

RSC Pharmaceutics

Accepted Manuscript

This article can be cited before page numbers have been issued, to do this please use: R. Tiwari, M. Alexander, J. Sanderson, R. A. Broad, C. Peng, D. Jani and S. Qi, *RSC Pharm.*, 2026, DOI: 10.1039/D5PM00237K.

This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication.

Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available.

You can find more information about Accepted Manuscripts in the <u>Information for Authors</u>.

Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal's standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains.

High Precision Deposition and Controlled Release of High Molecular Weight Hyaluronic Acid from Contact Lens Surfaces Using Nanoelectrospray

Rahul Tiwari¹, Matthew Alexander², Julie Sanderson¹, Robert A. Broad³, Cheng-Chun Peng⁴,

Dharmendra Jani⁴ and Sheng Qi^{1*}

¹School of Chemistry, Pharmacy and Pharmacology, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK

²School of Engineering, Mathematics, and Physics, University of East Anglia, Norwich, Norfolk, NR4 7TJ, UK

³CooperVision International Ltd (CVi), 36 School Lane, Chandlers Ford, Eastleigh, SO53 4LY, UK

⁴CooperVision Inc. 6101 Bollinger Canyon Rd, Suite 500, San Ramon, CA 94583, USA

Note: the authors Rahul Tiwari, Matthew Alexander, Robert A Broad and Cheng-Chun Peng are no longer at these addresses. Robert A Broad and Cheng-Chun Peng are no longer employees of CooperVision.

Abstract

Using additive manufacturing processes to selectively modify soft and wet polymer surfaces, such as soft contact lenses, with micrometer levels of precision for applications, including controlled delivery of active ingredients, can be challenging. This study demonstrated the use of a novel nanoelectrospray (nES) process as a technical solution to deposit accurate amounts of high molecular weight hyaluronic acid (HA), a highly water-soluble anionic glycosaminoglycan, on the surface of soft contact lenses, and subsequently release it in a sustained manner. nES allows precise deposition of nano- to micrometer-thick layers outside the central optical zone. To achieve the sustained release of HA from the lens, a chemical modification of the polymer surface was developed to allow the lens surface to be covalently linked with a semi-interpenetrating network (IPN) layer containing entrapped HA after being deposited by nES. Additional zein barrier layers applied by nES over the HA layer led to further reduction of the release rate of HA from the lenses. The results confirmed that the selective nES deposition allowed modification of the lens surface without affecting optical properties in the central vision zone of the soft contact lenses. The results suggested that the HA release kinetics can be strongly affected by multiple factors including the degree of crosslinking, molecular size of crosslinker, the addition of photo-initiator and the polymeric barrier layer. This study demonstrated the potential of nES as an alternative approach for surface modification and drug loading to commercially available contact lenses for treating ocular conditions.

Keywords: photopolymerisation; nanoelectrospraying; controlled release; surface modification; contact lens; ocular drug delivery.

Article. Published on 29 December 2025. Downloaded on 12/29/2025 9:42:33 PM.

Introduction

Hyaluronic acid (HA) is a naturally occurring linear polymer, a component of vertebrate extracellular matrix, that has been found to have an array of physiological/pharmacological functions¹. It is a glycosaminoglycan with repeating units of D-glucuronic acid and N-acetylglucosamine disaccharides². HA is found throughout the tissues of the eye, including the tear film² where it acts as a natural lubricant for the eye and contributes to stabilization of the tear film³.

HA is a component of many commercially available eye drops which can be used in conjunction with contact lenses aiming to provide soothing effects and improve comfort. Despite mucoadhesive properties, the residence time of HA at the ocular surface is limited, with effects reported for up to 30 minutes after instillation⁴⁻⁶ via eye drops. Enhanced comfort therefore has a limited time span and frequent application of HA-containing eye drops is needed. A contact lens that released HA has therefore been proposed⁷ which would be anticipated to improve the contact lens wearing experience by enhancing surface water retention⁸, reducing protein adsorption⁹, and improved wearer comfort. Furthermore, HA has been shown to be effective in improving the signs and symptoms of dry eye disease¹⁰. Therefore, contact lenses capable of providing sustained release of HA would offer significant benefits to wearers who experience dry eye symptoms. This study aims to achieve this by developing a novel type of contact lens with an HA coating.

Controlled drug release by soft contact lenses, also known as drug eluting contact lenses (DECLs), is seen as a highly promising drug delivery method to the eye^{11, 12} due to, for example, improved bioavailability caused by the extended residence time in the post-lens tear film and low dosing needed to achieve therapeutic effects. Various approaches to load contact lenses that deliver HA to the eye have been reported¹³⁻¹⁵, including methods such as soaking⁷, molecular imprinting¹⁶, implant-laden contact lenses¹⁷, physical entrapment of HA in the contact lens^{7, 18, 19} and semi-circular ring-implanted contact lenses^{20, 21}. However, achieving sustained release kinetics of HA from contact lenses is highly challenging^{8, 18, 22-26}. This is mainly due to the extremely high aqueous

solubility of HA which leads to the rapid diffusion and release of the loaded HA from the bulk of the lens material to the external aqueous environment.

A new additive manufacturing method, nanoelectrospray (nES) additive coating, for precision deposition of drug onto commercially available contact lenses was reported recently and was used in this study to develop controlled release of HA from contact lenses²⁷⁻²⁹. Using a custom-built-nES printing system, mask-free deposition on the lens surface can be carried out, enabling patterned coating of the peripheral region of the contact lens to ensure that the central optical area of the lens remains unaffected. The contact lenses with formulations deposited on their inner surface via nES exhibited optical transmittance above the acceptable threshold (>95%) at 600 nm. This confirms that nES deposition provides high spatial precision, enabling targeted coating while preserving the clarity of the optical zone²⁷⁻²⁹.

The present study explored an alternative approach of chemical modification, which enables permanent linking *via* chemical bonding between the surface and the grafted polymer to form stable systems³⁰⁻³⁵. Chemically linking the lens surface to the nES printed HA-loaded polymer aimed to avoid delamination and allow extended release of HA. Among chemical modifications, photo-induced grafting is known to be a useful technique for the modification of polymeric materials^{1, 36-38}. Poly (2-hydroxyethyl methacrylate) (pHEMA)-based soft contact lenses were surface modified with benzophenone before HA-acrylic monomer-based coatings were deposited on the lens. Photo-polymerisation by UV light enabled formation of a cross-linked semi-interpenetrating (semi-IPN) polymer network on the lens surface that traps the HA and provides sustained release of HA. A similar approach has been used which reported a modest 2% reduction in optical acuity was observed for HA-grafted pHEMA, yet transparency remained above >92%, indicating that HA grafting does not significantly impact the optical properties of pHEMA³⁹.

