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The integration of Artificial Intelligence (Al) into the pharmaceutical landscape is heralding a
new era of precision medicine, particularly in the domain of drug delivery. Traditional drug
development is notoriously time-consuming, expensive, and prone to high attrition rates. Al,
with its subfields of machine learning (ML) and deep learning (DL), is poised to de-bottleneck
this process by enabling the rational design of intelligent, targeted, and responsive drug
delivery systems (DDS). This review meticulously outlines the transformative role of Al across
the entire spectrum of advanced drug delivery. We explore how Al algorithms leverage vast
chemical and biological datasets to design novel nanocarriers, predict their physicochemical
properties, and optimize their formulation for enhanced efficacy and safety. A significant focus
is placed on Al-driven targeted and stimuli-responsive DDS for oncology, neurological, and
inflammatory diseases. Furthermore, we delve into the emergence of Al-powered closed-loop
systems for autonomous drug release. The review is supplemented with detailed tables
summarizing key algorithms, recent clinical trials, and a landscape analysis of patents,
highlighting the intense commercial and academic interest. Finally, we address the current
challenges—including data quality, regulatory hurdles, and model interpretability—and
propose future directions for the clinical translation of Al-engineered therapeutics. This
synthesis underscores Al not merely as a tool but as a disruptive force, poised to unlock

personalized, predictive, and precise drug delivery paradigms.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Drug Delivery Systems,

Nanomedicine, Personalized Medicine, Targeted Therapy.
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The ultimate goal of drug delivery is to transport a therapeutic agent to its site of action at the
right time and concentration, maximizing efficacy while minimizing off-target effects (1).
Despite decades of research, achieving this remains a formidable challenge. Conventional drug
delivery often suffers from poor bioavailability, non-specific distribution, and suboptimal

pharmacokinetics, leading to reduced therapeutic indices and adverse side effects (2).

The advent of nanotechnology provided the first major leap forward, enabling the development
of sophisticated Drug Delivery Systems (DDS) like liposomes, polymeric nanoparticles, and
dendrimers (3). These systems can improve solubility, extend circulation time, and facilitate
passive targeting through the Enhanced Permeability and Retention (EPR) effect, particularly
in oncology. However, the rational design of these complex systems is non-trivial (4). Their
behaviour in vivo is governed by a multitude of interconnected parameters—size, shape,
surface charge, hydrophobicity, and ligand density—making traditional trial-and-error

approaches inefficient and costly (5).

Enter Artificial Intelligence (AI). Al refers to the capability of a machine to imitate intelligent
human behaviour (6). Machine Learning (ML), a subset of Al, allows systems to learn patterns
from data without being explicitly programmed. Deep Learning (DL), a further subset of ML

using multi-layered neural networks, excels at identifying complex, non-linear relationships in

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

high-dimensional data (7). The pharmaceutical industry, generating immense volumes of data

from high-throughput screening, omics technologies, and medical imaging, is an ideal domain
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for Al application (8).
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This review articulates the profound paradigm shift underway in pharmaceutical sciences,
where artificial intelligence is revolutionizing the field of drug delivery by transforming it from
a largely empirical discipline, reliant on trial-and-error experimentation, into a sophisticated
predictive science (9). We will explore the extensive application of Al across the entire
development pipeline, beginning with the de novo design of novel drug carriers and intelligent
biomaterials with bespoke properties. This extends to the optimization of complex formulation
parameters and the streamlining of manufacturing processes to ensure robustness and
scalability (10). Furthermore, Al is instrumental in enabling precision targeting strategies and
engineering sophisticated stimuli-responsive behaviours for site-specific release. It is also the
core engine powering the next generation of closed-loop systems capable of autonomous

therapy by continuously adapting to patient-specific physiological signals (11). Critically, Al's
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predictive power is being harnessed to model intricate pharmacokinetic and pharmag¢odynd

(PK/PD) profiles, thereby accelerating the selection of optimal candidates. To ground this
technological overview in reality, the review will also present a critical analysis of the current
landscape through an examination of ongoing clinical trials and global patent activities,
ultimately concluding with a discussion of the significant translational challenges and future

directions that will shape this rapidly evolving field (12).
2. Al-Driven Design and Formulation of Nanocarriers

The design of nanocarriers involves selecting from a vast chemical space of materials,
surfactants, stabilizers, and drugs. Al models can navigate this complexity to propose optimal

formulations with desired properties.
2.1. Predictive Modeling of Nanoparticle Properties:

