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Abstract 

Significant efforts have been invested in unraveling the stucture-
property relationship of DNA-AgNCs using relatively short DNA 
sequences. Due to the limited sequence length, two or more 
strands are often required to stabilize a DNA-AgNC. Therefore, 
functionalization inherently introduces multiple reactive sites, 
hindering the implementation of single-site linking strategies. Here, 
we exploit the concept of using a thymine linking segment to 
connect two small DNA strands to develop a single-strand version 
of a DNA₂-[Ag₁₆Cl₂]⁸⁺. Our results demonstrate that these 
redesigned constructs preserve the core AgNC structure and 
photophysical properties, while enabling future single-site 
functionalization. Furthermore, this approach allows experimental 
confirmation of testing DNA linking segments that do not interfere 
with AgNC formation.

Introduction
DNA-stabilized silver nanoclusters (DNA-AgNCs) are a unique 
class of fluorescent emitters that were first reported by Petty et 
al. in 2004.1 These nanoclusters consist of a limited number of 
silver atoms and cations (typically 2–30), coordinated and 
stabilized by one or more single-stranded DNA oligomers.2 DNA-
AgNCs exhibit tunable emission spanning from the visible to 
near-infrared (NIR) spectral range and are characterized by their 
high fluorescence quantum yields, large Stokes shifts, and good 
chemical and photostability.3-6 Due to their favourable optical 

properties, DNA-AgNCs are promising candidates for 
fluorescence imaging applications.7-9 Despite this potential, 
limited work has been done on developing and testing 
conjugation strategies of DNA-AgNCs for labelling applications.8, 

10, 11 Such functionalization is essential for enabling specific 
target labelling and thereby unlocking the full potential of DNA-
AgNCs as fluorophores. A key challenge lies in the possibility 
that introducing functional groups may interfere with the DNA-
silver core interactions, potentially altering the photophysical 
properties or compromising the structural stability of the 
nanoclusters. 
The current library of DNA sequences used for colour-specific 
stabilization of AgNCs consists mainly of strands that are about 
ten nucleobases long.12, 13 As a result, most AgNCs are stabilized 
by two DNA strands.12, 14-16 Although single, longer DNA strands 
with random sequences can also stabilize AgNCs,17 using two 
shorter strands offers advantages, including a more confined 
screening space for machine learning algorithms18 and the 
ability to introduce structural symmetry. A prominent example 
of this is the well-studied DNA2-[Ag16Cl2]8+ nanocluster, which 
has become one of the best understood DNA-AgNC systems to 
date.19-21 
Rück et al. demonstrated the site-specific conjugation of the 
purified DNA2-[Ag16Cl2]8+ to three different peptides and a small 
protein using strain-promoted azide-alkyne cycloaddition 
(SPAAC), a copper-free click reaction eliminating the need for a 
copper catalyst.8 This approach enabled efficient and stable 
linkage of biomolecules to DNA2-[Ag16Cl2]8+ without 
compromising their photophysical properties. In bioimaging 
experiments using Chinese hamster ovary (CHO) cells, specific 
labeling of human insulin receptors at the cell membrane was 
achieved.8 Notably, the nanoclusters maintained their spectral 
characteristics, highlighting their suitability for bioimaging 
applications. However, using two DNA strands inherently 
introduces two conjugation sites, which can cause potential 
cross-linking of binding sites and hence a non-linear 
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fluorescence response. Thus, a single-site labeling strategy with 
one functional group to one binding site is more desirable. 
Stabilizing the [Ag16Cl2]8+ with a single DNA strand is challenging, 
and to the best of our knowledge this has not yet been achieved 
for red- or NIR-emitting AgNCs. We note, however, that a few 
examples of smaller green emissive AgNCs have been reported 
in literature.22, 23 
In this work, we address this challenge by designing a single-
strand version of the DNA2-[Ag16Cl2]8+ system, created by 
connecting the two original DNA-sequences with thymine 
linkers of four, five and six nucleobases. These linker lengths 
were rationally chosen based on the available crystal 
structure.19 As a result, we obtained a single oligonucleotide 
that preserves the nanocluster’s structural integrity and 
photophysical properties. Such single-strand architecture 
enables controlled, single-site functionalization, enhances 
labeling specificity, and supports the development of targeted 
fluorescent probes for bioimaging.8 
Two crystal structures show that the Ag₁₆ cluster core remains 
structurally consistent in these redesigned single-strand 
variants. Together with mass-spectroscopy analyses, these 
findings experimentally confirm that this small thymine bridge 
is suitability as a linking segment. This approach could also be 
used to screen other four- to six nucleotide segments to check 
if they do not interfere with AgNC formation.