Burst release is a common issue of drug eluting contact lenses which is particularly challenging for water soluble actives, such as HA¹⁵. While simple soaking methods result in a rapid initial release within hours, advanced techniques such as embedding HA-modified nanoparticles, micelles, or polymeric implants within the lens structure are necessary for true sustained release,

Article. Published on 29 December 2025. Downloaded on 12/29/2025 9:42:33 PM.

with studies demonstrating controlled delivery for over 12 days to several weeks^{16, 40-43}. In this study, we evaluated nES's application of rapidly depositing a double-layer coating to slow down the diffusion and release of HA from the lens. UV-induced grafting was used due to its low cost, easy operation and mild reaction conditions⁴⁴⁻⁴⁶. The biological effect of HA is molecular weight (Mw) dependent⁴⁷⁻⁵⁰. HA with high Mw (average 2M Da) is reported to have greater antiinflammatory activity as well as higher water binding capacity to provide better lubricating and soothing effects⁵¹⁻⁵³. It was therefore used in this study. In the double-layer coating, the base coat contained HA and the top-coats chosen in this study, serving as the barrier layer, were zein and poly lactic-co-glycolic acid (PLGA). Both polymers have excellent biocompatibility and biodegradability, as well as effective film-forming properties, which make them commonly used in tablet and therapeutic product coatings^{27, 54, 55}. Zein is considered amphiphilic, but more specifically as a hydrophobic protein with high concentration of non-polar amino acids⁵¹. It has been used previously for controlled drug delivery^{52, 53}. PLGA is hydrophobic biodegradable polymer that has been widely used for controlled and sustained drug delivery in long-acting injectables and implants, mostly in the form of microparticles^{54, 55}. We hypothesize that as a top coat over the HA formulations on contact lenses, its hydrophobic properties may prevent rapidly water diffusion into the PLGA coat, thereby restricting the diffusion of HA polymers and resulting in a sustained HA release.

Experimental

Materials

Sodium hyaluronate (average Mw of 2M Da) (HA) and Biomedics 38 soft contact lenses (Poly(2-hydroxyethyl methacrylate) based), with center thickness range from approximately 0.03–1.00 mm, were supplied by CooperVision Inc. (polymacon, San Ramon, USA; product no longer commercially available). The chemicals used to modified the lenses surface are: 2-hydroxyethyl methacrylate (HEMA) (≥99 %), 2-(diethylamino)ethyl methacrylate (DEAEMA) (99 %), poly(ethylene glycol) diacrylate (PEGDA) (average Mw 575 and 700 Da), benzophenone (BP),

2,2-dimethoxy-2-phenylacetophenone (DMPA), and PLGA Resomer® RG 756 S (M_w 76-115 kDa, lactide:glycolide 75:25). These chemicals and phosphate buffer saline (PBS) tablets (pH 7.3) were purchased from Merck Life Science UK (Haverhill, UK). Purified zein was obtained from Thermo Scientific (Loughborough, UK). Ethanol, acetone, and sodium nitrate were purchased from Fisher Scientific (Loughborough, UK). Milli-Q (Merck Millipore, Watford, UK) ultra-pure water was used for all aqueous solutions. The chemical structures of the monomers, crosslinker and photo-initiators used are shown in **Figure 1**.

Figure 1. The structures of chemicals used to create the semi-IPN network on the lens surface.

Chemical surface modification of contact lenses with HA trapped in semi-IPN layer

The process involved two steps as depicted in **Figure 2**. In the first step, the contact lens was surface modified with Norrish type photo-initiator, benzophenone (BP). The lens was rinsed with Milli-Q water before transferring into a glass vial containing BP (10 mg/mL) in acetone and the solution with lens degassed with nitrogen for 10 minutes to remove the oxygen. After degassing, the solution with lens was placed under UV light (New Iradifire 48W UV LED floodlight with true 365 nm wide beam (100-degree beam angle), UV Gear, Surrey, UK) for 45 – 60 minutes. Although the light intensity was not measured, the height of the UV light sources was fixed for all experiments to ensure no fluctuation of light intensity caused by height. The lens was removed

Open Access Article. Published on 29 December 2025. Downloaded on 12/29/2025 9:42:33 PM.

Figure 2. Schematic illustration of semi-IPN formation on the lens surface under UV light.

Nanoelectrospray (nES) coating of contact lenses

Figure 3a shows a schematic of the custom-made experimental setup for the nES used in this study (PCE Automations, Beccles, UK). The system features a 2.5 mL Luer lock syringe, equipped with a metal nozzle with a 100 μm internal diameter (Nordson EFD, Dunstable, UK). This syringe is mounted on a motorized z-translation stage (EGSC-BS-KF-32-100-8P, Festo SE & Co. KG, Ostfildern, Germany) that allows for vertical movement. Pneumatic pressure, adjustable via an inline pressure gauge, facilitates the nES printing of highly viscous liquids. A high-magnification digital camera (MVL6X12Z, Thorlabs LTD, Ely, UK) monitors the spraying process. A custom-made contact lens holder, as described in previous studies²⁷⁻²⁹ is mounted on a 2D motorized x-y translation stage (5155-1000A, Festo SE & Co. KG, Ostfildern, Germany), enabling simultaneous circular movements. All x, y, and z movements, as well as spraying parameters, are controlled via the machine's built-in digital control panel.

n Access Article. Published on 29 December 2025. Downloaded on 12/29/2025 9:42:33 PM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

Externally connected components include high voltage power supplies (HCP 146500 model, FuG Elektronik GmbH, Schechen, Germany) linked to a high voltage switch (PVX-4140 model, Direct Energy, Houston, TX, USA), which switches the voltage to pulsation mode. A function generator (TG 1000 model, Aim-TTi, Huntingdon, UK) controls the frequency and amplitude of the generated square waves. A current amplifier (DLPCA-200, Laser Components, Chelmsford, UK) amplifies the voltage and connects to a digital storage oscilloscope (TBS1104, Tektronix UK, Bracknell, UK) to monitor the waveform. The amplifier's measurement resistance is set to $10^6 \Omega$. A power supply capable of up to 6 kV provides a voltage range of 1.5 - 3.5 kV to maintain a stable cone-jet. The contact lens is positioned on a motorized xy-translational stage, 3 mm beneath the cone-jet, to enable circular movement. The number of rotations was 90 with 10 mm/s rotation speed for all the coating formulations, including the top and base coats of the double-layer coated lenses. A 100 µm nozzle was used for the spraying with a nozzle to substrate distance (NSD) of 3 mm. A voltage ranges from 1.5-3.5 kV was applied to produce a stable cone-jet for all the formulations. Figure 3b shows the schematic illustration of printed polymer layer (grey colour) at the periphery of the contact lens with no coating in the vision zone of the lens for both single layer and double-layer deposition. For lenses coated with UV-curing treatment, the lenses were washed with Milli-Q water after nES to remove excess unreacted material.