A cornerstone of Al's impact in formulation science is the predictive modeling of nanoparticle
properties, where machine learning (ML) models are trained on extensive historical datasets to
accurately forecast the Critical Quality Attributes (CQAs) of nanocarriers based solely on their
initial formulation parameters (13). This approach leverages a suite of powerful algorithms,
including Support Vector Regression (SVR) for handling high-dimensional spaces, Random
Forest for robust ensemble predictions, Gradient Boosting methods like XGBoost for
maximizing predictive accuracy, and complex Artificial Neural Networks (ANNSs) capable of
deciphering intricate non-linear relationships (14). These models are applied to predict
fundamental characteristics such as particle size, polydispersity index (PDI) which is a key
indicator of homogeneity, zeta potential governing colloidal stability, and drug loading
efficiency crucial for therapeutic efficacy (15). The input variables for these predictions
encompass critical formulation factors like polymer concentration, drug-polymer ratio, and
solvent choice. A prime example of this capability is the use of an ANN to model the complex,
non-linear relationship between the energy input during sonication and the resulting liposome
size distribution, a task that is exceptionally challenging for traditional empirical methods [8].
This data-driven paradigm allows researchers to bypass extensive experimental screening and

rationally design nanoparticles with desired properties from the outset (16).
2.2. Inverse Design of Nanocarriers:

Building upon predictive modeling, a more advanced and powerful application is the inverse

design of nanocarriers. This paradigm flips the traditional discovery process on its head: instead
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of creating a particle and then testing its performance, researchers specify a desjred, in,Jivai o5
outcome such as long circulation time or high tumour accumulation and the AI model
proactively proposes the optimal nanoparticle design to achieve that precise biological goal
(17). This ambitious approach is powered primarily by generative models, which excel at
creating novel, high-dimensional data. Key algorithms enabling this include Generative
Adversarial Networks (GANs), which pit two neural networks against each other to generate
highly realistic candidate designs; Variational Autoencoders (VAEs), which learn the latent,
fundamental structure of existing data to produce new, plausible variations; and reinforcement
learning, which iteratively improves designs based on a reward function tied to the desired
outcome (18). A transformative application of this is the de novo molecular design of entirely
novel biodegradable polymers or lipid-like materials for next-generation lipid nanoparticles
(LNPs). For instance, a GAN can be trained on a vast database of known biomaterials and their
biological properties, learning the complex relationships between chemical structure and
function (19). It can then generate a library of new, virtual candidate molecules predicted to
exhibit optimized properties for specific tasks, such as the highly efficient and stable delivery
of mRNA therapeutics. These Al-proposed candidates are subsequently prioritized for
synthesis and biological testing, dramatically accelerating the discovery of advanced delivery

systems (20).

Table 1: Key AI/ML Algorithms in Drug Formulation

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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Algorithm Type Application in Example
Drug Delivery
= Random Forest Ensemble ML Predicting o
B . Predicting PDI
nanoparticle
) based on
properties, )
formulation
classifying PK
parameters (13).
profiles
Artificial Neural Deep Learning Modeling complex o
' Predicting drug
Network (ANN) non-linear

release kinetics from

relationships in
a hydrogel (21).

formulation
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Convolutional Deep Learning Image analysis for Analyzing TEM e
Neural Network characterization images to quantify
(CNN) nanoparticle
aggregation (22).
Generative Deep Learning Inverse design of Generating novel
Adversarial novel materials and | polymer structures
Network (GAN) carriers for gene delivery
(23).
Reinforcement ML Optimizing drug Personalizing
Learning dosing schedules chemotherapy

regimens in closed-

loop systems (24).
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Figure 1: Al-aided Rational Design of a Nanoparticle Formulation.
3. Al for Targeted and Stimuli-Responsive Drug Delivery

Moving beyond passive targeting, active targeting using ligands (antibodies, peptides) and
stimuli-responsiveness (pH, enzyme, redox) is crucial for precision. Al accelerates the

discovery of targeting moieties and predicts responsive behaviours.
3.1. Ligand Discovery and Selection:

