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Abstract

Significant efforts have been invested in unraveling the stucture-
property relationship of DNA-AgNCs using relatively short DNA
sequences. Due to the limited sequence length, two or more
strands are often required to stabilize a DNA-AgNC. Therefore,
functionalization inherently introduces multiple reactive sites,
hindering the implementation of single-site linking strategies. Here,
we exploit the concept of using a thymine linking segment to
connect two small DNA strands to develop a single-strand version
of a DNA,-[AgisCl>]®*. Our results demonstrate that these
redesigned constructs preserve the core AgNC structure and
photophysical properties, while enabling future single-site
functionalization. Furthermore, this approach allows experimental
confirmation of testing DNA linking segments that do not interfere
with AgNC formation.

Introduction

DNA-stabilized silver nanoclusters (DNA-AgNCs) are a unique
class of fluorescent emitters that were first reported by Petty et
al. in 2004.1 These nanoclusters consist of a limited number of
silver atoms and cations (typically 2—30), coordinated and
stabilized by one or more single-stranded DNA oligomers.2 DNA-
AgNCs exhibit tunable emission spanning from the visible to
near-infrared (NIR) spectral range and are characterized by their
high fluorescence quantum yields, large Stokes shifts, and good
chemical and photostability.3-® Due to their favourable optical
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properties, DNA-AgNCs are promising candidates for
fluorescence imaging applications.”® Despite this potential,
limited work has been done on developing and testing
conjugation strategies of DNA-AgNCs for labelling applications.®
10, 11 such functionalization is essential for enabling specific
target labelling and thereby unlocking the full potential of DNA-
AgNCs as fluorophores. A key challenge lies in the possibility
that introducing functional groups may interfere with the DNA-
silver core interactions, potentially altering the photophysical
properties or compromising the structural stability of the
nanoclusters.

The current library of DNA sequences used for colour-specific
stabilization of AgNCs consists mainly of strands that are about
ten nucleobases long.1> 13 As a result, most AgNCs are stabilized
by two DNA strands.'? 14-16 Although single, longer DNA strands
with random sequences can also stabilize AgNCs,'” using two
shorter strands offers advantages, including a more confined
screening space for machine learning algorithms!® and the
ability to introduce structural symmetry. A prominent example
of this is the well-studied DNA,-[Ag16Cl2]3* nanocluster, which
has become one of the best understood DNA-AgNC systems to
date.1>-21

Rick et al. demonstrated the site-specific conjugation of the
purified DNA>-[Ag16Cl,]3* to three different peptides and a small
protein using strain-promoted azide-alkyne cycloaddition
(SPAAC), a copper-free click reaction eliminating the need for a
copper catalyst.® This approach enabled efficient and stable
linkage of biomolecules to DNA>-[AgisCl2]3* without
compromising their photophysical properties. In bioimaging
experiments using Chinese hamster ovary (CHO) cells, specific
labeling of human insulin receptors at the cell membrane was
achieved.® Notably, the nanoclusters maintained their spectral
characteristics, highlighting their suitability for bioimaging
applications. However, using two DNA strands inherently
introduces two conjugation sites, which can cause potential
cross-linking of binding sites and hence a non-linear
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fluorescence response. Thus, a single-site labeling strategy with
one functional group to one binding site is more desirable.
Stabilizing the [Ag16Cl2]3* with a single DNA strand is challenging,
and to the best of our knowledge this has not yet been achieved
for red- or NIR-emitting AgNCs. We note, however, that a few
examples of smaller green emissive AgNCs have been reported
in literature.?> 23

In this work, we address this challenge by designing a single-
strand version of the DNA>-[Agi6Cl2]8* system, created by
connecting the two original DNA-sequences with thymine
linkers of four, five and six nucleobases. These linker lengths
were rationally chosen based on the available crystal
structure.’® As a result, we obtained a single oligonucleotide
that preserves the nanocluster’s structural integrity and
photophysical properties. Such single-strand architecture
enables controlled, single-site functionalization, enhances
labeling specificity, and supports the development of targeted
fluorescent probes for bioimaging.?