Figure 3. nES setup was used for depositions on contact lenses. Schematic illustration (a) of the nES setup; (b) polymer layer printed at the periphery of contact lens via nES.

Article. Published on 29 December 2025. Downloaded on 12/29/2025 9:42:33 PM.

In the second step of the chemical surface modification of contact lenses with monomers HEMA (for hydrogen bonding with HA) and DEAEMA (cationic charged for electrostatic interaction with HA), crosslinkers (PEGDA₇₀₀ and PEGDA₅₇₅), an additional surface curing photo initiator DMPA (to induce the polymerisation process and reduce the polymerisation time), and HA (Mw, 2M Da, 2 mg/ml, dissolved in water) were mixed in different ratios and deposited on the BP modified contact lens via nES which was kept hydrated after step 1 described earlier. The HA loadings of the lenses were assessed prior to the UV light exposure. After nES, the coated contact lens was exposed to UV light for 15-45 minutes to create the semi-IPN network with trapped HA.

For the double-layer coated lenses, the lenses were coated with a base layer as described above. The single-layer coated lenses were returned to a petri-dish containing water to allow the lenses to relax for 2 hours to its original shape prior to the top layer coating. The PLGA (20 mg/ml in acetone) and zein (25 mg/ml in ethanol/H₂O (70/30) mixture) solutions used for coating were prepared for double layer coated lens as in previous studies ^{27,28}.

Attenuated total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy

A FTIR spectrophotometer (VERTEX 70, Bruker Optics, Ettlingen, Germany), equipped with a Golden Gate, ATR accessory (Specac Ltd., Orpington, UK) and a diamond internal reflection element, was used to examine the contact lens before and after modification. The spectra were collected over a wavenumber range of 500–4000 cm⁻¹ with a resolution of 4 cm⁻¹ and 64 scans at room temperature.

In vitro HA release from HA-loaded contact lenses

HA was assayed by a high-performance liquid chromatography (HPLC) 200 series system (Perkin Elmer, MA, USA) with RI detector set at 35 °C and Waters HSPgel AQ MB-H, 6.0 x 150 mm, Part# 186001790 column (Waters, MA, USA). 0.2 M sodium nitrate dissolved in Milli-Q water

was used as mobile phase. The column temperature was 65 °C and all methods were operating at 0.5 mL/min flow rate. The sample volume was 100 μ L and the measurement time was 10 minutes. The HA calibration assay was carried out by using HA-2M from 3.05 - 54.13 μ g/mL in PBS (pH 7.3). The retention time for HA (Mw 2M Da) was 3.8 min and area under the peak was used to plot the concentration calibration of HA.

The total amount of HA deposited on nES-coated lenses was quantified using HPLC. Each HA-loaded lens was subjected to ultrasonication for 2 minutes in a 6 mL glass vial containing 2 mL of phosphate-buffered saline (PBS, pH 7.3). The vials were sonicated for 2 minutes and then incubated in a shaking incubator for 24 hours to ensure complete delamination and dispersion of the HA polymer from the lens surface into the PBS medium. Triplicate lenses were used for average to determine the amount of HA loading on the lens.

The *in vitro* HA release tests from HA-loaded lenses was performed in 6 mL glass vials containing 2 mL of PBS and placed in a shaking incubator (125 rpm at 35 °C; IKA, Staufen, Germany). At each sampling time point, a 500 μ L of the releasing medium sample was extracted and replaced with fresh PBS pH 7.3 to maintain the perfect sink condition throughout the release experiment. All samples were filtered through a 0.45 μ m filter (to remove any large fragments delaminated from the lens) prior to HPLC analysis, and the HA release profile is plotted as the cumulative HA release (%) over time. The HA release experiments were carried out in triplicate for each sample. Statistical analysis of the drug release data at each time point was performed using one-way ANOVA followed by Tukey's post-hoc test, with p \leq 0.05 considered statistically significant.

Cryogenic-scanning electron microscopy (Cryo-SEM)

Cryo-SEM studies were used to examine the surface of nES printed polymer coats on different substrates using a Gemini 300 series microscope (Zeiss, Ostfildern, Germany), operating at 2-10 kV acceleration voltage. To perform cryo-SEM on contact lenses, the coated hydrated lens was

cut into quarters using a scalpel. All the cryo-SEM samples were sublimated for 2 minutes and sputtered with platinum for 60s at 10 mA.

Viscosity and electrical conductivity measurements

As the viscosity and electrical conductivity of the formulation used for top- and base-coats can significantly affect the nES performance, both properties were measured for all formulations used in this study. The viscosity of each formulation used for nES was measured on a Discovery Hybrid Rheometer (TA Instruments, Delaware, USA) using a 40 mm steel cone plate across an increasing range of shear (0.01–200 1/s) at 25 °C. Data was analysed using TRIOS software (TA Instruments, Delaware, USA). The Carreau model was used to calculate the zero shear viscosity values of the formulations. Electrical conductivity measurements of all the nES formulations were performed by using a Jenway 4510 conductivity meter (Jenway Ltd, Stone, UK) with a microvolume conductivity probe. All measurements were performed at room temperature of 22±2 °C.

Results and discussion

Loading HA on benzophenone (BP)-modified contact lens using nES

The soft contact lenses were modified with the photoinitiator BP under UV light to create an active site for photo-polymerisation. **Figure 4a** illustrates the appearance of a contact lens after modification with BP which remained fully transparent. In this study, it is assumed that the chemical modification and nES coating did not introduce significant changes to the thickness, mechanical properties, or wearability of the contact lenses. These parameters will be systematically evaluated in follow-up experiments beyond the scope of the present study. ATR-FTIR spectra of the modified lens shows a new carbonyl peak at 1650 cm⁻¹ and two benzene peaks (C=C stretches) at 1595 and 1577 cm⁻¹ (**Figure 4b**), indicating the successful modification of photoinitiator on the lens surface^{38, 56, 57}.

Figure 4. (a) Contact lens appearance before and after modification with BP; (b) ATR-FTIR spectra of lens before and after modification with BP (new peaks on BP modified lens indicated by vertical dotted lines).

The HA-acrylic monomer-based mixture containing monomers HEMA, cationic charged DEAEMA, crosslinkers $PEGDA_{700}$ and/or $PEGDA_{575}$ with HA were successfully deposited on the BP modified lens via nES at the periphery of the contact lens surface. Through UV exposure, the goal was to create a semi-IPN network with HA entrapped in the network, thus slowing down the diffusion and release of HA from the lens.

