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Al pairing in 8-membered rings drives superior methanol 
amination on CHA zeolites
Shuang Liu,a Pan Xu,a Sihui Li,a Junyao Pan,a Yuxin Yan,a Rui Wu,b Junhui Guo,c Chang Liu *c and 
Wenfu Yan *a

In protonic acid–catalyzed methanol amination, achieving high selectivity toward methylamine (MMA) and dimethylamine 
(DMA) while suppressing dimethyl ether (DME) formation remains challenging. The catalytic performance of protonic 
zeolites in this reaction depends on Brønsted acidity, which is controlled by both the Si/Al ratio and the spatial distribution 
of framework Al. CHA zeolite is particularly attractive because of its unique pore architecture and tunable acidity. Here, we 
synthesized CHA zeolites with Si/Al ratios from 3.4 to 4.3 and systematically varied their Al distributions, without using 
organic structure-directing agents (OSDAs). The synthesis exploited the synergistic effect of alkali metal cations (Na+, Cs+) 
and CHA seeds with different Al contents (SAPO-34, SSZ-13, and pure silica CHA). The Al content of the seed determined the 
Si/Al ratio of the final product, while the seed type controlled the Al distribution. At a fixed Si/Al ratio of 3.8, the sample 
synthesized with a SAPO-34 seed (CHA-S34-3.8) showed the best performance. At 350  °C and 0.813 h−1, and at 400  °C and 
4.3 h−1, MMA + DMA yield reached 86.6% and 87.6%, respectively, with no detectable DME after stabilization. These values 
represent the highest reported performance for methanol amination. Characterization revealed that enrichment of Al pairs 
in the eight-membered rings, combined with optimal acid density and strength, accounts for the superior activity. This study 
provides mechanistic insight into the role of Al distribution and offers a strategy to design high-performance zeolite catalysts 
for methanol amination.

1. Introduction
Monomethylamine (MMA, 3.7 × 3.9 × 4.4 Å), dimethylamine 
(DMA, 3.9 × 4.7 × 6.0 Å), and trimethylamine (TMA, 3.9 × 5.4 × 
6.1 Å) are important intermediates in the production of 
solvents, agrochemicals, surfactants, and water treatment 
agents.1, 2 Industrially, these amines are produced by reacting 
methanol with ammonia. However, the reaction 
thermodynamically favors TMA, even though market demand is 
greater for MMA and DMA.3, 4 Improving selectivity toward 
MMA and DMA is therefore essential to reduce both energy 
consumption and downstream separation costs.

Early catalysts, including γ-Al2O3 and amorphous silica–
alumina, favored TMA formation and produced significant 
amounts of dimethyl ether (DME) as a by-product.3 To 
overcome these drawbacks, research has focused on 
developing catalysts that enhance MMA and DMA selectivity 
while suppressing side reactions. Zeolites are particularly 
attractive because of their ordered porosity, high surface area, 
and tunable Brønsted acidity.5, 6 Modified mordenite (MOR) 

was the first commercial zeolite catalyst used for methanol 
amination in the 1980s. However, its 12-membered ring (12MR, 
~ 6.5 × 7.0 Å) channels are too large to restrict the diffusion and 
formation of TMA.7 This limitation shifted attention toward 
smaller-pore zeolites.

Zeolites with eight-membered rings (8MR, 3.0–4.5 Å) are 
especially promising because their pore sizes closely match 
those of low-substituted amines. Representative 8MR 
frameworks include LEV, MTF, DDR, UFI, CHA, AFX, PWN, RHO, 
PAU, KFI, and LTA.1, 8–13 Their performance in methanol 
amination depends on both shape selectivity and Brønsted 
acidity. A high density of acid sites accelerates methanol 
conversion but also promotes over-methylation to TMA. 
Strongly methylated ammonium ions can also block pores, 
which in turn suppresses DME formation.9 Acid strength plays 
an equally critical role: excessively strong acidity favors TMA 
and DME formation, while weak acidity destabilizes 
methylammonium intermediates, also leading to DME. 
Moderate acidity strikes the right balance, favoring MMA and 
DMA production.3, 7, 8 In addition, the spatial distribution of acid 
sites strongly influences product selectivity.3