Results and Discussion

Figure 1. Normalized absorption and emission spectra of DNA2-[Ag16Cl2]8+, 
2xDNA(T4)-[Ag16Cl2]8+, 2xDNA(T5)-[Ag16Cl2]8+ and 2xDNA(T6)-[Ag16Cl2]8+ in 10 mM 
NH4OAc at room temperature.

The original DNA2-[Ag16Cl2]8+ is stabilized by two 5’-
CACCTAGCGA-3’ oligomers.19 Based on the crystal structure, we 
can see that the 3’end of oligomer 1 and the 5’end of oligomer 
2 are relatively close. In order to connect these two ends, we 
used three different spacer lengths consisting of four, five and 
six thymines, which have been suggested in literature to have 
the least affinity to silver cations of the natural nucleobases, but 
still can interact with silver.24 These single-strand sequences will 
be further referred to as 2xDNA(T4), 2xDNA(T5), and 2xDNA(T6). 
Synthesis of the DNA-AgNCs using the 24-26 nucleotide single-
stranded sequences was performed as previously reported.19 
Briefly, the oligomer strands were mixed with AgNO3 in 10 mM 

ammonium acetate (NH4OAc), and freshly prepared NaBH4 
solution was added after an incubation time of 15 min to 
promote the cluster formation. The final ratio between the 
components was [DNA]:[AgNO3]:[NaBH4] = 25 µM: 187.5 µM: 
93.75µM. After 7 days at 4°C, the absorption spectra of the 
unpurified sample were recorded to verify the formation of the 
cluster. Figure S1A shows that all three samples form the 
desired [Ag16Cl2]8+ cluster, however, the best yield is achieved 
with the T6 spacer length. 
Based on previous observations, the addition of sodium 
chloride (NaCl) can improve the yield of the [Ag16Cl2]8+ cluster 
formation.21, 25 Therefore, NaCl tests were carried out for the 
clusters with T6 spacer. Different concentrations of NaCl (10, 30 
and 50 mM) were added during the synthesis procedure. Best 
results were obtained with a NaCl concentration of 30 mM, see 
Figure S1B. The addition of 50 mM NaCl did not result in a 
significantly higher yield than with 30 mM. Hence, a mixture of 
10 mM NH4OAc with 30 mM NaCl was used for the synthesis. 
After a 7-day reaction period, the mixtures were purified by 
high-performance liquid chromatography (HPLC), yielding 
successful separation for all three cases. Details on the HPLC 
purification and the corresponding chromatograms can be 
found in the SI (Figures S2-S4). 
The spectroscopic characterization of the purified 2xDNA(T4)-
[Ag16Cl2]8+, 2xDNA(T5)-[Ag16Cl2]8+ and 2xDNA(T6)-[Ag16Cl2]8+ 
showed that the photophysical properties are nearly unaltered 
by the different spacer lengths, see Figure 1 and Table 1. The 
absorption maximum remains at around 524 nm. However, 
compared to the original DNA2-[Ag16Cl2]8+, the emission maxima 
are slightly red-shifted, now centred at around 750 nm. The 
average fluorescence decay time and fluorescence quantum 
yield are also very similar and seem not to be affected by the 
spacers (see Table 1). Time-resolved fluorescence anisotropy 
measurements were used to determine the hydrodynamic 
volume. Compared to DNA2-[Ag16Cl2]8+, the hydrodynamic 
volume increases with increasing spacer length. While some 
increase is expected, the significant increase might indicate 
substantial drag of the thymine segment in solution.