The quest to identify a high-affinity, highly specific ligand such as a peptide, antibody
fragment, or small molecule that targets receptors uniquely overexpressed on diseased cells is

a challenge perfectly suited for artificial intelligence, given the astronomically vast
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Al transcends traditional brute-force screening by integrating a predictive, generative, and
knowledge-driven approach (6). Through advanced virtual screening, models trained on multi-
modal datasets—including structural data from the PDB, biophysical binding affinities from
sources like Binding DB, and genomic-proteomic expression profiles—Ileverage sophisticated
algorithms such as Graph Neural Networks (GNNs) and Convolutional Neural Networks
(CNNs) to perform in-silico evaluations of millions of candidates. These models predict not
only binding affinity but also critical specificity, quantifying off-target risks to ensure
therapeutic safety (25). Furthermore, Al initiates discovery even before ligand design through
knowledge mining: Natural Language Processing (NLP) models like Bio BERT and SciBERT
analyze vast scientific literature and patents to perform advanced named entity recognition and
relationship extraction, identifying novel, high-potential target-receptor pairs—for instance, a
receptor frequently associated with aggressive metastasis but not yet explored therapeutically
(26). This end-to-end capability is exemplified by Insilco Medicine’s fully integrated Al
pipeline, which used its Panda Omics platform for target identification in idiopathic pulmonary
fibrosis (IPF) and its Chemistry42 platform, employing a Generative Adversarial Network
(GAN), for de novo generation of the novel kinase inhibitor ISM001-055 (27). The generator
creates new molecular structures, while the discriminator evaluates them based on drug-
likeness, synthesizability, and binding criteria—a process directly applicable to designing
targeted ligands by training the GAN on ligand databases and specifying desired properties
such as stability, size, affinity, and specificity, thereby producing optimized candidates ready

for experimental validation (28).
3.2. Optimizing Stimuli-Responsive Systems:

The next frontier in precision medicine involves the creation of "smart" drug delivery systems
that function like miniature robots, releasing their therapeutic payload only in response to
specific biological cues. For systems triggered by internal stimuli, such as the acidic pH of a
tumour, high cytoplasmic glutathione, or elevated enzyme levels in diseased tissue—the design
challenge is to engineer materials that remain stable in healthy tissue but undergo a precise
conformational change at the target site. This constitutes a multi-variable optimization problem
of immense complexity, as the formulation must respond to a specific biochemical threshold
without premature release. Traditional empirical methods struggle to navigate this complexity,
as they can only explore a minuscule fraction of the vast chemical design space and fail to

capture the non-linear interactions between polymer chemistry, nanoparticle architecture, and
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the dynamic physiological environment. This challenge is ideally addressed by ,artificiali o5es
intelligence, which enables a predictive simulation approach. Machine learning models, such
as Random Forest and XGBoost, are trained on datasets linking formulation parameters (e.g.,
polymer pKa, cross-linking density, linker chemistry) to release kinetics. These models
uncover hidden structure-activity relationships, allowing for the inverse design of components
like pH-sensitive shells for endosomal escape or enzyme-specific peptide linkers that minimize

off-target cleavage (29, 30, 33).

For external stimuli—such as light, ultrasound, or magnetic fields—the design imperative
shifts to maximizing the efficiency of energy conversion into a triggered release event. This
requires finely tuned material characteristics, such as the phase-transition temperature of
liposomes or the adsorption wavelength of a photolabile cage, which are difficult to optimize
through iterative experimentation alone. Here, Al-driven generative models excel by proposing
novel material combinations and nano-architectures that satisfy a predefined release profile.
For instance, researchers can specify a requirement for minimal drug leakage at baseline but
rapid, complete payload discharge upon exposure to a specific ultrasound frequency or
wavelength of light. The Al algorithm can then propose ideal candidate formulations, such as
liposome compositions with tailored bilayer rigidity or nanoparticle composites with optimized
photothermal efficiency, dramatically accelerating the development of systems with

unprecedented spatiotemporal control (30, 32, 33).
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Figure 2: This figure illustrates a conceptual framework for leveraging artificial intelligence

to advance precision medicine through intelligent drug delivery systems.
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Table 2: Recent Case Studies of AI in Advanced Drug Delivery
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Application

Area

Case Study / Company

Al
Technology

Key Outcome

Reference

mRNA LNP

Formulation

Acuitas

Therapeutics (partnere
d with Pfizer/BioNTech
for COVID-19 vaccine)

ML-based

optimization

Rapid
optimization
of LNP
formulations
for  stability
and efficacy,
crucial for
vaccine

development

speed.

(34)

Novel
Design &

Drug

Delivery

Insilco Medicine

Generative
Adversarial
Networks

(GANs)

Al-generated
novel
molecule
(ISM001-055)
for  fibrosis,
entering
clinical trials.
Demonstrates
integrated Al
approach.

