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Abstract: 

The integration of Artificial Intelligence (AI) into the pharmaceutical landscape is heralding a 

new era of precision medicine, particularly in the domain of drug delivery. Traditional drug 

development is notoriously time-consuming, expensive, and prone to high attrition rates. AI, 

with its subfields of machine learning (ML) and deep learning (DL), is poised to de-bottleneck 

this process by enabling the rational design of intelligent, targeted, and responsive drug 

delivery systems (DDS). This review meticulously outlines the transformative role of AI across 

the entire spectrum of advanced drug delivery. We explore how AI algorithms leverage vast 

chemical and biological datasets to design novel nanocarriers, predict their physicochemical 

properties, and optimize their formulation for enhanced efficacy and safety. A significant focus 

is placed on AI-driven targeted and stimuli-responsive DDS for oncology, neurological, and 

inflammatory diseases. Furthermore, we delve into the emergence of AI-powered closed-loop 

systems for autonomous drug release. The review is supplemented with detailed tables 

summarizing key algorithms, recent clinical trials, and a landscape analysis of patents, 

highlighting the intense commercial and academic interest. Finally, we address the current 

challenges—including data quality, regulatory hurdles, and model interpretability—and 

propose future directions for the clinical translation of AI-engineered therapeutics. This 

synthesis underscores AI not merely as a tool but as a disruptive force, poised to unlock 

personalized, predictive, and precise drug delivery paradigms.

Keywords: Artificial Intelligence, Machine Learning, Deep Learning, Drug Delivery Systems, 

Nanomedicine, Personalized Medicine, Targeted Therapy.
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1. Introduction: 

The ultimate goal of drug delivery is to transport a therapeutic agent to its site of action at the 

right time and concentration, maximizing efficacy while minimizing off-target effects (1). 

Despite decades of research, achieving this remains a formidable challenge. Conventional drug 

delivery often suffers from poor bioavailability, non-specific distribution, and suboptimal 

pharmacokinetics, leading to reduced therapeutic indices and adverse side effects (2).

The advent of nanotechnology provided the first major leap forward, enabling the development 

of sophisticated Drug Delivery Systems (DDS) like liposomes, polymeric nanoparticles, and 

dendrimers (3). These systems can improve solubility, extend circulation time, and facilitate 

passive targeting through the Enhanced Permeability and Retention (EPR) effect, particularly 

in oncology. However, the rational design of these complex systems is non-trivial (4). Their 

behaviour in vivo is governed by a multitude of interconnected parameters—size, shape, 

surface charge, hydrophobicity, and ligand density—making traditional trial-and-error 

approaches inefficient and costly (5).

Enter Artificial Intelligence (AI). AI refers to the capability of a machine to imitate intelligent 

human behaviour (6). Machine Learning (ML), a subset of AI, allows systems to learn patterns 

from data without being explicitly programmed. Deep Learning (DL), a further subset of ML 

using multi-layered neural networks, excels at identifying complex, non-linear relationships in 

high-dimensional data (7). The pharmaceutical industry, generating immense volumes of data 

from high-throughput screening, omics technologies, and medical imaging, is an ideal domain 

for AI application (8).

This review articulates the profound paradigm shift underway in pharmaceutical sciences, 

where artificial intelligence is revolutionizing the field of drug delivery by transforming it from 

a largely empirical discipline, reliant on trial-and-error experimentation, into a sophisticated 

predictive science (9). We will explore the extensive application of AI across the entire 

development pipeline, beginning with the de novo design of novel drug carriers and intelligent 

biomaterials with bespoke properties. This extends to the optimization of complex formulation 

parameters and the streamlining of manufacturing processes to ensure robustness and 

scalability (10). Furthermore, AI is instrumental in enabling precision targeting strategies and 

engineering sophisticated stimuli-responsive behaviours for site-specific release. It is also the 

core engine powering the next generation of closed-loop systems capable of autonomous 

therapy by continuously adapting to patient-specific physiological signals (11). Critically, AI's 
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predictive power is being harnessed to model intricate pharmacokinetic and pharmacodynamic 

(PK/PD) profiles, thereby accelerating the selection of optimal candidates. To ground this 

technological overview in reality, the review will also present a critical analysis of the current 

landscape through an examination of ongoing clinical trials and global patent activities, 

ultimately concluding with a discussion of the significant translational challenges and future 

directions that will shape this rapidly evolving field (12).