Therefore, methanol amination is governed by three key 
parameters: acid concentration, acid strength, and acid site 
distribution. These can be tuned by adjusting the Si/Al ratio and 
the distribution of framework Al.5, 14 Among 8MR zeolites, the 
CHA framework is especially promising. Its small pores hinder 
the formation and diffusion of bulky by-products and coke 
precursors, enabling high selectivity and long catalytic 
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lifetimes.15, 16 For example, SAPO-34 and SSZ-13—both CHA-
type zeolites—exhibit excellent light olefin selectivity and 
stability in methanol-to-olefins (MTO) reactions.17–19 These 
structural advantages suggest that CHA could be optimized for 
methanol amination by precisely controlling its Si/Al ratio and 
Al distribution.

Several strategies have been explored to tune Si/Al ratios 
and Al distributions in CHA, including variation of alkali 
cations,20 gel composition,21–23 seed crystals,24 and OSDAs.25 
OSDA-free synthesis is both more economical and 
environmentally sustainable. However, under OSDA-free 
conditions, achieving precise control and Si/Al ratios and Al 
distributions—and understanding their catalytic impact—
remain challenging.24, 26

Another persistent challenge is the unavoidable formation 
of DME as a major by-product. Separating and recovering DME 
increases process complexity and cost.27 Although adjusting 
operating parameters such as the ammonia-to-methanol ratio 
(N/C) and space velocity can partially suppress DME formation, 
eliminating it through catalyst design remains an open 
challenge.7, 11

In this study, we developed a strategy to regulate Si/Al 
ratios and Al distributions in CHA zeolites under OSDA-free 
conditions. The synthesis combined alkali cations with seed 
crystals of varying Al contents (SAPO-34, SSZ-13, and pure silica 
CHA). Cesium cations promoted CHA crystallization across a 
broad Si/Al range. The Al content and dosage of the seed 
controlled the Si/Al ratio of the final product, while the seed 
type determined the Al distribution.

Catalytic testing revealed that at the same Si/Al ratio (3.8), 
the sample synthesized with SAPO-34 seed (CHA-S34-3.8) 
achieved higher MMA and DMA selectivity than the sample 
synthesized with pure silica CHA seed (CHA-PS-3.8). 
Remarkably, no DME was detected under steady-state 
conditions. Characterization confirmed that CHA-S34-3.8 had a 
higher fraction of Al located in the 8MRs, as evidenced by Co2+ 
titration and UV–vis spectroscopy. NH3-TPD showed a high 
density of acid sites with moderate strength, explaining its 
superior performance.

Overall, this work demonstrates that tailoring Al 
distribution through seed selection provides an effective 
strategy to enhance methanol amination. By combining optimal 
Si/Al ratios with targeted Al placement in the CHA framework, 
high MMA and DMA selectivity can be achieved while 
completely suppressing DME formation.

2. Results and discussion
2.1 Synthesis and Characterization of CHA seeds

SAPO-34, SSZ-13 and pure silica CHA (PS-CHA) seeds with 
different Al contents were synthesized (Fig. S1; synthesis in SI). 
Powder X-ray diffraction (XRD, Fig. S1a–b) confirmed that all 
seeds were pure CHA, both before and after calcination, 
yielding c-SAPO-34, c-SSZ-13, and c-PS-CHA. Thermogravimetric 
(TG) analysis (Fig. S1c) showed weight loss below 200 °C from 
physiosorbed water and between 200–800 °C from OSDA 

decomposition. Combined ICP-OES and TG analyses gave Al2O3 
contents of 30.4% (SAPO-34), 9.4% (SSZ-13), and 0% (PS-CHA). 
Scanning electron microscope (SEM) images (Fig. S1d–f) 
revealed cubic morphologies with sizes of ~15 μm (SAPO-34), 
~240 nm (SSZ-13), and ~20 μm (PS-CHA).
2.2 Synthesis and Characterizations of CHA zeolites