Two crystal structures show that the Agis cluster core remains
structurally consistent in these redesigned single-strand
variants. Together with mass-spectroscopy analyses, these
findings experimentally confirm that this small thymine bridge
is suitability as a linking segment. This approach could also be
used to screen other four- to six nucleotide segments to check
if they do not interfere with AgNC formation.

Results and Discussion
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Figure 1. Normalized absorption and emission spectra of DNA,-[AgisCl,]8*,

2xDNA(T4)-[Ag16C12]%*, 2XxDNA(Ts)-[Ag16C12]%* and 2xDNA(Te)-[Ag16Cl2]5* in 10 mM
NH4OAc at room temperature.

The original DNA,-[Ag16Cl2]8* is stabilized by two 5’-
CACCTAGCGA-3’ oligomers.® Based on the crystal structure, we
can see that the 3’end of oligomer 1 and the 5’end of oligomer
2 are relatively close. In order to connect these two ends, we
used three different spacer lengths consisting of four, five and
six thymines, which have been suggested in literature to have
the least affinity to silver cations of the natural nucleobases, but
still can interact with silver.?* These single-strand sequences will
be further referred to as 2xDNA(T4), 2xDNA(Ts), and 2xDNA(Te).
Synthesis of the DNA-AgNCs using the 24-26 nucleotide single-
stranded sequences was performed as previously reported.’®
Briefly, the oligomer strands were mixed with AgNO3 in 10 mM

2| J. Name., 2012, 00, 1-3

ammonium acetate (NH4OAc), and freshly prepared, . NaBHa
solution was added after an incubatio®Qinel&P/PSOHSte
promote the cluster formation. The final ratio between the
components was [DNA]:[AgNOs]:[NaBH4] = 25 uM: 187.5 uM:
93.75uM. After 7 days at 4°C, the absorption spectra of the
unpurified sample were recorded to verify the formation of the
cluster. Figure S1A shows that all three samples form the
desired [Agi6Cl2]3* cluster, however, the best yield is achieved
with the Te spacer length.

Based on previous observations, the addition of sodium
chloride (NaCl) can improve the yield of the [Ag16Cl2]%* cluster
formation.2t 2> Therefore, NaCl tests were carried out for the
clusters with T spacer. Different concentrations of NaCl (10, 30
and 50 mM) were added during the synthesis procedure. Best
results were obtained with a NaCl concentration of 30 mM, see
Figure S1B. The addition of 50 mM NaCl did not result in a
significantly higher yield than with 30 mM. Hence, a mixture of
10 mM NH4OAc with 30 mM NaCl was used for the synthesis.
After a 7-day reaction period, the mixtures were purified by
high-performance liquid chromatography (HPLC), yielding
successful separation for all three cases. Details on the HPLC
purification and the corresponding chromatograms can be
found in the SI (Figures S2-54).

The spectroscopic characterization of the purified 2xDNA(T4)-
[Ag15C|2]8+, 2XDNA(T5)—[Ag16C|2]8+ and 2XDNA(T5)—[Ag15C|2]S+
showed that the photophysical properties are nearly unaltered
by the different spacer lengths, see Figure 1 and Table 1. The
absorption maximum remains at around 524 nm. However,
compared to the original DNA;-[Ag16Cl,]%*, the emission maxima
are slightly red-shifted, now centred at around 750 nm. The
average fluorescence decay time and fluorescence quantum
yield are also very similar and seem not to be affected by the
spacers (see Table 1). Time-resolved fluorescence anisotropy
measurements were used to determine the hydrodynamic
volume. Compared to DNA;-[AgisCl;]%*, the hydrodynamic
volume increases with increasing spacer length. While some
increase is expected, the significant increase might indicate
substantial drag of the thymine segment in solution.