2. AI-Driven Design and Formulation of Nanocarriers

The design of nanocarriers involves selecting from a vast chemical space of materials, 

surfactants, stabilizers, and drugs. AI models can navigate this complexity to propose optimal 

formulations with desired properties.

2.1. Predictive Modeling of Nanoparticle Properties:

A cornerstone of AI's impact in formulation science is the predictive modeling of nanoparticle 

properties, where machine learning (ML) models are trained on extensive historical datasets to 

accurately forecast the Critical Quality Attributes (CQAs) of nanocarriers based solely on their 

initial formulation parameters (13). This approach leverages a suite of powerful algorithms, 

including Support Vector Regression (SVR) for handling high-dimensional spaces, Random 

Forest for robust ensemble predictions, Gradient Boosting methods like XGBoost for 

maximizing predictive accuracy, and complex Artificial Neural Networks (ANNs) capable of 

deciphering intricate non-linear relationships (14). These models are applied to predict 

fundamental characteristics such as particle size, polydispersity index (PDI) which is a key 

indicator of homogeneity, zeta potential governing colloidal stability, and drug loading 

efficiency crucial for therapeutic efficacy (15). The input variables for these predictions 

encompass critical formulation factors like polymer concentration, drug-polymer ratio, and 

solvent choice. A prime example of this capability is the use of an ANN to model the complex, 

non-linear relationship between the energy input during sonication and the resulting liposome 

size distribution, a task that is exceptionally challenging for traditional empirical methods [8]. 

This data-driven paradigm allows researchers to bypass extensive experimental screening and 

rationally design nanoparticles with desired properties from the outset (16).

2.2. Inverse Design of Nanocarriers:

Building upon predictive modeling, a more advanced and powerful application is the inverse 

design of nanocarriers. This paradigm flips the traditional discovery process on its head: instead 
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of creating a particle and then testing its performance, researchers specify a desired in vivo 

outcome such as long circulation time or high tumour accumulation and the AI model 

proactively proposes the optimal nanoparticle design to achieve that precise biological goal 

(17). This ambitious approach is powered primarily by generative models, which excel at 

creating novel, high-dimensional data. Key algorithms enabling this include Generative 

Adversarial Networks (GANs), which pit two neural networks against each other to generate 

highly realistic candidate designs; Variational Autoencoders (VAEs), which learn the latent, 

fundamental structure of existing data to produce new, plausible variations; and reinforcement 

learning, which iteratively improves designs based on a reward function tied to the desired 

outcome (18). A transformative application of this is the de novo molecular design of entirely 

novel biodegradable polymers or lipid-like materials for next-generation lipid nanoparticles 

(LNPs). For instance, a GAN can be trained on a vast database of known biomaterials and their 

biological properties, learning the complex relationships between chemical structure and 

function (19). It can then generate a library of new, virtual candidate molecules predicted to 

exhibit optimized properties for specific tasks, such as the highly efficient and stable delivery 

of mRNA therapeutics. These AI-proposed candidates are subsequently prioritized for 

synthesis and biological testing, dramatically accelerating the discovery of advanced delivery 

systems (20).

Table 1: Key AI/ML Algorithms in Drug Formulation

Algorithm Type Application in 

Drug Delivery

Example

Random Forest Ensemble ML Predicting 

nanoparticle 

properties, 

classifying PK 

profiles

Predicting PDI 

based on 

formulation 

parameters (13).