Five CHA zeolites were synthesized OSDA-free using a gel of 20 
SiO2: 1 Al2O3: 6 Na2O: 1 Cs2O: 2000 H2O and 20 wt.% seed. 
Products were named CHA-S34-3.4, CHA-S13-4.1, and CHA-PS-
4.3, where the final number denotes the Si/Al ratio. By tuning 
gel composition, CHA-S34-3.8 and CHA-PS-3.8 were also 
obtained.

Table 1 Si/Al ratios and BET surface areas of the CHA zeolites.

a Determined by the ICP-OES analyses. b Determined by the 29Si NMR MAS analyses. 
c All samples are H-type. d T-plot method.

XRD confirmed high crystallinity in all samples (Fig. 1a). 
SEM showed aggregates of irregular grains (Fig. S2). N2 
adsorption isotherms (Fig. 1b) were type I, with micropore areas 
of 713–745 m²/g and volumes of 0.257–0.265 cm³/g (Table 1), 
consistent with literature.28 29Si MAS NMR (Fig. 1c) showed 
signals at −99, −105, and −110 ppm, corresponding to Si(2Si, 
2Al), Si(3Si, 1Al), and Si(4Si, 0Al), respectively.29 Gaussian 
deconvolution yielded Si species distributions and Si/Al rations 
(Table S1), which matched ICP-OES results (Table 1). 27Al MAS 
NMR (Fig. 1d) exhibited only tetrahedral Al at 59 ppm. For CHA-
S34-3.4 and CHA-S34-3.8, 31P MAS NMR (Fig. S3) and ICP-OES 
confirmed no phosphorus incorporation from SAPO-34 seeds.

Sample Si/Ala Si/Alb
SBET 

(m2/g)c

Smicro 

(m2/g)
Vtotal 

(cm3/g)
Vmicro 

(cm3/g)d

CHA-S34-3.4 3.4 3.5 716 703 0.301 0.258
CHA-S13-4.1 4.1 4.3 713 703 0.305 0.257
CHA-PS-4.3 4.3 4.3 745 731 0.298 0.265
CHA-S34-3.8 3.8 4.0 731 722 0.294 0.263
CHA-PS-3.8 3.8 3.8 731 722 0.308 0.263

Fig. 1 (a) Experimental and simulated XRD patterns of the CHA zeolites, (b) N2 
adsorption–desorption isotherms of the H form the CHA zeolites at 77 K, (c) 29Si MAS 
NMR spectra of the as-synthesized CHA zeolites, (d) 27Al MAS NMR spectra of the as-
synthesized CHA zeolites.
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Elemental analysis detected little C or N in SAPO-34- or 
SSZ-13-derived CHA. In contrast, CHA-PS-4.3 and CHA-PS-3.8 
contained 3.51 and 2.9 wt.% C, respectively, indicating OSDA 
incorporation from PS-CHA seeds. TG profiles (Fig. S4) 
supported this conclusion. PS-CHA-seeded samples showed two 
weight-loss steps, including one above 400 °C from OSDA 
removal, while SAPO-34- and SSZ-13-derived samples displayed 
only dehydration.30

2.3 Crystallization process

To probe crystallization, we examined CHA-S34-3.4, CHA-S13-
4.1, and CHA-PS-4.3, synthesized from identical gels but 
different seeds. At 0 h, XRD (Fig. 2a, c and e) showed that SSZ-
13 and PS-CHA seeds retained CHA diffraction, whereas SAPO-
34 appeared amorphous. By 9 h, all systems began crystallizing, 
and by 18 h, full CHA crystallinity was achieved. A transient GIS 
phase was observed in PS-CHA (3–12 h) but later disappeared. 
Crystallization curves showed sigmoidal growth kinetics (Fig. 2b, 
d and f).31

SEM (Fig. S5–7) revealed a non-classical crystallization 
pathway: seed dissolution at 0 h, nanoparticle formation by 3–
6 h, aggregation by 6–12 h, and assembly into nanograins by 18 
h.32 Notably, the grain size of the crystallized products 
decreases systematically with increasing Al content in the seed. 
This trend is attributed to the higher solubility of SAPO-34 in 
alkaline media, which generates a large number of nucleation 
sites during the early stage of crystallization.