A range of HA-acrylic monomer-based mixture formulations for nES coating were tested. The detailed the amounts of monomers (HEMA and DEAEMA or mixture of both) and crosslinker (PEGDA₇₀₀) of each formulation are shown in **Table 1**. The zero shear viscosity and conductivity of all formulations were measured and were in the range of 50-80 cP and 30-55 μS/cm, respectively. All coating formulations contained HA, with HA-2M lenses without monomer or crosslinkers serving as a control (no UV curing was performed on the control lenses). The control

lenses and the lenses with a code containing 'UV' were all BP-modified lenses. The HA loadings of the lenses were assessed prior to UV-curing. The loading values ranged from 11.55 to 14.84%µg/lens, as seen in **Table 1**. No significant difference in HA loading was observed in the control lenses and those containing monomer/crosslinker (UV-01 to UV-05).

Table 1. nES coating formulations of HA-acrylic monomer-based mixtures containing different volume ratio of monomers and crosslinker (PEGDA₇₀₀ and/or PEGDA₅₇₅) with HA

Lens code	HA* (mL)	PEGDA ₇₀₀ crosslinker (mL)	PEGDA ₅₇₅ crosslinker (mL)	HEMA monomer (mL)	DEAEMA monomer (mL)	Amount of HA deposited on CL (µg)
HA-2M*	1.0	-	-	-	-	14.84 ± 1.17
UV-01	1.0	0.7	-	0.3	-	12.01 ± 2.60
UV-02	1.0	0.9	-	0.1	-	12.85 ± 3.37
UV-03	1.0	0.9	-	0.05	0.05	11.55 ± 2.16
UV-04	1.0	0.9	-	-	0.1	14.73 ± 2.35
UV-05	1.0	-	0.9	0.1	-	12.08± 1.40

^{*} HA (Mw of 2M Da, 1mL, 2 mg/mL concentration) further diluted with 1 mL water to make the final concentration of 1 mg/mL for spraying; HA deposited presented as mean±SD; n = 3.

In vitro HA release from HA-loaded contact lenses

Release profiles of HA from the lenses coated with the formulations UV-01 to UV-04 (**Table 1**) are shown in **Figure 5a**. The control lenses coated with HA without any chemical modification showed that over 95% of the HA was released within the first 60 minutes (**Figure 5a**). UV-01 showed a higher level of initial burst release compared to the other three formulations on the chemically modified lenses (UV-02, UV-03 and UV-04).

Figure 5. (a) Cumulative HA release (%) of the lenses with printed semi-IPN polymer ring using different monomers (HEMA and DEAEMA or mixture of both) and crosslinker (PEGDA₇₀₀) ratio, with the enlarged display of the release profile of the first hour (insert on the right); (b) HA release of lens UV-05 with a lower MW crosslinker, PEGDA₅₇₅, in comparison to UV-02. (Data is presented as mean \pm SD; n = 3)

The diffusion of macromolecules such as HA through a crosslinked polymer network is mainly affected by the size and configuration of the molecule and the crosslinked network, respectively. The surrounding crosslinked polymer network acts as a steric barrier for HA to diffuse. A larger mesh size of the polymer network results in faster diffusion. In addition, HA, being a long-chain molecule, diffuses differently compared to simple particles. It behaves like a sequence of interconnected particles, with each segment of the chain needing to follow the one in front of it. This chain-like structure restricts movement, leading to what is known as the reptation model of

diffusion.^{16, 58, 59} These may have contributed to the reduced release rate observed for HA in the chemically modified lenses.

Two different monomers, two types of crosslinkers and two crosslinker to monomer ratios were used in these formulations. As seen in Figure 5a, the order of the HA release rate is UV-01>UV-04>UV-02 ≈ UV-03 in the first 4 hours of the tests. UV-01, as expected, has the fastest HA release among the tested formulations since it has the lowest crosslinker to monomer ratio (7:3) among all other formulations in Table 1, leading to a less crosslinked polymer network with, therefore, a larger mesh-size. UV-02 and UV-04 have the same crosslinker to monomer ratio (9:1), but different monomer. With a tertiary amine group, DEAEMA (UV-04) is positively charged which introduces ionic character to the polymer network and provides electrostatic interaction with negatively charged carboxyl groups of HA. Although electrostatic interaction is stronger than the hydrogen bonding occurring between HEMA (UV-02) and HA, the difference seen in the HA release rate is not significant. UV-03 used high crosslinker to monomer ratio and HEMA-DEAEMA mixed monomers. It showed a similar HA release rate to UV-04 and UV-02. The overall HA release for these formulations is still relatively fast, reaching 80% release within 14 hours for UV-02, UV-03 and UV-04, with a notable burst release in the first 4 hours.

To attempt to further reduce the HA release rate from the lenses, a lower molecular weight of the crosslinker, PEGDA₅₇₅, was used (UV-05). This was expected to produce a less porous polymer IPN structure on the lens surface^{60, 61}. The PEGDA₅₇₅ crosslinker resulted in a slower HA release compared to PEGDA₇₀₀ (Figure 5b). UV-05 exhibited an initial burst release of 55% HA within the first 30 minutes, which is likely dominated by the HA on the surface of the polymer matrix that is not fully entrapped within the bulk of the IPN network. However, after the first 30 minutes, the release rate of HA from UV-05 treated lenses was notably slower than the lenses treated with PEGDA₇₀₀-based crosslinker, indicating that the shorter-chain PEGDA₅₇₅ crosslinker created a less porous IPN network which slowed down the diffusion and release of the HA from the polymer matrix.

Table 2. nES coating formulations with the addition of DMPA initiators

Lens code	HA* (mL)	PEGDA ₅₇₅ (mL)	HEMA (mL)	DEAEM A (mL)	DMPA* (μL)	UV time (mins)	Amount of HA deposited on CL (µg)
UV-06	1.5	0.9	0.05	0.05	20	10	22.98 ± 3.88
UV-07	1.5	0.9	0.1	-	-	45	18.80 ± 2.25
UV-08	1.5	0.9	0.1	-	50	10	19.13 ± 1.55

* HA (Mw of 2M Da) has a concentration of 2 mg/mL, and DMPA has a concentration of 50 mg/mL; HA deposited presented as mean±SD; n = 3.

To accelerate the polymerisation process for nES HA coating, the photoinitiator DMPA (50 mg/mL) was incorporated with the monomers (HEMA and DEAEMA) and the crosslinker (PEGDA₅₇₅) (**Table 2**). DMPA was selected due to its fast reaction rate and efficiency, even at low concentrations^{62, 63}. The addition of the DMPA initiator further shortened the needed polymerisation time under UV light from 45 minutes to 10 minutes for UV-06 and UV-08. In contrast, UV-07, which did not include DMPA, required 45 minutes to achieve a crosslinked polymer network on the lens surface.