Artificial Neural 

Network (ANN)

Deep Learning Modeling complex 

non-linear 

relationships in 

formulation

Predicting drug 

release kinetics from 

a hydrogel (21).

Page 5 of 23 RSC Pharmaceutics

R
S

C
P

ha
rm

ac
eu

tic
s

A
cc

ep
te

d
M

an
us

cr
ip

t

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

2 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/1

3/
20

26
 3

:1
5:

46
 A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.

View Article Online
DOI: 10.1039/D5PM00235D

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5pm00235d


Convolutional 

Neural Network 

(CNN)

Deep Learning Image analysis for 

characterization

Analyzing TEM 

images to quantify 

nanoparticle 

aggregation (22).

Generative 

Adversarial 

Network (GAN)

Deep Learning Inverse design of 

novel materials and 

carriers

Generating novel 

polymer structures 

for gene delivery 

(23).

Reinforcement 

Learning

ML Optimizing drug 

dosing schedules

Personalizing 

chemotherapy 

regimens in closed-

loop systems (24).
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Figure 1: AI-aided Rational Design of a Nanoparticle Formulation.

3. AI for Targeted and Stimuli-Responsive Drug Delivery

Moving beyond passive targeting, active targeting using ligands (antibodies, peptides) and 

stimuli-responsiveness (pH, enzyme, redox) is crucial for precision. AI accelerates the 

discovery of targeting moieties and predicts responsive behaviours.

3.1. Ligand Discovery and Selection:

The quest to identify a high-affinity, highly specific ligand such as a peptide, antibody 

fragment, or small molecule that targets receptors uniquely overexpressed on diseased cells is 

a challenge perfectly suited for artificial intelligence, given the astronomically vast 
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combinatorial molecular space and the complex, non-linear nature of molecular recognition. 

AI transcends traditional brute-force screening by integrating a predictive, generative, and 

knowledge-driven approach (6). Through advanced virtual screening, models trained on multi-

modal datasets—including structural data from the PDB, biophysical binding affinities from 

sources like Binding DB, and genomic-proteomic expression profiles—leverage sophisticated 

algorithms such as Graph Neural Networks (GNNs) and Convolutional Neural Networks 

(CNNs) to perform in-silico evaluations of millions of candidates. These models predict not 

only binding affinity but also critical specificity, quantifying off-target risks to ensure 

therapeutic safety (25). Furthermore, AI initiates discovery even before ligand design through 

knowledge mining: Natural Language Processing (NLP) models like Bio BERT and SciBERT 

analyze vast scientific literature and patents to perform advanced named entity recognition and 

relationship extraction, identifying novel, high-potential target-receptor pairs—for instance, a 

receptor frequently associated with aggressive metastasis but not yet explored therapeutically 

(26). This end-to-end capability is exemplified by Insilco Medicine’s fully integrated AI 

pipeline, which used its Panda Omics platform for target identification in idiopathic pulmonary 

fibrosis (IPF) and its Chemistry42 platform, employing a Generative Adversarial Network 

(GAN), for de novo generation of the novel kinase inhibitor ISM001-055 (27). The generator 

creates new molecular structures, while the discriminator evaluates them based on drug-

likeness, synthesizability, and binding criteria—a process directly applicable to designing 

targeted ligands by training the GAN on ligand databases and specifying desired properties 

such as stability, size, affinity, and specificity, thereby producing optimized candidates ready 

for experimental validation (28).