FT-IR spectroscopy tracked short-range structural 
evolution (Fig. 3ac). Bands near 780 and 720 cm−1 

corresponded to Si–O–Si and Si–O–Al vibrations in single 4-
membered rings (s4r). Bands at ~650 and ~540 cm−1 were 
assigned to double 6-membered rings (d6r).33 After 3 h, s4r 
signals appeared, indicating amorphous aluminosilicate nuclei 
with short-range order. Characteristic d6r signals of CHA, 
appeared earlier with SSZ-13 and PS-CHA seeds (3 h) but only 
after 9 h with SAPO-34, consistent with its slower crystallization 
in XRD.34

2.4 Influence of synthesis parameters

2.4.1 Role of alkali cations
Without seeds, Na+ and K+ gels gave only amorphous products. 
With seeds, Na+ produced PHI (SAPO-34), CHA + MOR (SSZ-13), 
and CHA + GIS (PS-CHA). K+ yielded pure CHA with SAPO-34 and 
SSZ-13 (Si/Al = 3.0 and 3.2, respectively), but CHA + ERI with PS-
CHA. Strikingly, Cs+ enabled pure CHA crystallization even 
without seeds, attributed to its larger radius and lower charge 
density.35 With Cs+ and seeds, CHA formed with Si/Al ratios of 
3.4 (SAPO-34), 4.1 (SSZ-13), and 4.3 (PS-CHA) (Fig. 4ac).
2.4.2 Role of seed dosage
In Na–Cs systems, seed dosage (5–20%) directly controlled Si/Al 
ratios (Fig. 4d–f, Table S2). SAPO-34 seeds lowered the Si/Al 
ratio with increasing dosage, whereas SSZ-13 and PS-CHA seeds 
increased it. At 5% dosage, Si/Al was ~3.6–3.7; at 20%, values 
reached 3.4 (SAPO-34), 4.1 (SSZ-13), and 4.3 (PS-CHA). Seeds 
thus acted as both nucleation inducers and Si/Al sources, 
enabling systematic composition control. Three 20%-seeded 
products were selected for catalysis.
2.4.3 Role of OSDAs
We next examined the influence of OSDAs retained in the seeds. 
Calcined SAPO-34 (c-SAPO-34) and SSZ-13 (c-SSZ-13) still 
yielded pure CHA with unchanged morphology (Fig. S8a, S9a–

Fig. 2 XRD patterns of the solid products with the varied crystallization time of (a) 
CHA-S34-3.4, (c) CHA-S13-4.1, and (e) CHA-PS-4.3 and the corresponding curves of (b) 
CHA-S34-3.4, (d) CHA-S13-4.1, and (f) CHA-PS-4.3.

Fig. 3 FT-IR spectra of the isolated solid samples throughout the crystallization of (a) 
CHA-S34-3.4, (b) CHA-S13-4.1, and (c) CHA-PS-4.3.
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b), showing that their OSDAs did not contribute to 
crystallization. In contrast, calcined PS-CHA (c-PS-CHA) 
produced only amorphous material, confirming that its OSDA 
was essential. When seeds were replaced by equivalent raw 
materials plus OSDAs, pure CHA formed only in PS-CHA-derived 
mixtures (Fig. S8c–d). SEM revealed morphology changes 
depending on crystallization pathway (Fig. S9c–d).

