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A crystalline chiral phosphide for the synthesis of
the first P-stereogenic P(III) fluoride: a stable ligand
for the Rh-catalyzed asymmetric arylation of isatins

Laila Al Baridi, Giorgio Parla, Alberto Herrera,* Frank W. Heinemann and
Romano Dorta *

Stable P-stereogenic P(III) fluorides of the type *PR1R2F have long resisted isolation, despite their great

potential as ligands in asymmetric catalysis. We report the synthesis of a crystalline, chiral lithium alkene-

phosphide that undergoes rapid, enantiospecific fluorination with N-fluorobenzenesulfonimide with reten-

tion of configuration to yield the corresponding fluorophosphinamide–alkene hybrid ligand in >99% ee. The

ligand is configurationally stable up to 100 °C and forms a Rh(I) complex that catalyzes the base- and water-

free asymmetric arylation of isatins to biologically important 3-hydroxyoxindoles with up to 99.5% ee.

Introduction

Despite the fact that Burg and Brendel 66 years ago reported
the synthesis of the first organo-fluorophosphine, namely
(CF3)2PF,

1 the use of P(III) fluorides as ligands in coordination
chemistry is, apart from PF3,

2 scarcely described.3 Applications
in catalysis are even rarer,4 and asymmetric versions have not
yet been reported, due to the lack of effective synthetic methods
towards optically pure fluorophosphines. Chiral phosphines are
the ligands of choice for many transition-metal-catalyzed asym-
metric reactions in industry and academia.5 Of special interest
are P-stereogenic phosphines, which place chirality in proximity
of the metal center. This concept gained industrial maturity
with Monsanto’s L-Dopa process in the late 1970’s, for
which Knowles was awarded the Nobel prize.6 However, the syn-
thesis of enantiopure P-stereogenic compounds is notoriously
difficult7 and a topic of high relevance to asymmetric catalysis.8

In particular, the stereoselective installation of a P–F bond in

P-stereogenic phosphine ligands has remained elusive so far
and is of prime interest because it would allow to introduce
strong steric and electronic differentiation on the P-donor and
considerably widen the diversity of chiral ligand design.9 Even
though the P–F bond is polar and possesses a significant
strength of 545 kJ mol−1,10 applications of fluorophosphines in
catalysis have been hampered by their high propensity towards
redox disproportionation.4

In a recent evolution of the ‘privileged ligand’ 111 we
found the planar chirality in the diastereomers (pS,R)-2 and
(pR,R)-2 to completely overwhelm the axial chirality of the
potent binol auxiliary in the enantioselective Hayashi-
Miyaura reaction.12 Some years ago, we explored the possi-
bility to introduce the promising P-chiral tert-butylmethyl-
phosphine function13 to such systems by isolating the
stereochemically stable ligand rac-3.14 Having taken inspi-
ration from the seminal reports on P-stereogenic P(III)-fluor-
ides by Wild,15 Pringle,4b Puckette,4e and others,16 we dis-

close here a perfectly stereoselective P–F bond forming
protocol that allowed us to isolate the first enantiopure
P-stereogenic P(III) fluoride, its Rh(I) complex, and use in
catalytic asymmetric C–C bond formation.
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Results and discussion
We opted for Livinghouse’s protocol for the synthesis of opti-
cally pure P-stereogenic phosphines via chiral phosphide inter-
mediates obtained by enantioselective deprotonation of sec-
ondary phosphine-boranes, which then are quenched with
organic electrophiles.17 In our case, the diastereomerically pure,
BH3-protected, secondary phosphinamide rac-6 (Scheme 1) is
prepared by reducing diastereomerically enriched (d.r. > 98 : 2)
chlorophosphine rac-4 with LiAlH4 to almost diastereopure rac-5
followed by protection with BH3·THF. Deprotonation of 23.4 g of
rac-6 with the n-BuLi/(−)-sparteine mixture in Et2O at −40 °C,
yields 13.7 g of phosphide (pR,SP)-7. Non-decoupled NMR
spectra of the 31P, 11B, and 7Li nuclei display multiplets centered
at 96.5, 31.6, and 0.8 ppm, respectively. The molecular mass for
7, estimated by DOSY-NMR (585 g mol−1) corresponds to a
monomer (MW = 612 g mol−1). Single crystals of 7 grow from
1,2-difluorobenzene/Et2O and XRD analysis confirms its absolute
configuration and monomeric structure featuring a P–Li bond
(see Fig. 1) contrasting Livinghouse’s chiral phosphide, in which
the borane moiety bridges the Li-sparteine complex.18 Unlike
Livinghouse’s dynamically resolving system, we think that in our
case the BuLi/sparteine deprotonation enables resolution of the
lithium phosphide sparteine complex by diastereoselective crys-
tallization19 from cold Et2O solutions, which might explain the
modest yields of (pR,SP)-7. The (pS,RP)-antipode is accessible by
using (+)-sparteine (see the SI for details).