3.2. Optimizing Stimuli-Responsive Systems: 

The next frontier in precision medicine involves the creation of "smart" drug delivery systems 

that function like miniature robots, releasing their therapeutic payload only in response to 

specific biological cues. For systems triggered by internal stimuli, such as the acidic pH of a 

tumour, high cytoplasmic glutathione, or elevated enzyme levels in diseased tissue—the design 

challenge is to engineer materials that remain stable in healthy tissue but undergo a precise 

conformational change at the target site. This constitutes a multi-variable optimization problem 

of immense complexity, as the formulation must respond to a specific biochemical threshold 

without premature release. Traditional empirical methods struggle to navigate this complexity, 

as they can only explore a minuscule fraction of the vast chemical design space and fail to 

capture the non-linear interactions between polymer chemistry, nanoparticle architecture, and 
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the dynamic physiological environment. This challenge is ideally addressed by artificial 

intelligence, which enables a predictive simulation approach. Machine learning models, such 

as Random Forest and XGBoost, are trained on datasets linking formulation parameters (e.g., 

polymer pKa, cross-linking density, linker chemistry) to release kinetics. These models 

uncover hidden structure-activity relationships, allowing for the inverse design of components 

like pH-sensitive shells for endosomal escape or enzyme-specific peptide linkers that minimize 

off-target cleavage (29, 30, 33).

For external stimuli—such as light, ultrasound, or magnetic fields—the design imperative 

shifts to maximizing the efficiency of energy conversion into a triggered release event. This 

requires finely tuned material characteristics, such as the phase-transition temperature of 

liposomes or the adsorption wavelength of a photolabile cage, which are difficult to optimize 

through iterative experimentation alone. Here, AI-driven generative models excel by proposing 

novel material combinations and nano-architectures that satisfy a predefined release profile. 

For instance, researchers can specify a requirement for minimal drug leakage at baseline but 

rapid, complete payload discharge upon exposure to a specific ultrasound frequency or 

wavelength of light. The AI algorithm can then propose ideal candidate formulations, such as 

liposome compositions with tailored bilayer rigidity or nanoparticle composites with optimized 

photothermal efficiency, dramatically accelerating the development of systems with 

unprecedented spatiotemporal control (30, 32, 33).
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Figure 2: This figure illustrates a conceptual framework for leveraging artificial intelligence 

to advance precision medicine through intelligent drug delivery systems.
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Table 2: Recent Case Studies of AI in Advanced Drug Delivery

Application 

Area

Case Study / Company AI 

Technology
Key Outcome

Reference

mRNA LNP 

Formulation

Acuitas 

Therapeutics (partnere

d with Pfizer/BioNTech 

for COVID-19 vaccine)

ML-based 

optimization

Rapid 

optimization 

of LNP 

formulations 

for stability 

and efficacy, 

crucial for 

vaccine 

development 

speed.

(34)

Novel Drug 

Design & 

Delivery

Insilco Medicine Generative 

Adversarial 

Networks 

(GANs)

AI-generated 

novel 

molecule 

(ISM001-055) 

for fibrosis, 

entering 

clinical trials. 

Demonstrates 

integrated AI 

approach.

(35)

Predicting 

Nanomedicin

e Efficacy

University of Toronto 

Research

Random 

Forest Model

AI-generated 

novel 

molecule 

(ISM001-055) 

for fibrosis, 

entering 

clinical trials. 

Demonstrates 

integrated AI 

approach.

(36)
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Closed-Loop 

Insulin 

Delivery

Doctrine Med

Reinforcemen

t Learning

Developed an 

ML model that 

accurately 

predicted the 

tumour 

accumulation 

of 

nanoparticles 

based on their 

physicochemic

al properties.

(37)

4. AI in Pharmacokinetics and Pharmacodynamics (PK/PD) Modeling

Predicting the absorption, distribution, metabolism, excretion, and toxicity (ADMET) of a 

drug, especially when encapsulated in a complex DDS, is critical. AI enhances traditional 

PK/PD modeling.

4.1. PBPK Modeling Enhancement:

Physiologically-Based Pharmacokinetic (PBPK) models are complex mathematical models. AI 

can be used to optimize the thousands of parameters within these models for specific 

subpopulations or individual patients, moving towards personalized dosing (38).