Why do c-SAPO-34 and c-SSZ-13 still yield CHA, while c-PS-
CHA fails? XRD at 0 h (Fig. S8b) showed that c-SAPO-34 and c-
SSZ-13 resembled their uncalcined counterparts, retaining 
amorphous and CHA features. In contrast, c-PS-CHA-derived 
gels were fully amorphous. As shown in Fig. 2c, uncalcined PS-

CHA displayed CHA peaks at 0 h, whereas c-PS-CHA did not, 
suggesting seed dissolution after calcination.

Previous studies indicate that negatively charged AlO4− 
units and OSDAs stabilize frameworks against OH− attack, 
preserving locally ordered species that promote 
crystallization.36–38 After calcination, c-SAPO-34 and c-SSZ-13 
retain AlO4−, while c-PS-CHA lacks both AlO4− and OSDAs. 
Consequently, c-PS-CHA cannot maintain sufficient short-range 
order to initiate CHA crystallization. These results highlight the 
dual role of OSDA in PS-CHA: directing framework formation 
and protecting seeds from dissolution, thereby preserving 
precursor species essential for CHA crystallization.

Table 2 Comparison of catalytic performance of CHA zeolites for selective synthesis of methylamine under two conditions.

a Molar ratio of the feed gas composition. b Time on stream = 7 h. c MMA plus DMA yield = MeOH conversion × MMA plus DMA selectivity in all carbon base products.

Selectivity (%)
Sample N/Ca WHSVMeOH 

(h−1)b

T 
(℃)

MeOH 
Conversion (%)

MMA DMA MMA + 
DMA

TMA DME
(MMA + 

DMA) Yield 
(%)c

H-CHA-S34-3.4 2 0.813 350 99.6 38.8 40.3 79.1 17.5 2.0 78.8
H-CHA-S13-4.1 2 0.813 350 99.4 31.9 54.3 86.2 7.9 5.0 85.7
H-CHA-PS-4.3 2 0.813 350 97.6 30.5 54.7 85.2 8.9 5.1 83.2
H-CHA-S34-3.8 2 0.813 350 98.8 33.3 54.4 87.7 11.6 0 86.6
H-CHA-PS-3.8 2 0.813 350 97.7 29.0 53.7 82.7 11.5 5.1 80.8
H-CHA-S34-3.4 1 4.3 400 98.6 21.5 55.5 77.0 17.8 4.2 75.9
H-CHA-S13-4.1 1 4.3 400 98.9 26.5 57.9 84.4 8.6 5.8 83.5
H-CHA-PS-4.3 1 4.3 400 98.6 25.9 60.4 86.3 7.4 4.3 84.8
H-CHA-S34-3.8 1 4.3 400 98.8 24.8 63.9 88.7 10.5 0 87.6
H-CHA-PS-3.8 1 4.3 400 98.9 25.3 55.8 81.1 13.6 4.2 80.2

Fig. 4 XRD patterns of products from the (a) NaNa, (b) NaK, and (c) NaCs systems, 
with and without seed crystals. XRD patterns of the products obtained by adding 
different contents of (d) SAPO-34 seed crystals, (e) SSZ-13 seed crystals, and (f) PS-
CHA seed crystals.

Fig. 5 Methanol amination over (a, c, e) H-CHA-S34-3.4, H-CHA-S13-4.1, and H-CHA-
PS-4.3 at 350  °C, N/C = 2, WHSVMeOH = 0.813 h−1; and (b, d, f) the same catalysts at 
400  °C, N/C = 1, WHSVMeOH = 4.3 h−1. Plots show methanol conversion and product 
selectivity.
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2.5 Catalytic performance of CHA zeolites

The catalytic activity of five CHA zeolites—H-CHA-S34-3.4, H-
CHA-S13-4.1, H-CHA-PS-4.3, H-CHA-S34-3.8, and H-CHA-PS-
3.8—was tested under two conditions: (i) 350 °C, N/C = 2, 
WHSVMeOH = 0.813 h−1 and (ii) 400 °C, N/C = 1, WHSVMeOH = 4.3 
h−1. Results are summarized in Table 2, with product trends 
shown in Figs. 5 and 6.