With optically pure phosphide (pR,SP)-7 in hand we first vali-
dated its utility as a stereospecific nucleophile for the synthesis
of our well-understood P-alkene rac-3 since earlier attempts of
stereospecific C–N bond formation between lithium phenyl-
dibenzoazepinate20 and enantiopure (R)-(Me)(tBu)PBr(BH3)
(Imamoto’s method)21 only afforded rac-3 albeit in diasteromeri-
cally pure form. Gratifyingly, methyl iodide reacts smoothly with
(pR,SP)-7 to produce the protected phosphinamide (pR,RP)-8 in
99% ee (Scheme 2), which is deprotected to (pR,RP)-3 by

DABCO. Its precise stereochemistry is established by the crystal
structure of the Rh(I) complex 11 (see below and Fig. S1).

Likewise, phosphide (pR,SP)-7 reacts with N-fluorobenzene-
sulfonimide22 with retention of configuration at phosphorous
to the BH3-protected diastereo- and enantiopure amido-t-butyl
fluorophosphine (pR,RP)-9 (Scheme 2).23 P–F bond formation
is evident in 31P{1H} and non-decoupled 19F NMR spectra,
which show a doublet of multiplets and a doublet of quartets
centered at 155.9 ( JPF ≈ 1050 Hz) and −109.4 ppm ( JFP ≈ 1050
Hz, JFH = 16.1 Hz), respectively (Fig. S26). The 1H NMR spec-
trum shows a doublet at 1.09 ppm and broad multiplets
between 0.45–0.26 ppm corresponding to the tBu and BH3

moieties. Enantiopurity was confirmed by chiral HPLC
(Fig. S41 in the SI). Fig. 2 shows the crystal structure of (pR,

Scheme 1 Synthetic route to the enantiopure crystalline phosphide (pR,SP)-7.

Fig. 1 Crystal structure of (pR,SP)-7 (50% displacement ellipsoids, most
H atoms are omitted). Selected distances (Å) and angles (deg): Li1–P1
2.488(3), Li1–N2 1.995(4), Li1–N3 2.024(4), P1–B1 1.956(2), P1–N1
1.7469(15), P1–C21 1.8790(17), C7–C8 1.355(3), N1–P1–Li1 106.06(10),
C21–P1–Li1 121.50(10), N1–P1–C21 112.88(9), N1–P1–C21 103.46(7).
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RP)-9, which confirms the formation of the P–F bond (dP–F =
1.585(10) Å), the absolute configuration of the P-atom, and the
planar chirality of the dibenzoazepine ring, which are (pR,RP).
Importantly, expensive (−)-sparteine can be recycled quantitat-
ively. The basicity of the P-donor in (pR,RP)-9 seems lower than
in (pR,RP)-3,

24 because removal of the BH3 moiety from (pR,
RP)-9 is achieved with NEt3, instead of DABCO affording dia-
stereo- and enantiopure free fluorophosphinamide (pR,RP)-10
in excellent yields. To make sure deprotection did not erode
enantiopurity, (pR,RP)-10 was re-protected with BH3·THF

giving back (pR,RP)-9 in > 99% optical purity. 31P and 19F NMR
spectra show new doublets at 176.7 ppm and −132.3 ppm,
respectively, with JPF = 970.6 Hz. In the 13C NMR spectrum, the
quaternary carbon and the methyl groups of the tBu moiety,
appear at 35 ppm as a doublet of doublets at 35.0 ( JCP =
25.3 Hz, JCF = 12.1 Hz) and 25.4 ppm ( JCP = 19.5 Hz, JCF =
1.7 Hz), respectively. The crystal structure confirms the unal-
tered configuration in (pR,RP)-10 and shows significant elonga-
tion of both the P–F (to 1.6286(10) Å) and P–N bonds com-
pared with (pR,RP)-9 (Fig. 2). Deprotected (pR,RP)-9 is surpris-

Scheme 2 Syntheses of enantiopure (pR,RP)-3 and fluorophosphinamide (pR,RP)-10.

Fig. 2 Crystal structures of (pR,RP)-9 and (pR,RP)-10 (50% displacement ellipsoids, most H atoms are omitted). Selected distances (Å) and angles
(deg) for (pR,RP)-9: P1–F1 1.5851(10), P1–N1 1.6509(14), P1–B1 1.899(2), P1–C21 1.8303(17), C7–C8 1.348(2), F1–P1–N1 106.13(6), F1–P1–B1 109.60
(7), F1–P1–C21 100.51(7), N1–P1–B1 112.98(8). For (pR,RP)-10: P1–F1 1.6286(10), P1–N1 1.6805(12), P1–C21 1.8579(15), C7–C8 1.3540(18), F1–P1–
N1 103.19(6), F1–P1–C21 97.10(6), N1–P1–C21 106.08(6).
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ingly robust: It is air-stable in the solid state and withstands
boiling chloroform and toluene solutions without showing
signs of decomposition or epimerization.