AI significantly enhances Physiologically-Based Pharmacokinetic (PBPK) models by 

personalizing them for individual patients. Traditional PBPK models rely on average 

population data, which can be inaccurate for a specific person. AI and machine learning 

overcome this by analyzing a patient's unique data—such as their genetics, age, organ function, 

and other health conditions—to predict their personal physiological parameters (39). These AI-

predicted parameters are then fed into the sophisticated PBPK model, which acts as a digital 

twin of the patient. This allows for the simulation of a highly accurate, personalized drug 

concentration-time profile, ultimately moving beyond one-size-fits-all dosing to truly 

optimized, individual treatment plans (40). 
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4.2. Predicting Drug-Drug Interactions:

AI is crucial for predicting dangerous or ineffective combinations between nanocarrier-based 

drugs and a patient's other medications (40). These interactions are complex; a second drug 

might, for instance, disrupt the nanocarrier's shell, release its payload too early, or block the 

cellular pathways it uses to enter tissues. Machine learning models can be trained on vast 

datasets of chemical properties, biological targets, and historical interaction reports to identify 

subtle patterns that humans would miss (41). By analyzing the molecular features of both the 

nanocarrier system and the co-administered drugs, AI can flag potential risks for altered 

efficacy or increased toxicity before the treatment is even administered, enabling clinicians to 

adjust the therapy or choose a safer alternative (42).

5. Clinical Translation and Patent Landscape

The promise of AI is now being tested in clinical settings, and the intellectual property 

landscape is evolving rapidly.

5.1. Clinical Trials:

While many applications are in pre-clinical stages, several AI-informed therapies are 

undergoing clinical evaluation. Most are focused on treatment personalization rather than the 

DDS itself.

Table 3: Selected Clinical Trials Involving AI in Drug Delivery/Personalization

Trial 

Identifier
Title

Condition AI 

Component

Status Sponsor

NCT04095

127

A Study to 

Evaluate the 

Efficacy and 

Safety of 

ISM001-055 in 

Participants with 

Idiopathic 

Pulmonary 

Fibrosis

Idiopathic 

Pulmonary 

Fibrosis Treatment 

designed by 

Insilco 

Medicine's AI 

platform

Phase II
Insilco 

Medicine (43)
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NCT05304

624

Personalising 

Insulin Dosing 

Using an 

Automated 

System (PiDaaS)

Type 1 

Diabetes

AI algorithm 

for 

personalized 

insulin dose 

calculation

Recruiti

ng

University of 

Cambridge 

(44)

NCT03671

083

A Study of 

LY3298176 

(Tirzepatide) in 

Participants with 

Type 2 Diabetes 

Not Controlled 

with Diet and 

Exercise Alone

Type 2 

Diabetes Use of AI for 

analyzing 

patient data to 

predict 

response 

(ancillary)

Comple

ted

Eli Lilly and 

Company (45)

NCT04293

679

An 

Investigational 

Drug Delivery 

System - 

DUROS® 

Subcutaneous 

Delivery of 

Fulvestrant in 

Women with 

Advanced Breast 

Cancer

Breast 

Cancer

Device-

focused, but 

data analyzed 

with ML for 

PK insights

Active, 

not 

recruiti

ng

AstraZeneca 

(46)

NCT06335

095

A Study of QTY-

Platform 

Designed 

Proteins for 

Opioid Overdose 

Reversal

Opioid 

Overdose

AI-driven 

protein 

design. Uses 

AI to 

deimmunize 

and optimize 

the design of 

novel biologic 

scavengers 

Recruiti

ng 

(2024)

QTY 

Therapeutics, 

Inc.
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(QTY code 

proteins) that 

bind to 

opioids, 

creating a new 

drug delivery 

mechanism for 

toxins.

5.2. Patent Landscape

The patent activity reflects the strategic importance of AI in drug delivery. Key players include 

both established pharma giants and agile AI-focused startups.

Table 4: Key Patent Families in AI for Drug Delivery (Representative Examples)

Patent/Publication 

Number
Title Assignee Key Innovation

WO2020250182A1

Systems and Methods 

for Designing Lipid 

Nanoparticles Using 

Machine Learning

Pfizer

Using ML models to predict LNP 

formulation parameters for nucleic acid 

delivery based on desired properties (47).