At 350 °C, all catalysts showed stable product distributions, 
whereas at 400 °C, fluctuation were more pronounced. In both 
cases, methanol conversion exceeded 97%. The main 
differences appeared in product selectivity.

For H-CHA-S34-3.4, H-CHA-S13-4.1, and H-CHA-PS-4.3, 
increasing the Si/Al ratio (3.4 → 4.3) enhanced MMA + DMA 
selectivity, lowered TMA selectivity, but increased DME 
formation. Thus, a higher Si/Al ratio suppressed TMA but 
promoted DME. Notably, H-CHA-S34-3.8 deviated from this 
trend: despite having a higher Si/Al ratio than H-CHA-S34-3.4, it 
showed reduced TMA selectivity and no detectable DME. By 
contrast, H-CHA-PS-3.8 (same Si/Al = 3.8) produced significant 
DME, indicating that Al distribution—determined by seed—was 
as important as the Si/Al ratio.
2.5.1 Correlation with Acid Properties
Acidity is a key factor in methanol amination.8 NH3-TPD profiles 
(Fig. S10) were deconvoluted into weak, medium, and strong 
sites (Table S3).39 High acid density promoted deeper 
methylation, giving higher TMA selectivity. At the same time, 
abundant acid sites generated more alkylammonium ions, 
which occupied pore volume and suppressed DME formation.9, 

27 For example, H-CHA-S34-3.4 had the highest acid density, 
consistent with its high TMA selectivity and low DME yield.

Previous studies suggested that reducing acid density 
decreases alkylammonium ion formation, leaving more void 
space for TMA production and diffusion. Strong acidity, on the 
other hand, drives continuous methylation to TMA.3 In our case, 

this effect was less evident, likely because the investigated Si/Al 
ratios covered only a narrow range.7

2.5.2 Influence of Aluminium Distribution
Brønsted acidity originates from framework Al, and its 
distribution strongly affects catalysis. To probe Al siting, Co2+ 
exchange—a standard method to quantify Al pairing—was 
performed. The amount of Co2+ exchanged reflects the 
population of Al pairs at specific crystallographic sites. In CHA, 
Al pairs can occupy τ (τ2Si, τ3Si) sites in 8MRs, ω sites in d6r unit, 
and σ sites in 6MRs.24, 25, 40

Table 3 Al distribution in CHA zeolites.

a Determined by the ICP-OES analyses.

UV–vis spectra of Co2+-exchanged samples (Fig. 7), 
deconvoluted by Gaussian fitting, revealed systematic 
variations in Al distributions (Table 3). While the total fraction 

Paired Al (%)
Sample Co/Ala

Isolated 
Al (%) Total 2Si ω σ

Co-CHA-
S34-3.4

0.38 24 76 33.5 36.5 6.0

Co-CHA-
S13-4.1

0.38 24 76 31.9 37.8 6.3

Co-CHA-
PS-4.3

0.38 24 76 28.9 40.3 6.8

Co-CHA-
S34-3.8

0.38 24 76 33.2 37.4 5.4

Co-CHA-
PS-3.8

0.38 24 76 29.1 40.1 6.8

Fig. 7 UVvis spectra of Co2+ exchanged (a) CHA-S34-3.4, (b) CHA-S13-4.1, (c) CHA-PS-
4.3, (d) CHA-S34-3.8, and (e) CHA-PS-3.8.