The HA release profile showed a significantly slower initial release in UV-06 and UV-08 than UV-07 (Figure 6). In UV-07, BP on the lens surface, through the modification process prior to nES, is the only available initiator for the reaction at the contact lens/HA coat interface, leading to longer polymerisation time and a crosslinked grafted polymer network^{64, 65}. In contrast, DMPA, through its radical formation and rapid curing process, allowed for faster photo-polymerisation of the sprayed HA ink from the surface to the bottom of the coating in UV-06 and UV-08. Taking into consideration the effects on sustaining the HA release and reducing the curing time, including DMPA in the formulation was carried forward for further formulation optimisation.

Figure 6. Cumulative HA release profiles of the lenses with printed semi-IPN polymer rings with the additional initiator DMPA in the ink formulations. (Data is presented as mean \pm SD; n = 3)

To further reduce the HA release rate, a barrier coating of either PLGA or zein was added to the semi-IPN HA layer, creating a bilayer coating (**Table 3**). These formulations have a HA-2M semi-IPN base-coat (UV-09 with no topcoat), and either zein (UV-10) or PLGA (UV-11) as the topcoat.

Table 3. nES coating formulations of single and double-layer coated contact lenses

Base-coat (for single and double-layer coated lenses)								
Lens code	HA* (mL)	PEGDA ₅	HEMA (mL)	DEAEMA (mL)	DMPA*	UV time (mins)	Amount of HA deposit on CL (μg)	
UV-09	1.5	0.9	0.05	0.05	50	10	18.26 ± 4.56	
Top-coat (for double-layer coated lenses)								
Lens code	Polymer used		H ₂ O (%)	Ethano	Ethanol (%)		Acetone (%)	
UV-10	Zein (25 mg/mL)		30	70	70		0	

UV-11	PLGA (20 mg/mL)	0	0	100

^{*} HA (Mw 2M Da) has a concentration of 2 mg/mL concentration, and DMPA has a concentration of 50 mg/mL; HA deposited presented as mean±SD; n = 3.

Both HEMA and DEAEMA monomers were included with the cross-linker PEGDA₅₇₅ in the base-coat of UV-10 and UV-11. Photo-initiator (DMPA) was included, and a 10-minute exposed to UV light was used to facilitate photo-polymerisation. For UV-09, the HA-monomer formulation was applied to the lens and cured under UV light for 10 minutes. For UV-10 and UV-11, after the 10 minutes curing of the base-coats, a topcoat of zein or PLGA was deposited on top to act as a secondary barrier to HA release. Cryo-SEM images revealed the morphology of different locations of the contact lens surface with a bilayer nES coating. **Figure 7a** shows a top-coat at the peripheral region of the contact lens as illustrated in **Figure 7b**, while the central region (optical zone diameter ~8mm) remained uncoated (**Figure 7c**).

Figure 7. a) A representative cryo-SEM image of the bilayer (semi-IPN as basecoat and zein as topcoat) deposited layer at the periphery on BP modified lens; b) higher resolution of the surface of the bilayer coated lens; c) visual appearance of a bilayer coated lens and schematic diagram to show the cryo-SEM sampling location; d) cryo-SEM image of the center of contact lens (not coated) having smooth surface with no polymer coating.

The release of HA was evaluated from the double-layer coated lenses (UV-10 and UV-11) and compared to the results of single-layer coated lenses (UV-09) (**Figure 8**). The single-layer coated lenses (UV-09) exhibited a rapid initial burst of HA within the first hour of over 50% and over 80% within 5 hours. The double-layer coated UV-11 lenses with PLGA top-coat showed no statistically significant difference in the cumulative release and release rate of HA compared to UV-09. This may be attributed to the higher hydrophobicity of PLGA which led to some level of delamination of the coating during the HA release experiment.

The double-layer coated lenses with zein being the top-coat (UV-10) showed a significant reduction of the total HA release to 35% within 24 hours (Figure 8a) in comparison to UV-09 and UV-11. HA in the base-coat can have dual-directional diffusion, leading to release from both the front of the lens and across the zein top-coat at the back of the lens, as illustrated in Figure 8b. There is almost no release within the first 30 minutes which could be attributed to the lag time for the HA to diffuse across the zein layer as well as the full thickness of the lens. This is followed by 18% release in 1 hour and an additional 17% release between 1-6 hours. Between 6-24 hours, the HA release rate significantly reduced and resulted in 35% cumulative release by 24 hours. The reason for the incomplete HA release within 24 hours could be attributed to the interaction between HA and zein within the hydrated zein network. It has been reported that in the hydrated or film form of zein, it can form a cross-linked or semi-interconnected network⁶⁶⁻⁶⁹. While HA is diffusing through the hydrated zein network, it could interact with zein through electrostatic attraction, hydrogen bonding between NH₂ of HA and C=O of glutamine in zein, and hydrophobic interactions⁶⁶. These interactions could retain HA within the zein layer, leading to the slow and incomplete release observed.

There are two main limitations of nES as a surface deposition method. In the context of contact lens coating, while nES can successfully deliver active ingredients to the surface of both highwater content hydrogel lenses and silicone hydrogel lenses, these compounds are prone to rapid bidirectional diffusion through the lens material, as illustrated in **Figure 8b**. This presents a particular challenge for highly hydrophilic molecules such as HA, which may require chemical modification or advanced formulation strategies to achieve sustained release. More broadly, nES delivers relatively small volumes of formulation per application. Although this is generally sufficient for ocular therapeutics, where drug doses are typically low, it may limit the applicability of nES for other medical devices with small surface areas that require high drug loading.

Figure 8. (a) Cumulative HA release from single- (semi-IPN) and double-layer coated (semi-IPN as base-coat and polymers like zein and PLGA as top-coat) BP modified lens (Data is presented as mean \pm SD; n = 3), (b) graphic illustration of the possible mechanism of sustained and incomplete HA release within 24 hours.

Conclusions

Open Access Article. Published on 29 December 2025. Downloaded on 12/29/2025 9:42:33 PM.

This study used high molecular weight HA (2M), which is an ocular surface comfort agent used

in eye drops and has clinically been used for treating dry eye syndrome, to demonstrate the capability of nES for material deposition on contact lens surfaces with high precision. An IPN approach was developed to 'dock' HA at the peripheral section of the contact lens surface. The selection of monomer type (for hydrogen bonding and electrostatic interaction) with different length of crosslinker (M_w of 700 and 575) and the additional rapid cured photo-initiator impacted on the density of IPN formed and the speed of the curing process. The different mesh-sized IPN network slowed down the HA release from the lens surface after an initial burst release. The deposition of an additional zein or PLGA coat to act as a release barrier on top of HA trapped in IPN base-layer led to further sustained HA release beyond 24 hours from the zein top-coated lenses. nES can be employed to selectively coat the peripheral regions of soft contact lenses, enabling sustained release of HA from the lens. The results of this study demonstrate the potential of nES as a versatile technique for precise surface deposition of active ingredients, with broader applicability across a range of medical devices.