Table 1. Photophysical properties of the original DNA,-[Agi6Cl,]®* and the single-strand
2XDNA(T4)-[Ag16Cl2]%*, 2XxDNA(Ts)-[Ag16Cl2]3* and 2xDNA(Te)-[Ag16Cl2]%* versions.

Abs (nm) Em (nm) | <t> (ns) Qy - (ns) Vh(nm?3)
DNA,; 525 736 3.26 0.26 2.19 10.14
2XDNA(Ta) 524 753 3.31 0.21* 3.09 14.31
2xDNA(Ts) 524 750 3.46 0.23* 3.45 15.97
2xDNA(Ts) 0.24*
523 747 3.44 024 3.67 16.99

DNA; sequence: 5’-CACCTAGCGA-3’. 2xDNA(T,) sequence: 5’-CACCTAGCGATTTT
CACCTAGCGA-3’. 2xDNA(Ts) sequence: 5’-CACCTAGCGATTTTTCACCTAGCGA-3'.
2xDNA(T¢) sequence: 5’-CACCTAGCGATTTTTTCACCTAGCGA-3'.
determined from a single point measurement (see Sl for details).

*Values were

Additionally, the single-strand silver nanocluster versions were
analysed by electrospray ionization mass spectrometry (ESI-MS)
to verify whether the AgNCs are compositionally consistent
with the original DNA>-[Ag16Cl2]8* nanocluster. The mass spectra
of all three modifications are reported in Figures 2 and S5. The

This journal is © The Royal Society of Chemistry 20xx
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experimental mass data, highlighted in Figure 2A, are aligned
with the theoretical isotopic distribution of a compound
comprising one DNA strand, 2 chloride atoms, and 16 silver
atoms with an overall charge of 8+. These findings are in line
with the spectroscopic characterization that all three
modifications forming alike emitters. The second dominant
molecular ion peaks correspond to a similar compound with one
additional silver cation (see also Figure S6). The presence of
additional silver cations has been observed previously, and they
are presumed not to be part of the AgNC core.? 1° These cations
most likely coordinate with the 3’-terminal adenine, as
observed in the crystal structure of the original DNA,-
[Ag16Cl2]3*.1% Interestingly, the mass-spectroscopy data also
suggest that no silver cations are appreciably bound to the
thymine linker, or at least not strongly enough to be seen in the
mass spectrometer.
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Figure 2. (A) Mass spectra zoom-in view of z=5- region of 2xDNA(T4)-[Ag16Cl,]%*,
2xDNA(Ts)-[Ag16Cl>]8" and 2xDNA(Te)-[Ag16Cl]%* in” 10 mM NH4OAc at room
temperature displayed with off-set. (B-D) Theoretical isotopic distribution fit
yellow) along with experimental data of 2xDNA(T4;-[Ag1eC|z]8* (blue), 2xDNA(Ts)-
Ag16Cl>]%* (purple) and 2xDNA(Te)-[Ag16Cl2]%* (pink) for the highlighted peaks in
Aﬁ The dark gray line represents the Gaussian fit, while the green dots indicate
the peaks used for the fit. The corresponding mean values are p = 1811.3, 1872.1,
and 1933.0 for B), C), and D), respectively.