Table 1. Photophysical properties of the original DNA2-[Ag16Cl2]8+ and the single-strand 
2xDNA(T4)-[Ag16Cl2]8+, 2xDNA(T5)-[Ag16Cl2]8+ and 2xDNA(T6)-[Ag16Cl2]8+ versions.

Abs (nm) Em (nm) <τ> (ns) QY φr
 
(ns) Vh (nm3)

DNA2 525 736 3.26 0.26 2.19 10.14

2xDNA(T4) 524 753 3.31 0.21* 3.09 14.31

2xDNA(T5) 524 750 3.46 0.23* 3.45 15.97

2xDNA(T6)
523 747 3.44

0.24*
0.24

3.67 16.99

DNA2 sequence: 5’-CACCTAGCGA-3’. 2xDNA(T4) sequence: 5’-CACCTAGCGATTTT 
CACCTAGCGA-3’. 2xDNA(T5) sequence: 5’-CACCTAGCGATTTTTCACCTAGCGA-3’. 
2xDNA(T6) sequence: 5’-CACCTAGCGATTTTTTCACCTAGCGA-3’. *Values were 
determined from a single point measurement (see SI for details).

Additionally, the single-strand silver nanocluster versions were 
analysed by electrospray ionization mass spectrometry (ESI-MS) 
to verify whether the AgNCs are compositionally consistent 
with the original DNA2-[Ag16Cl2]8+ nanocluster. The mass spectra 
of all three modifications are reported in Figures 2 and S5. The 
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experimental mass data, highlighted in Figure 2A, are aligned 
with the theoretical isotopic distribution of a compound 
comprising one DNA strand, 2 chloride atoms, and 16 silver 
atoms with an overall charge of 8+. These findings are in line 
with the spectroscopic characterization that all three 
modifications forming alike emitters. The second dominant 
molecular ion peaks correspond to a similar compound with one 
additional silver cation (see also Figure S6). The presence of 
additional silver cations has been observed previously, and they 
are presumed not to be part of the AgNC core.8, 19 These cations 
most likely coordinate with the 3’-terminal adenine, as 
observed in the crystal structure of the original DNA2-
[Ag16Cl2]8+.19 Interestingly, the mass-spectroscopy data also 
suggest that no silver cations are appreciably bound to the 
thymine linker, or at least not strongly enough to be seen in the 
mass spectrometer.

Figure 2. (A) Mass spectra zoom-in view of z=5- region of 2xDNA(T4)-[Ag16Cl2]8+, 
2xDNA(T5)-[Ag16Cl2]8+ and 2xDNA(T6)-[Ag16Cl2]8+ in 10 mM NH4OAc at room 
temperature displayed with off-set. (B-D) Theoretical isotopic distribution fit 
(yellow) along with experimental data of 2xDNA(T4)-[Ag16Cl2]8+ (blue), 2xDNA(T5)-
[Ag16Cl2]8+ (purple) and 2xDNA(T6)-[Ag16Cl2]8+ (pink) for the highlighted peaks in 
(A). The dark gray line represents the Gaussian fit, while the green dots indicate 
the peaks used for the fit. The corresponding mean values are μ = 1811.3, 1872.1, 
and 1933.0 for B), C), and D), respectively.

The spectroscopic and mass spectrometry data indicated that 
the new single-strand 2xDNA(T4)-[Ag16Cl2]8+, 2xDNA(T5)-
[Ag16Cl2]8+ and 2xDNA(T6)-[Ag16Cl2]8+ are similar to the original 
DNA2-[Ag16Cl2]8+. In order to facilitate a structural comparison 
and gain insight into the thymine region, we crystallized all 
three single-strand variants. The 2xDNA(T4)-[Ag16Cl2]8+, 
2xDNA(T5)-[Ag16Cl2]8+ and 2xDNA(T6)-[Ag16Cl2]8+ all yielded in 
pinkish crystals (see Figures 3A-C and Figure S10) using the 
hanging drop vapour method (see also SI). All crystals displayed 
an emission maximum around 740 nm (Figure S11) and 
nanosecond-lived fluorescence decay times (Figure S12). We 
managed to solve the structure for two of the three variants 
(2xDNA(T5)-[Ag16Cl2]8+ and 2xDNA(T6)-[Ag16Cl2]8+), which are 
deposited at  the PDB website under accession codes 9XV9 and 
9XVA, respectively. 