Author Contributions

The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Conflicts of interest:

There are no conflicts to declare.

Data availability

Data is available upon request.

Acknowledgement

Access Article. Published on 29 December 2025. Downloaded on 12/29/2025 9:42:33 PM.

This article is licensed under a Creative Commons Attribution 3.0 Unported Licence

The authors thank CooperVision Inc for funding the project and for providing hyaluronic acid and soft contact lenses for this study.

References:

- (1) Dicker, K. T.; Gurski, L. A.; Pradhan-Bhatt, S.; Witt, R. L.; Farach-Carson, M. C.; Jia, X. Hyaluronan: a simple polysaccharide with diverse biological functions. (1878-7568 (Electronic)). From 2014 Apr.
- (2) Scheuer, C. A.; Rah, M. J.; Reindel, W. T. Increased concentration of hyaluronan in tears after soaking contact lenses in Biotrue multipurpose solution. (1177-5467 (Print)). From 2016.
- (3) Mengher Ls Fau Pandher, K. S.; Pandher Ks Fau Bron, A. J.; Bron Aj Fau Davey, C. C.; Davey, C. C. Effect of sodium hyaluronate (0.1%) on break-up time (NIBUT) in patients with dry eyes. (0007-1161 (Print)). From 1986 Jun.
- (4) Gurny, R.; Ryser Je Fau Tabatabay, C.; Tabatabay C Fau Martenet, M.; Martenet M Fau Edman, P.; Edman P Fau Camber, O.; Camber, O. Precorneal residence time in humans of sodium hyaluronate as measured by gamma scintigraphy. (0721-832X (Print)). From 1990.
- (5) Garcia-Lázaro, S.; Madrid-Costa D Fau Ferrer-Blasco, T.; Ferrer-Blasco T Fau Montés-Micó, R.; Montés-Micó R Fau Cerviño, A.; Cerviño, A. OCT for assessing artificial tears effectiveness in contact lens wearers. (1538-9235 (Electronic)). From 2012 Jan.
- (6) Kaya, S.; Schmidl, D.; Schmetterer, L.; Witkowska, K. J.; Unterhuber, A.; Aranha Dos Santos, V.; Baar, C.; Garhöfer, G.; Werkmeister, R. M. Effect of hyaluronic acid on tear film thickness as assessed with ultra-high resolution optical coherence tomography. (1755-3768 (Electronic)). From 2015 Aug.
- (7) Maulvi, F. A.; Soni Tg Fau Shah, D. O.; Shah, D. O. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome. (1568-5624 (Electronic)). From 2015.
- (8) Singh, A.; Li, P.; Beachley, V.; McDonnell, P.; Elisseeff, J. H. A hyaluronic acid-binding contact lens with enhanced water retention. (1476-5411 (Electronic)). From 2015 Apr.
- (9) Weeks, A.; Boone, A.; Luensmann, D.; Jones, L.; Sheardown, H. The effects of hyaluronic acid incorporated as a wetting agent on lysozyme denaturation in model contact lens materials. *Journal of Biomaterials Applications* **2012**, *28* (3), 323–333. DOI: 10.1177/0885328212446936 (accessed 2024/09/04).
- (10) Hynnekleiv, L. A.-O. X.; Magno, M. A.-O.; Vernhardsdottir, R. R.; Moschowits, E.; Tønseth, K. A.; Dartt, D. A.; Vehof, J. A.-O.; Utheim, T. P. Hyaluronic acid in the treatment of dry eye disease. (1755-3768 (Electronic)). From 2022 Dec.
- (11) Li, C. C.; Chauhan, A. Ocular transport model for ophthalmic delivery of timolol through p-HEMA contact lenses. *Journal of Drug Delivery Science and Technology* **2007**, *17*(1), 69–79.
- (12) Soluri, A.; Hui, A.; Jones, L. Delivery of Ketotifen Fumarate by Commercial Contact Lens Materials. *Optometry and Vision Science* **2012**, *89*(8).

Article. Published on 29 December 2025. Downloaded on 12/29/2025 9:42:33 PM.

- (13) Kim, T. Y.; Lee, G.-H.; Mun, J.; Cheong, S.; Choi, I.; Kim, H.; Hahn, S. K. Smart contact lens systems for ocular drug delivery and therapy. *Advanced Drug Delivery Reviews* **2023**, *196*, 114817.
- (14) Xu, J.; Xue, Y.; Hu, G.; Lin, T.; Gou, J.; Yin, T.; He, H.; Zhang, Y.; Tang, X. A comprehensive review on contact lens for ophthalmic drug delivery. *Journal of Controlled Release* **2018**, *281*, 97–118.
- (15) Lanier, O. L.; G., C. K.; M., M. R.; Yifan, Y.; Poorvajan, S.; and Chauhan, A. Commercialization challenges for drug eluting contact lenses. *Expert Opinion on Drug Delivery* **2020**, *17*(8), 1133–1149.
- (16) Ali, M.; Byrne, M. E. Controlled release of high molecular weight hyaluronic Acid from molecularly imprinted hydrogel contact lenses. (0724-8741 (Print)). From 2009 Mar.
- (17) Desai, A. R.; Maulvi, F. A.; Desai, D. M.; Shukla, M. R.; Ranch, K. M.; Vyas, B. A.; Shah, S. A.; Sandeman, S.; Shah, D. O. Multiple drug delivery from the drug-implants-laden silicone contact lens: Addressing the issue of burst drug release. (1873-0191 (Electronic)). From 2020 Jul.
- (18) Weeks, A.; Subbaraman Ln Fau Jones, L.; Jones L Fau Sheardown, H.; Sheardown, H. Physical entrapment of hyaluronic acid during synthesis results in extended release from model hydrogel and silicone hydrogel contact lens materials. (1542-233X (Electronic)). From 2013 Mar. (19) Huang, C.; Zhang, X. A.-O.; Li, Y.; Yang, X. Hyaluronic acid and graphene oxide loaded silicon contact lens for corneal epithelial healing. (1568-5624 (Electronic)). From 2021 Feb.
- (20) Desai, A. R.; Maulvi, F. A.; Pandya, M. M.; Ranch, K. M.; Vyas, B. A.; Shah, S. A.; Shah, D. O. Co-delivery of timolol and hyaluronic acid from semi-circular ring-implanted contact lenses for the treatment of glaucoma: in vitro and in vivo evaluation. *Biomaterials Science* **2018**, *6* (6), 1580–1591.
- (21) Desai, A. R.; Maulvi, F. A.; Desai, D. M.; Shukla, M. R.; Ranch, K. M.; Vyas, B. A.; Shah, S. A.; Sandeman, S.; Shah, D. O. Multiple drug delivery from the drug-implants-laden silicone contact lens: Addressing the issue of burst drug release. *Materials Science and Engineering: C* **2020**, *112*, 110885.
- (22) Maulvi, F. A.; Soni, T. G.; Shah, D. O. Extended release of hyaluronic acid from hydrogel contact lenses for dry eye syndrome. *Journal of Biomaterials Science, Polymer Edition* **2015**, *26* (15), 1035–1050.
- (23) Huang, C.; Zhang, X.; Li, Y.; Yang, X. Hyaluronic acid and graphene oxide loaded silicon contact lens for corneal epithelial healing. *Journal of Biomaterials Science, Polymer Edition* **2021**, *32*(3), 372–384.
- (24) Alauzun, J. G.; Young, S.; D'Souza, R.; Liu, L.; Brook, M. A.; Sheardown, H. D. Biocompatible, hyaluronic acid modified silicone elastomers. *Biomaterials* **2010**, *31* (13), 3471–3478.
- (25) George, M.; Khong, K.; Maltseva, I. Hyaluronic Acid (HA) Release of HA-Containing Lens Care Solutions with Silicone Hydrogel Lenses. *Contact Lens and Anterior Eye* **2019**, *42* (6), e17–e18. DOI: 10.1016/j.clae.2019.10.059 (accessed 2024/09/04).
- (26) Maulvi, F. A.; Singhania, S. S.; Desai, A. R.; Shukla, M. R.; Tannk, A. S.; Ranch, K. M.; Vyas, B. A.; Shah, D. O. Contact lenses with dual drug delivery for the treatment of bacterial conjunctivitis. *International Journal of Pharmaceutics* **2018**, *548* (1), 139–150.

