The effects of anion binding on the E/Z isomerization of
compound 1. (B) (a)–(f ) 1H NMR spectra of the PSS obtained from Z → E
isomerization upon irradiation of Z-1 (5 mM) with different equivalents
of TBACl at 425 nm in CD3CN/DMSO-d6 (4 : 1), with the change in the
percentage of E-1 in the inset.
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Repeated alternating irradiation with 313 nm and 425 nm
light enabled the interconversion between E and Z isomers,
demonstrating excellent fatigue resistance (Fig. S92 and S93).
Moreover, the thermal stability of the Z-1 isomer was improved
with chloride present, extending the half-life (t1/2) to 73 days at
25 °C (Fig. S99). As a result, anion recognition offered a facile
route for tuning E/Z switching.

Conclusion

In summary, we reported photoresponsive molecular receptors
integrating a telluroazole-based chalcogen bond donor with
hydrazone photoswitches to achieve light-controlled anion
recognition. The reversible E/Z isomerization not only modu-
lates the formation and disruption of a key intramolecular
hydrogen bond but also significantly influences the electrophi-
licity of the chalcogen bond donor, leading to enhanced anion
binding in the Z isomer. The introduction of electron-with-
drawing aromatic substituents and the change of solvents
further amplify the polarization effect, enabling fine-tuning of
binding affinity and selectivity. Binding studies revealed that
the Z isomer exhibits up to a 20-fold increase in halide anion
binding affinity compared to the E isomer, demonstrating a
synergistic enhancement between hydrogen bonding and chal-
cogen bonding under photochemical control. Moreover, anion
binding promotes Z → E photoisomerization, uncovering a
feedback mechanism between anion recognition and photoi-
somerization. This work proposed an innovative strategy com-
bining reversible photochemical switching with cooperative
noncovalent interactions to achieve controllable anion reco-
gnition. The results should pave the way for future design and
applications in molecular recognition, chemical sensing, ion
transport, and smart materials.
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