Fig. 6 Methanol amination over (a, c) H-CHA-S34-3.8, and H-CHA-PS-3.8 at 350  °C, 
N/C = 2, WHSVMeOH = 0.813 h−1; and (b, d) the same catalysts at 400  °C, N/C = 1, 
WHSVMeOH = 4.3 h−1. Plots show methanol conversion and product selectivity.
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of paired Al sites was comparable across all samples, their 
spatial distributions depended strongly on the seed. The similar 
paired Al contents likely reflect thermodynamic stabilization 
dominated by alkali metal cations. SAPO-34-derived CHA (CHA-
S34-3.4, CHA-S34-3.8) showed higher τ2Si fractions and lower ω 
fractions, indicating preferential Al placement in 8MRs. In 
contrast, PS-CHA-derived CHA (CHA-PS-4.3, CHA-PS-3.8) 
displayed the opposite trend. SSZ-13-derived CHA (CHA-S13-
4.1) exhibited intermediate behavior. These differences arise 
from the greater abundance aluminosilicate species generated 
by SAPO-34 during the early stage of crystallization. This 
enhanced availability provides a kinetic advantage for the 
incorporation of paired Al into the CHA framework. SSZ-13 and 
PS-CHA seeds follow the same trend with progressively weaker 
effects.

This distinction was clearest between H-CHA-S34-3.8 and 
H-CHA-PS-3.8 (Si/Al = 3.8). The former contained more τ2Si Al 
pairs, enriching Brønsted acid sites in 8MRs. This distribution 
explains its unique performance: suppressed TMA selectivity 
and complete elimination of DME.
2.5.3 Benchmarking against Reported Catalysts
The performance of H-CHA-S34-3.8 was compared with 
reported methanol amination catalysts under similar conditions 
(Table 4). Although all systems achieved high conversion, H-
CHA-S34-3.8 delivered superior MMA + DMA yield and, 
importantly, no DME. These results highlight the decisive role of 
Al distribution—particularly enrichment in 8MRs—in dictating 
selectivity.

Table 4 Comparison of catalytic performances of zeolitic catalysts on selective synthesis of methylamine under various conditions.

3. Conclusion
CHA zeolites were synthesized without OSDAs by combining 
alkali cations with seeds of varying Al contents. Cs+, owing to its 
low charge density, promoted CHA crystallization across a wide 
Si/Al ratio range. Seed type and dosage allowed precise control 
over Si/Al ratio and Al distribution.

Catalytic testing demonstrated that both acidity and Al 
distribution govern methanol amination. Among all samples, H-
CHA-S34-3.8 was the most effective, combining high MMA + 
DMA yield with negligible DME formation. This performance 
was linked to its high acid density, moderate acid strength, and 
preferential Al placement in 8MRs.

In summary, this study presents a simple and effective 
route to tailor Al content and distribution in CHA zeolites, 
offering a promising design strategy for high-performance 
methanol amination catalysts.
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Selectivity (%)
Sample Time on 

Stream (h)
N/C WHSVMeOH 

(h−1)
T (℃) MeOH 

Conversion (%)
MMA DMA TMA

(MMA + 
DMA) 

Yield (%)
Ref.

H-CHA-S34-3.8 7 2 0.813 350 98.8 33.3 54.4 11.6 86.6 This work
H-CHA-S34-3.8 7 1 4.3 400 98.8 24.8 63.9 10.5 87.6 This work

H-RHO-8.7 3 2 0.813 350 96.8 - - 13.59 75.3 11

H-RHO-7.3 3 2 0.813 350 98.1 - - 12.99 74.1 11

H-RHO-8.7 10 1 4.3 400 95.9 - - 11.05 65.4 11

H-RHO-7.3 10 1 4.3 400 96.9 - - 13.31 69.4 11

H-ZK-5 3 2 0.813 350 63.4 33.7 52.5 5.1 54.7 13

D-20 12 2 0.813 320 91.4 22.3 60.9 11.3 76.0 19

D-20-700℃ 12 2 0.813 320 82.2 25.0 64.3 5.2 73.4 19

D-20-800℃ 12 2 0.813 320 65.2 29.6 55.7 4.1 55.6 19

H-DNL-6 2.4 2 0.813 300 88.3 26.1 45.9 12.5 63.6 41

M-DNL-6 2.4 2 0.813 300 80.0 24.4 50.7 17.5 60.1 41

L-DNL-6 2.4 2 0.813 300 82.9 21.3 31.9 36.1 44.1 41

SAPO-34 2.8 2 0.813 380 82.0 26.8 54.7 14.5 66.8 9
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