- (27) Tam, C. H.; Alexander, M. S.; Sanderson, J.; Qi, S. Selectively coated contact lenses by nanoelectrospray (nES) to fabricate drug-eluting contact lenses for treating ocular diseases. *Medical Engineering & Physics* **2024**, *124*, 104110.
- (28) Tam, C. H.; Alexander, M. S.; Qi, S. Precision coating of ocular devices/contact lenses by nanoelectrospray additive printing. *Materials & Design* **2022**, *219*, 110782.
- (29) Bebawy, G.; Sanderson, J.; Qi, S. Nanoelectrospray fabrication of pH-responsive double-layered drug-eluting contact lenses for ocular drug delivery, *International Journal of Pharmaceutics*, **2025**, 686, 126323
- (30) Chen, W.-L.; Cordero, R.; Tran, H.; Ober, C. K. 50th Anniversary Perspective: Polymer Brushes: Novel Surfaces for Future Materials. *Macromolecules* **2017**, *50* (11), 4089–4113.
- (31) Mittal, K. L.; Lee, K.-W. *Polymer surfaces and interfaces: characterization, modification and application*, Vsp, 1997.
- (32) Ruckenstein, E.; Li, Z. Surface modification and functionalization through the self-assembled monolayer and graft polymerization. *Advances in Colloid and Interface Science* **2005**, *113* (1), 43–63.
- (33) Kim, K. J.; Fane, A. G.; Fell, C. J. D. The performance of ultrafiltration membranes pretreated by polymers. *Desalination* **1988**, *70*(1), 229–249.
- (34) Jönsson, A.-S.; Jönsson, B. The influence of nonionic and ionic surfactants on hydrophobic and hydrophilic ultrafiltration membranes. *Journal of Membrane Science* **1991**, *56*(1), 49–76.
- (35) Chan, C. M.; Ko, T. M.; Hiraoka, H. Polymer surface modification by plasmas and photons. *Surface Science Reports* **1996**, *24*(1), 1–54.
- (36) Sangermano, M.; Razza, N. Light induced grafting-from strategies as powerful tool for surface modification. *Express Polymer Letters* **2019**, *13*(2), 135.
- (37) Luan, S.; Zhao, J.; Yang, H.; Shi, H.; Jin, J.; Li, X.; Liu, J.; Wang, J.; Yin, J.; Stagnaro, P. Surface modification of poly(styrene-b-(ethylene-co-butylene)-b-styrene) elastomer via UV-induced graft polymerization of N-vinyl pyrrolidone. *Colloids and Surfaces B: Biointerfaces* **2012**, *93*, 127–134.
- (38) De Smet, N.; Rymarczyk-Machal, M.; Schacht, E. Modification of polydimethylsiloxane surfaces using benzophenone. *Journal of Biomaterials Science, Polymer Edition* **2009**, *20* (14), 2039–2053.
- (39) Korogiannaki, M.; Zhang, J.; Sheardown, H. Surface modification of model hydrogel contact lenses with hyaluronic acid via thiol-ene "click" chemistry for enhancing surface characteristics. (1530-8022 (Electronic)). From 2017 Oct.
- (40) Van Beek, M.; Jones, L.; Sheardown, H. Hyaluronic Acid Containing Hydrogels for the Reduction of Protein Adsorption. *Biomaterials* **2008**, *29*, 780.
- (41) Van Beek, M.; Weeks, A.; Jones, L.; Sheardown, H. Immobilized Hyaluronic Acid Containing Model Silicone Hydrogels Reduce Protein Adsorption. *J. Biomater. Sci., Polym. Ed.* **2008**, *19*, 1425.
- (42) Jones, L.; Mann, A.; Evans, K.; Franklin, V.; Tighe, B. An in Vivo Comparison of the Kinetics of Protein and Lipid Deposition on Group II and Group IV Frequent-Replacement Contact Lenses. *Optometry and Vision Science* **2000**, *77*(10).