For 2xDNA(T5)-[Ag16Cl2]8+, only the T15 (the fifth T of the thymine 
segment) is visible in the structure due to a Watson-Crick 
interaction with an A17 of a neighbouring 2xDNA(T5)-[Ag16Cl2]8+ 
in the unit cell. For the rest, the positions of the Ag atoms and 
most of the DNA sequence overlaps very well with the original 
DNA2-[Ag16Cl2]8+ (see Figure 3D). Figures 3E-F show the intricate 
interactions between two 2xDNA(T5)-[Ag16Cl2]8+ units in the 
crystal. Unfortunately, the T11 to T14 nucleobases are too 
disordered to be resolved. This is reasonable given that no 
nucleobases are available to form stable interactions with the 
thymine section, apart from the T15-A17 interaction. For 
2xDNA(T6)-[Ag16Cl2]8+, similar interactions were found (Figure 
S13). Here, T15 and T16 could be resolved in the structure, but 
like in 2xDNA(T5)-[Ag16Cl2]8+, the T11 to T14 nucleobases could 
not be resolved. Results from Swasey et al. show that thymine 
strands do not have a great affinity to form silver mediated 
duplexes,26 while silver cations can easily replace a hydrogen to 
form adenine and thymine silver-mediated Watson-Crick-like 
interactions.26, 27 Silver-mediated thymine-thymine interactions 
have been previously reported by Kondo et al., but require the 
deprotonation of one of the thymines.28, 29 

Figure 3. Image of crystals of (A) 2xDNA(T4)-[Ag16Cl2]8+, (B) 2xDNA(T5)-
[Ag16Cl2]8+and (C) 2xDNA(T6)-[Ag16Cl2]8+. (D) Crystal structure overlay of 2xDNA(T5)-
[Ag16Cl2]8+ (blue, PBD: 9XV9) and DNA2-[Ag16Cl2]8+ unit (red, PBD: 6JR4). (E-F) 
Detailed views of the crystal packing interactions in the 2xDNA(T5)-[Ag16Cl2]8+ 
structure. 
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Conclusions
In this work, we successfully designed and characterized single-
strand DNA-oligomer versions of the well-established DNA₂-
[Ag₁₆Cl₂]⁸⁺ nanocluster. By connecting the two native stabilizing 
strands through thymine linkers of defined length (T4, T5 and T6), 
we created a single oligonucleotide that retains the structural 
and photophysical integrity of the original system with the 
additional benefit of removing redundant labeling sites. This 
architecture opens the door for precise, site-specific future 
conjugation strategies. Single crystal X-ray diffraction of the 
2xDNA(T5)-[Ag16Cl2]8+ and 2xDNA(T6)-[Ag16Cl2]8+ variants yielded 
two crystal structures that closely resemble the original DNA₂-
[Ag₁₆Cl₂]⁸⁺ nanocluster, demonstrating that the overall 
[Ag₁₆Cl₂]⁸⁺ core remains preserved. Although the engineered 
thymine segment was not fully resolved, the data combined 
with the mass-spectrometry data indicates that it does not 
interfere with the metal–DNA coordination environment or 
alter the core geometry. 
Together, these results validate our design concept and 
highlight the feasibility of stabilizing the Ag₁₆ cluster with a 
single DNA strand, thereby providing a robust and structurally 
conserved scaffold for controlled, one-site functionalization in 
future bioimaging applications. Further, the presented 
approach could also be used as a testbed for other DNA 
sequences of limited length to investigate whether or not they 
interfere with AgNC formation.
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Bridging the gap: thymine segments to create single-strand versions of DNA2-
[Ag₁₆Cl₂]8+ 
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The data supporting this article have been included as part of the Supplementary Information.

Crystallographic data for the 2xDNA(T5)-[Ag16Cl2]8+ and 2xDNA(T6)-[Ag16Cl2]8+ have been deposited at PDB under 
accession codes 9XV9 and 9XVA.
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