US20220028583A1

Methods for 

Generating Novel 

Therapeutics Using 

Generative Models

Insilco 

Medicine

Using GANs for the de novo design of 

drug molecules and potentially their 

delivery modalities (48).

EP3890701A1

An Apparatus and 

Method for Controlling 

Drug Delivery

Medtronic

AI-driven closed-loop system for 

autonomous drug delivery (e.g., insulin, 

pain relief) based on real-time biosensor 

data (49).

WO2021191376A1

Machine Learning for 

Characterization of 

Nanomedicines

The 

University 

of Texas

Using ML (e.g., CNNs) to analyze 

microscopic images for automated 
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characterization of nanoparticle size and 

shape (50).

6. Challenges and Future Perspectives

Despite the immense potential of AI in revolutionizing drug delivery systems, several 

significant challenges must be overcome for its widespread clinical adoption. A primary 

bottleneck is the issue of Data Quality and Availability, as AI models are fundamentally 

"garbage in, garbage out"; the current lack of large, standardized, and high-quality datasets on 

nano-formulations and their in vivo performance severely limits model training, making 

initiatives to create open-source, collaborative databases absolutely crucial. Compounding this 

is the Model Interpretability or "Black Box" Problem, where complex deep learning algorithms 

can deliver accurate predictions but fail to provide a understandable rationale for their 

decisions, which is essential for both regulatory approval and building scientific trust—a gap 

that the growing field of Explainable AI (XAI) seeks to bridge. Furthermore, there is a 

substantial Regulatory Science Lag, as bodies like the FDA and EMA, while progressing on 

frameworks for AI in medical devices, are still evolving specific guidelines for AI-driven drug 

products, leaving a novel challenge in defining the validation criteria for an AI-generated 

formulation or therapy. Finally, successful Integration and Workflow requires more than just 

technology; it necessitates a cultural shift within pharmaceutical companies and the upskilling 

of scientists to seamlessly incorporate these new tools into existing development pipelines. 

Looking to the future, overcoming these hurdles could unlock transformative perspectives, 

including AI-powered "Pharma-factories" capable of the continuous, automated 

manufacturing of personalized drug delivery systems, the development of patient-

specific Digital Twins to simulate and optimize therapies in a virtual environment before 

administration, and the rise of Multi-modal AI that integrates genomics, proteomics, medical 

imaging, and data from real-time biosensors to design dynamic, holistic, and truly personalized 

treatment strategies.
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7. Conclusion:

The integration of Artificial Intelligence into drug delivery represents a foundational paradigm 

shift from empirical methods to predictive, precision science. AI's value extends systematically 

across the entire development pipeline, enhancing material design, formulation optimization, 

and therapeutic personalization. Machine learning algorithms now accurately predict critical 

quality attributes of complex formulations, while generative models enable inverse design of 

tailored drug delivery systems. These AI-driven approaches facilitate creation of sophisticated, 

stimuli-responsive systems that function as "intelligent" therapeutic robots, releasing payloads 

in response to specific biological cues. The field's advancement depends on addressing three 

critical challenges. First, establishing robust, standardized datasets through industry-wide 

collaboration is essential for developing trustworthy models. Second, bridging the gap between 

computational predictions and clinical efficacy requires advanced multi-scale modeling that 

integrates AI with physiological-based pharmacokinetic frameworks. Finally, achieving 

widespread adoption necessitates developing interpretable AI and user-friendly interfaces to 

build trust among researchers and regulators while democratizing access for non-specialists. 

By prioritizing these strategic areas data infrastructure, biologically-relevant modeling, and 

translational usability the scientific community can solidify AI's role as an indispensable 

partner in therapeutic development. This concerted effort will unlock the technology's full 

potential, enabling smarter, safer, and highly personalized therapeutics that redefine patient 

care standards through precise, predictable drug delivery solutions.
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