- (43) Mun, J.; Mok, J. w.; Jeong, S.; Cho, S.; Joo, C.-K.; Hahn, S. K. Drug-eluting contact lens containing cyclosporine-loaded cholesterol-hyaluronate micelles for dry eye syndrome. *RSC Advances* **2019**, *9* (29), 16578–16585.
- (44) Hans, S.; Andre, C.; Jean-Francois, C.; Hui, G.; Reto, L.; Michael, S.; Gajendran, S. Surface immobilization of biomolecules by light. *Optical Engineering* **1995**, *34*(8), 2339–2348.
- (45) Collioud, A.; Clemence, J. F.; Saenger, M.; Sigrist, H. Oriented and covalent immobilization of target molecules to solid supports: Synthesis and application of a light-activatable and thiol-reactive cross-linking reagent. *Bioconjugate Chemistry* **1993**, *4*(6), 528–536.
- (46) Ulman, A. Formation and Structure of Self-Assembled Monolayers. *Chemical Reviews* **1996**, *96* (4), 1533–1554.
- (47) Tavianatou, A. G.; Caon, I.; Franchi, M.; Piperigkou, Z.; Galesso, D.; Karamanos, N. K. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. (1742-4658 (Electronic)). From 2019 Aug.
- (48) Hu, L.; Nomura, S.; Sato, Y.; Takagi, K.; Ishii, T.; Honma, Y.; Watanabe, K.; Mizukami, Y.; Muto, J. Anti-inflammatory effects of differential molecular weight Hyaluronic acids on UVB-induced calprotectin-mediated keratinocyte inflammation. *Journal of Dermatological Science* **2022**, *107*(1), 24–31. DOI: 10.1016/j.jdermsci.2022.06.001 (accessed 2024/09/04).
- (49) Lee, J. A.-O. X.; Chu, S.; Ben Amara, H. A.-O.; Song, H. Y.; Son, M. J.; Lee, J. A.-O. X.; Kim, H. Y.; Koo, K. A.-O.; Rhyu, I. A.-O. Effects of hyaluronic acid and deproteinized bovine bone mineral with 10% collagen for ridge preservation in compromised extraction sockets. (1943-3670 (Electronic)). From 2021 Nov.
- (50) Litwiniuk M Fau Krejner, A.; Krejner A Fau Speyrer, M. S.; Speyrer Ms Fau Gauto, A. R.; Gauto Ar Fau Grzela, T.; Grzela, T. Hyaluronic Acid in Inflammation and Tissue Regeneration. (1943-2704 (Electronic)). From 2016 Mar.
- (51) Müller-Lierheim, W. A.-O. X. Why Chain Length of Hyaluronan in Eye Drops Matters. LID 10.3390/diagnostics10080511 [doi] LID 511. (2075-4418 (Print)). From 2020 Jul 23.
- (52) Laurent, T. C.; Laurent Ub Fau Fraser, J. R.; Fraser, J. R. The structure and function of hyaluronan: An overview. (0818-9641 (Print)). From 1996 Apr.
- (53) Frescura, M.; Berry M Fau Corfield, A.; Corfield A Fau Carrington, S.; Carrington S Fau Easty, D. L.; Easty, D. L. Evidence of hyaluronan in human tears and secretions of conjunctival cultures. (0300-5127 (Print)). From 1994 May.
- (54) Mastromatteo, M.; Barbuzzi, G.; Conte, A.; Del Nobile, M. A. Controlled release of thymol from zein based film. *Innovative Food Science & Emerging Technologies* **2009**, *10*(2), 222–227.
- (55) Lin, T.; Lu C Fau Zhu, L.; Zhu L Fau Lu, T.; Lu, T. The biodegradation of zein in vitro and in vivo and its application in implants. (1530-9932 (Electronic)). From 2011 Mar.
- (56) Yuan, L.; Qu, B.; Chen, J.; Lv, H.; Yang, X. Engineering modifiers bearing benzophenone with enhanced reactivity to construct surface microstructures. *Polymer Chemistry* **2019**, *10* (35), 4859–4865.
- (57) Türkcan, İ.; Nalbant, A. D.; Bat, E.; Akca, G. Examination of 2-methacryloyloxyethyl phosphorylcholine polymer coated acrylic resin denture base material: surface characteristics and Candida albicans adhesion. *Journal of Materials Science: Materials in Medicine* **2018**, *29*(7), 107. (58) de Gennes, P. G. Reptation of a Polymer Chain in the Presence of Fixed Obstacles. *The Journal of Chemical Physics* **1971**, *55*(2), 572–579.

- (59) Peppas, N. A. Hydrogels in medicine and pharmacy, CRC press Boca Raton, FL, 1986.
- (60) Kędzierska, M.; Bańkosz, M.; Sala, K.; Dudzik, J.; Potemski, P.; Tyliszczak, B. A.-O. Investigating the Effect of the Crosslinking Factor on the Properties of Hydrogel Materials Containing Tilia platyphyllos Hydrolate. LID 10.3390/molecules28207035 [doi] LID 7035. (1420-3049 (Electronic)).
- (61) González-Henríquez, C. M.; Pizarro, G. d. C.; Sarabia-Vallejos, M. A.; Terraza, C. A.; López-Cabaña, Z. E. In situ-preparation and characterization of silver-HEMA/PEGDA hydrogel matrix nanocomposites: Silver inclusion studies into hydrogel matrix. *Arabian Journal of Chemistry* **2019**, *12*(7), 1413–1423.
- (62) Mucci, V.; Vallo, C. Efficiency of 2,2-dimethoxy-2-phenylacetophenone for the photopolymerization of methacrylate monomers in thick sections. *Journal of Applied Polymer Science* **2012**, *123* (1), 418–425.
- (63) Barcelos, L. M.; Borges, M. G.; Soares, C. J.; Menezes, M. S.; Huynh, V.; Logan, M. G.; Fugolin, A. P. P.; Pfeifer, C. S. Effect of the photoinitiator system on the polymerization of secondary methacrylamides of systematically varied structure for dental adhesive applications. *Dental Materials* **2020**, *36*(3), 468–477.
- (64) Chen, J.-S.; Liu, T.-Y.; Tsou, H.-M.; Ting, Y.-S.; Tseng, Y.-Q.; Wang, C.-H. Biopolymer brushes grown on PDMS contact lenses by in situ atmospheric plasma-induced polymerization. *Journal of Polymer Research* **2017**, *24*(5), 69.
- (65) Keskin, D.; Mokabbar, T.; Pei, Y.; Van Rijn, P. The Relationship between Bulk Silicone and Benzophenone-Initiated Hydrogel Coating Properties. In *Polymers*, 2018; Vol. 10.
- (66) Kim, S.; Sessa, D. J.; Lawton, J. W. Characterization of zein modified with a mild cross-linking agent. *Industrial Crops and Products* **2004**, *20*(3), 291–300.
- (67) Taylor, J. R. N.; Johnson, S. K.; Taylor, J.; Njila, S.; Jackaman, C. Oxidation of commercial (α-type) zein with hydrogen peroxide improves its hydration and dramatically increases dough extensibility even below its glass transition temperature. *Journal of Cereal Science* **2016**, *70*, 108–115.
- (68) Schober, T. J.; Bean, S. R.; Tilley, M.; Smith, B. M.; Ioerger, B. P. Impact of different isolation procedures on the functionality of zein and kafirin. *Journal of Cereal Science* **2011**, *54* (2), 241–249.
- (69) Smith, B. M.; Bean, S. R.; Selling, G.; Sessa, D.; Aramouni, F. M. Role of non-covalent interactions in the production of visco-elastic material from zein. *Food Chemistry* **2014**, *147*, 230–238.

RSC Pharmaceutics Accepted Manuscript

View Article Online DOI: 10.1039/D5PM00237K

Data availability

Data is available upon request.