(pR,RP)-3 and (pR,RP)-10 both react with [RhCl(COE)2]2
(COE = cyclooctene) to form the respective P-alkene ligated
dinuclear complexes (pR,RP)-11 (see Fig. S1 in the SI for its
crystal structure) and (pR,RP)-12

25 according to eqn (1).
The 31P{1H} spectrum of (pR,RP)-12 shows the formation
of a single isomer with a doublet of doublets centered at
231.5 ppm ( JPF = 1066 Hz, JPRh = 249.6 Hz), and the non-
decoupled 19F spectrum exhibits a doublet of doublets at
−104.8 ppm ( JF–P = 1065 Hz, JF–Rh = 16.4 Hz). The alkene–C–
H resonates at relatively low frequency as a singlet at

5.70 ppm, indicating alkene coordination. (pR,RP)-12 crystal-
lizes as red blocks from benzene solution, and its crystal
structure in Fig. 3 confirms the bidentate coordination of the
ligands in an anti-fashion to the Rh2Cl4 butterfly core, which
spans an angle of 99° between the square coordination planes
around the Rh atoms. The P–F bond is shorter than in the free
ligand and is comparable to the P–F bond in borane complex 8.
The P–F bond in complex (pR,RP)-12 is significantly shorter than
the P–Me bond in complex (pR,RP)-11, measuring 1.58 vs. 1.82 Å,
respectively (1.63 vs. 1.82 Å in the respective free ligands).
Including the H-atoms of the methyl substituent an even
larger difference in the respective van-der-Waals volumes is
expected. Fluorine substitution at the P-donor also shortens

Fig. 3 Crystal structure of (pR,RP)-12 (50% displacement ellipsoids, H atoms are omitted). Selected distances (Å) and angles (deg): Rh1–Cl1 2.3685
(3), Rh1–Cl1A 2.5010(3), Rh1–P1 2.132(4), Rh1–C7 2.1654(13), Rh1–C8 2.1107(13), C7–C8 1.4330(19), P1–F1 1.5845(10), P1–N1 1.7035(12), F1–P1–
Rh1, 113.35(4), F1–P1–N1 98.17(6), F1–P1–C21 100.23(8)

ð1Þ
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the Rh–P bond in complex (pR,RP)-12 (2.132(4) Å) compared
to (pR,RP)-11 (2.1622(9) Å); a small but statistically signifi-
cant difference.

The P–F ligand (pR,RP)-10 was then benchmarked against
ligands (pR,RP)-2 and (pR,RP)-3 of identical planar chirality in
the base-free arylation of isatins with sodium tetraarylborates26

to biologically important 3-aryl-3-hydroxyoxindoles (Table 1).27

The arylation of benzyl-protected isatin 14a with NaBPh4, is
catalyzed by (pR,RP)-12 bearing the P–F ligand affords 16aa
quantitatively in 86% ee, whereas the previously reported cat-
ionic complex [Rh((pR,R)-2)2][BF4]

12a and (pR,RP)-11 bearing
ligands (pR,RP)-2 and (pR,RP)-3, respectively, give conversions of
<10%. Only with the electron-poor isatin 14b do these catalysts

afford relevant quantities of 16ba. For this product, catalyst (pR,
RP)-11 exhibits good enantioselectivity compared with the much
more active but less selective (pR,RP)-12. The sense of induction
of the ligands with the Me- and the F-substituted P-donors is
identical.28 In situ generation of the cationic catalyst [Rh((pR,R)-
10)2][NTf] pushes the ee of the protected dimethyl hydroxyoxin-
dole 16ca up to 96%. Surprisingly, catalyst (pR,RP)-12 works
even better with unprotected NH isatins29 at reduced catalyst
loadings. Electron-donating substituents at RI para to the NH
function appear to favor enantioselectivity affording hydroxyox-
indoles of very high enantiomeric purity (compounds 16fa,
16ha and 16ia), while N-protection and the use of tetra-p-tolyl-
borate 15b significantly erode enantioselectivity.

Table 1 Benchmarking of ligand (pR,RP)-10 in the water- and base-free catalytic arylation of isatins with tetraarylborates

a Reaction performed at 35 °C for 4 d. bCatalyst formed in situ from (pR,RP)-12 + 2 equiv. (pR,RP)-10 + 2 equiv. AgNTf (for experimental details,
see the SI). c Reaction performed with 1 equiv. of 15b.
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Conclusions

We report a significant advance in the long-standing synthetic
challenge of preparing a stereochemically stable P-stereogenic
fluorophosphines of the type PR1R2F. This was achieved via
enantiospecific electrophilic fluorination of the crystalline
alkene-phosphide (pR,SP)-7, yielding the configurationally
stable fluorophosphinamide (pR,RP)-10 in gram quantities.
This compound introduces a novel donor motif for chiral
ligand design and functions as a bidentate ligand in the Rh(I)
complex (pR,R)-12. In rhodium-catalyzed, water- and base-free
arylations of isatins using NaBAr4 nucleophiles, (pR,RP)-10 per-
forms favorably compared to benchmark planar-chiral ligands
2 and 3, particularly in the arylation of unprotected NH-
isatins. This transformation marks the first application of a
fluorophosphinamide in asymmetric catalysis. Notably in this
context, the P(t-Bu)F synthon outperforms the generally
effective P*(t-Bu)(Me) analog.13 Furthermore, the crystalline
phosphide (pR,SP)-7 provides a versatile platform for accessing
new classes of P-stereogenic P-alkene hybrid ligands, the
exploration of which is currently underway.
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