(35)

Predicting
Nanomedicin

e Efficacy

University of Toronto

Research

Random

Forest Model

Al-generated
novel
molecule
(ISM001-055)
for  fibrosis,
entering
clinical trials.
Demonstrates
integrated Al
approach.

(36)
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Closed-Loop Reinforcemen | Developed an | (37).01050/beo1
Insulin t Learning ML model that
Delivery accurately

predicted the
tumour
Doctrine Med accumulation
of
nanoparticles
based on their

physicochemic

al properties.

4. Al in Pharmacokinetics and Pharmacodynamics (PK/PD) Modeling

Predicting the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of a
drug, especially when encapsulated in a complex DDS, is critical. Al enhances traditional

PK/PD modeling.
4.1. PBPK Modeling Enhancement:

Physiologically-Based Pharmacokinetic (PBPK) models are complex mathematical models. Al
can be used to optimize the thousands of parameters within these models for specific

subpopulations or individual patients, moving towards personalized dosing (38).

Al significantly enhances Physiologically-Based Pharmacokinetic (PBPK) models by
personalizing them for individual patients. Traditional PBPK models rely on average
population data, which can be inaccurate for a specific person. Al and machine learning
overcome this by analyzing a patient's unique data—such as their genetics, age, organ function,
and other health conditions—to predict their personal physiological parameters (39). These Al-
predicted parameters are then fed into the sophisticated PBPK model, which acts as a digital
twin of the patient. This allows for the simulation of a highly accurate, personalized drug
concentration-time profile, ultimately moving beyond one-size-fits-all dosing to truly

optimized, individual treatment plans (40).
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4.2. Predicting Drug-Drug Interactions: DOI: 10 1039/D5PM00235D

Al is crucial for predicting dangerous or ineffective combinations between nanocarrier-based
drugs and a patient's other medications (40). These interactions are complex; a second drug
might, for instance, disrupt the nanocarrier's shell, release its payload too early, or block the
cellular pathways it uses to enter tissues. Machine learning models can be trained on vast
datasets of chemical properties, biological targets, and historical interaction reports to identify
subtle patterns that humans would miss (41). By analyzing the molecular features of both the
nanocarrier system and the co-administered drugs, Al can flag potential risks for altered
efficacy or increased toxicity before the treatment is even administered, enabling clinicians to

adjust the therapy or choose a safer alternative (42).
S. Clinical Translation and Patent Landscape

The promise of Al is now being tested in clinical settings, and the intellectual property

landscape is evolving rapidly.
5.1. Clinical Trials:

While many applications are in pre-clinical stages, several Al-informed therapies are
undergoing clinical evaluation. Most are focused on treatment personalization rather than the

DDS itself.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.
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Trial Tid Condition | Al Status | Sponsor
itle
- Identifier Component
3
= NCTO04095 | A Study to Idiopathic
127 Evaluate the Pulmonary
Efficacy and Fibrosis Treatment
Safety of designed by
Insilco
ISMO001-055 in Insilco Phase II o
o ) o Medicine (43)
Participants with Medicine's Al
Idiopathic platform
Pulmonary
Fibrosis
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NCT05304 | Personalising Al algorithm 01 101030, bep
624 Insulin Dosing for | University of
. Type 1 . Recruiti .
Using an ' personalized Cambridge
Diabetes ng
Automated insulin dose (44)
System (PiDaaS) calculation
NCTO03671 | A Study of Type 2
083 LY3298176 Diabetes Use of Al for
(Tirzepatide) in analyzing
Participants with patient data to | Comple | Eli Lilly and
Type 2 Diabetes predict ted Company (45)
Not Controlled response
with Diet and (ancillary)
Exercise Alone
NCT04293 | An Breast
679 Investigational Cancer
Drug Delivery
System - Device- )
Active,
DUROS® focused, but
not AstraZeneca
Subcutaneous data analyzed
recruiti | (46)
Delivery of with ML for
ng
Fulvestrant in PK insights
Women with
Advanced Breast
Cancer
NCTO06335 | A Study of QTY- | Opioid Al-driven
095 Platform Overdose | protein
Designed design. Uses
Proteins for Al to Recruiti | QTY
Opioid Overdose deimmunize ng Therapeutics,
Reversal and optimize (2024) | Inc.

the design of
novel biologic

scavengers
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bind to

opioids,

toxins.

creating a new
drug delivery

mechanism for

View Artjcle Online
(QTY code DOI: 10.1039/D5PM00235D

proteins) that

5.2. Patent Landscape

The patent activity reflects the strategic importance of Al in drug delivery. Key players include

both established pharma giants and agile Al-focused startups.