COMMUNICATION

For 2xDNA(Ts)-[Ag16Cl2]8, only the T1s (the fifth T of the thymine
segment) is visible in the structure dulCtdOd0¥9atseHLCiek
interaction with an A;7 of a neighbouring 2xDNA(Ts)-[Ag16Cl2]3*
in the unit cell. For the rest, the positions of the Ag atoms and
most of the DNA sequence overlaps very well with the original
DNA;-[Ag16Cl,]3* (see Figure 3D). Figures 3E-F show the intricate
interactions between two 2xDNA(Ts)-[Ag16Cl2]13* units in the
crystal. Unfortunately, the Ti1 to Tis nucleobases are too
disordered to be resolved. This is reasonable given that no
nucleobases are available to form stable interactions with the
thymine section, apart from the Tis-Ai7; interaction. For
2xDNA(Ts)-[Ag16Cl2]%*, similar interactions were found (Figure
S13). Here, T1s and Ti6 could be resolved in the structure, but
like in 2xDNA(Ts)-[Ag16Cl>]%*, the T11 to T1s4 nucleobases could
not be resolved. Results from Swasey et al. show that thymine
strands do not have a great affinity to form silver mediated
duplexes,?® while silver cations can easily replace a hydrogen to
form adenine and thymine silver-mediated Watson-Crick-like
interactions.?® 27 Silver-mediated thymine-thymine interactions
have been previously reported by Kondo et al., but require the
deprotonation of one of the thymines.?8 2°

The spectroscopic and mass spectrometry data indicated that
the new single-strand 2xDNA(T4)-[Ag16Cl2]8*, 2xDNA(Ts)-
[Ag16Cl2]8" and 2xDNA(Te)-[Ag16Cl2]3* are similar to the original
DNA,-[Ag16Cl>]8*. In order to facilitate a structural comparison
and gain insight into the thymine region, we crystallized all
three single-strand variants. The 2xDNA(T4)-[Ag16Cl2]%*,
2xDNA(Ts)-[Ag16Cl2]18 and 2xDNA(Ts)-[Ag16Cl2]8* all yielded in
pinkish crystals (see Figures 3A-C and Figure S10) using the
hanging drop vapour method (see also Sl). All crystals displayed
an emission maximum around 740 nm (Figure S11) and
nanosecond-lived fluorescence decay times (Figure S12). We
managed to solve the structure for two of the three variants
(2xDNA(Ts)-[Ag16Cl2]8* and 2xDNA(Ts)-[Ag16Cl2]8*), which are
deposited at the PDB website under accession codes 9XV9 and
9XVA, respectively.

This journal is © The Royal Society of Chemistry 20xx

Figure 3. Image of crystals of éA) 2xDNA(T4)-[Ag16Cl2]%*, (B) 2xDNA ng-
Ag15CI2]3*and (C% 2xDNA(T5)-[)Ag1sC|z] *. (D) Crystal structure overlay of 2xDNA(Ts)-
Ag1cCl>]3* (blue, PBD: 9XV9) and DNA,-[Ag:6Cl,]3* unit (red, PBD: 6JR4). (E-F)
Detailed views of the crystal packing interactions in the 2xDNA(Ts)-[Ag16Cl2]%*
structure.
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Conclusions

In this work, we successfully designed and characterized single-
strand DNA-oligomer versions of the well-established DNA,-
[Ag16Cl2]3* nanocluster. By connecting the two native stabilizing
strands through thymine linkers of defined length (T4, Ts and Te),
we created a single oligonucleotide that retains the structural
and photophysical integrity of the original system with the
additional benefit of removing redundant labeling sites. This
architecture opens the door for precise, site-specific future
conjugation strategies. Single crystal X-ray diffraction of the
2xDNA(Ts)-[Ag16Cl2]8 and 2xDNA(Te)-[Ag16Cl2]8* variants yielded
two crystal structures that closely resemble the original DNA;-
[Ag6Cl2)3*  nanocluster, demonstrating that the overall
[Ag6Cl2]3* core remains preserved. Although the engineered
thymine segment was not fully resolved, the data combined
with the mass-spectrometry data indicates that it does not
interfere with the metal-DNA coordination environment or
alter the core geometry.

Together, these results validate our design concept and
highlight the feasibility of stabilizing the Ag:e cluster with a
single DNA strand, thereby providing a robust and structurally
conserved scaffold for controlled, one-site functionalization in
bioimaging applications. Further, the presented
approach could also be used as a testbed for other DNA
sequences of limited length to investigate whether or not they
interfere with AgNC formation.

future
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