Table 4: Key Patent Families in Al for Drug Delivery (Representative Examples)

Patent/Publication |
Title Assignee | Key Innovation |
Number |
Systems and Methods ‘ ‘ |
o o Using ML models to predict LNP |
for Designing Lipid . o !
WO02020250182A1 ' . Pfizer formulation parameters for nucleic acid |
Nanoparticles Using . ) ) |
delivery based on desired properties (47). !
Machine Learning |
Methods for ' ) :
Using GAN:Ss for the de novo design of '
Generating Novel Insilco ‘ _ !
US20220028583A1 ] ‘ o drug molecules and potentially their |
Therapeutics Using Medicine ] o |
. delivery modalities (48).
Generative Models l
Al-driven closed-loop system for |
An Apparatus and _ o i
' _ | autonomous drug delivery (e.g., insulin, |
EP3890701A1 Method for Controlling | Medtronic . . . ' |
_ pain relief) based on real-time biosensor
Drug Delivery
data (49).
Machine Learning for | The
Using ML (e.g., CNNs) to analyze
WO02021191376A1 | Characterization of University | o
microscopic images for automated
Nanomedicines of Texas
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6. Challenges and Future Perspectives

Despite the immense potential of Al in revolutionizing drug delivery systems, several
significant challenges must be overcome for its widespread clinical adoption. A primary
bottleneck is the issue of Data Quality and Availability, as Al models are fundamentally
"garbage in, garbage out"; the current lack of large, standardized, and high-quality datasets on
nano-formulations and their in vivo performance severely limits model training, making
initiatives to create open-source, collaborative databases absolutely crucial. Compounding this
is the Model Interpretability or "Black Box" Problem, where complex deep learning algorithms
can deliver accurate predictions but fail to provide a understandable rationale for their
decisions, which is essential for both regulatory approval and building scientific trust—a gap
that the growing field of Explainable AI (XAI) seeks to bridge. Furthermore, there is a
substantial Regulatory Science Lag, as bodies like the FDA and EMA, while progressing on
frameworks for Al in medical devices, are still evolving specific guidelines for Al-driven drug
products, leaving a novel challenge in defining the validation criteria for an Al-generated
formulation or therapy. Finally, successful Integration and Workflow requires more than just
technology; it necessitates a cultural shift within pharmaceutical companies and the upskilling
of scientists to seamlessly incorporate these new tools into existing development pipelines.
Looking to the future, overcoming these hurdles could unlock transformative perspectives,
including Al-powered  "Pharma-factories" capable of the continuous, automated
manufacturing of personalized drug delivery systems, the development of patient-
specific Digital Twins to simulate and optimize therapies in a virtual environment before
administration, and the rise of Multi-modal Al that integrates genomics, proteomics, medical
imaging, and data from real-time biosensors to design dynamic, holistic, and truly personalized

treatment strategies.
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7. Conclusion:

The integration of Artificial Intelligence into drug delivery represents a foundational paradigm
shift from empirical methods to predictive, precision science. Al's value extends systematically
across the entire development pipeline, enhancing material design, formulation optimization,
and therapeutic personalization. Machine learning algorithms now accurately predict critical
quality attributes of complex formulations, while generative models enable inverse design of
tailored drug delivery systems. These Al-driven approaches facilitate creation of sophisticated,
stimuli-responsive systems that function as "intelligent" therapeutic robots, releasing payloads
in response to specific biological cues. The field's advancement depends on addressing three
critical challenges. First, establishing robust, standardized datasets through industry-wide
collaboration is essential for developing trustworthy models. Second, bridging the gap between
computational predictions and clinical efficacy requires advanced multi-scale modeling that
integrates Al with physiological-based pharmacokinetic frameworks. Finally, achieving
widespread adoption necessitates developing interpretable Al and user-friendly interfaces to
build trust among researchers and regulators while democratizing access for non-specialists.
By prioritizing these strategic areas data infrastructure, biologically-relevant modeling, and
translational usability the scientific community can solidify Al's role as an indispensable

partner in therapeutic development. This concerted effort will unlock the technology's full

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

potential, enabling smarter, safer, and highly personalized therapeutics that redefine patient

care standards through precise, predictable drug delivery solutions.
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