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13 Abstract

14 This study presents the synthesis, characterization, and application of molybdenum 

15 diselenide/single-wall carbon nanotube (MoSe2/SWNT) core-shell structures as a new platform 

16 for in-materio physical reservoir computing. The hybrid material was fabricated via a modified 

17 hydrothermal process, yielding a conductive SWNT network uniformly coated with 

18 semiconducting MoSe2. Structural and electrical characterizations (XPS, XRD, SEM, TEM, I–V, 

19 and EIS) confirm a crystalline fibrous core–shell morphology that exhibits a voltage-driven 

20 transition from a capacitive high-resistance state to a space-charge limited conduction (SCLC) 

21 regime. Physical reservoir computing based on MoSe2/SWNT thus leverages SCLC dynamics, 

22 where trap-controlled transport generates higher harmonics and short-term memory, providing the 

23 essential nonlinearity and fading memory required for temporal processing. Consequently, the 

24 MoSe2/SWNT device achieves strong performance in benchmark tasks, including waveform 

25 reconstruction (NMSE < 0.1 across multiple periodic functions), NARMA2 time-series prediction 

26 (90% accuracy), and memory capacity evaluation. These results establish a direct link between 

27 device physics and computational capability, highlighting MoSe2/SWNT hybrids as a scalable 

28 candidate for next-generation neuromorphic hardware.

29

30 Keywords: Core-shell structure, metal-semiconductor hybrid material, Memristive devices; 

31 Neuromorphic computing; Nonlinear dynamics; Space-charge limited conduction.

32

33 1. Introduction

34 The rapid advancement of materials science has catalysed the development of novel nanostructures 

35 with unique electrical and electrochemical properties, making them promising candidates for 
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36 physical reservoir computing (PRC) and hardware implementations of neuromorphic computing 

37 systems1–4. PRC leverages the inherent dynamic behaviours of physical systems to perform 

38 complex information processing tasks5,6, offering a simplified training process and significantly 

39 reduced power consumption compared to conventional recurrent neural networks. This approach 

40 makes PRC an attractive solution for overcoming the limitations of traditional von Neumann 

41 architectures2,5–7, particularly in applications such as time-series prediction, classification, and 

42 pattern recognition. The core principle of PRC involves transforming input signals into a high-

43 dimensional state space using a dynamic reservoir, followed by a simple linear classification or 

44 regression8,9. The reservoir, composed of a network of nonlinear elements, is essential for 

45 providing the nonlinearity and memory required to capture temporal dependencies. PRC has 

46 demonstrated success across various domains, including robotics, autonomous systems, and 

47 emulation of biological neural networks8–20.

48 Among the various nanostructures investigated for in-materio PRC, memristive nanowire 

49 networks have attracted significant attention due to their self-organizing, designless nature that 

50 mimics the topology and emergent behaviours of biological neuronal circuits21–25. Noteworthy 

51 examples include Ag nanowire random network19,21,23,26–31, and Ag-Ag2S core-shell nanoparticle 

52 network32–39 which typically rely on metallic or filamentary conduction to generate nonlinear 

53 dynamics. Alongside these filamentary systems, reservoirs such as sulfonated polyaniline 

54 networks20 and single-wall carbon nanotube and polyoxometalate (SWNT/POM)40, as well as 

55 Iodobismuthate complexes41, which exhibit redox-based conduction, have been explored and have 

56 shown demonstrated high proficiency in waveform reconstruction and temporal pattern 

57 recognition in reservoir tasks. In addition, semiconducting polymers like P3HT42 have 

58 demonstrated nonlinear responses arising from molecular orientation effects, further broadening 
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59 the range of explored materials. Despite progress in the development of metal/insulator core–shell 

60 nanostructures and semiconducting polymer nanowires, the potential of metal/semiconductor 

61 core–shell nanostructures for PRC remains underexplored. Such hybrid systems are particularly 

62 attractive because they can merge efficient charge transport from a conductive network with the 

63 tuneable nonlinearity of a semiconductor shell, enabling both stability and richer temporal 

64 dynamics. In particular, molybdenum diselenide/Single-wall carbon nanotube (MoSe2/SWNT) 

65 core–shell structures combine the exceptional electrical conductivity of SWNTs43 with the 

66 semiconducting nature of MoSe2
44–47, offering enhanced electrochemical activity, high surface 

67 area, and unique nonlinear dynamics. 

68 MoSe2/SWNT hybrids have already been applied in diverse fields, such as solar cells48–50, 

69 photonics14, optoelectronics51–53, sensors54, hydrogen evolution55–60, supercapacitors61,62 , and 

70 batteries63–65. However, their potential for PRC applications has remained largely untapped. The 

71 intrinsic properties of these hybrids, specifically their rich nonlinear response and dynamic charge 

72 transport, align closely with the fundamental requirements of PRC. Previous in-materio PRC 

73 devices show that the conduction mechanism strongly influences task performance. Ag2S 

74 islands36,38, Ag-Ag2S nanoparticle systems32–35, and Ag nanowire systems21,28,29 rely on 

75 filamentary switching, which can produce nonlinear dynamics but often leads to variability in 

76 waveform and NARMA tasks. Redox-based systems, such as sulfonated polyaniline networks20, 

77 iodobismuthate complexes41, nickel complexes66, and SWNT/POM40,67 hybrids have achieved 

78 good task performance, yet their reliance on faradaic processes can introduce variability and limit 

79 harmonic preservation. Semiconducting polymers such as P3HT42, on the other hand, exhibit 

80 orientation-dependent conduction that supports certain temporal tasks but provides limited 

81 harmonic richness. In contrast, the MoSe₂/SWNT hybrid operates in an SCLC regime, where trap-
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82 controlled conduction generates higher harmonics and short-term memory, providing a more 

83 favourable basis for achieving high accuracy in diverse AI benchmarks. Recent studies on 

84 electrochemical reactions and nonlinear dynamics in similar composites further underscore their 

85 suitability for such applications40,55. 

86 Conventional MoSe2-based devices typically employ vertical or sandwich-type 

87 architectures with filamentary conduction mechanisms47,68,69, which can compromise device 

88 reproducibility and scalability. In contrast, our approach utilizes MoSe2/SWNT hybrids with non-

89 reactive aluminium electrodes in a horizontal architecture. This design intentionally suppresses the 

90 extrinsic filamentary effects (i.e., electrochemical metallization) often associated with active 

91 electrodes like Ag, shifting the conduction mechanism toward intrinsic, bulk-limited space-charge 

92 limited conduction (SCLC). This design emphasizes intrinsic resistive switching over extrinsic 

93 filamentary effects, offering improved suitability consistent switching dynamics, utilizing the 

94 random network's heterogeneity for high-dimensional projection while maintaining stability 

95 through bulk-dominated conduction. Additionally, the SWNT network plays a critical role in 

96 enhancing electrical conductivity and fostering the essential non-linear dynamics required for 

97 PRC70. By systematically investigating the synthesis, characterization, and PRC performance of 

98 MoSe2/SWNT hybrids, this study bridges a critical gap in current research and highlights a 

99 promising pathway toward stable, scalable, and energy-efficient neuromorphic computing devices. 

100 Our work introduces a novel materials platform that synergistically combines designless self-

101 organization with intrinsic nonlinear dynamics, paving the way for the development of next-

102 generation AI hardware capable of supporting edge computing, robotics, and energy-efficient, 

103 thereby addressing the urgent demand for greener and smarter computational technologies.

104
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105 2. Experimental Method

106 2.1. Synthesis of MoSe2/SWNT core-shell structure

107 MoSe2/SWNT composites were synthesized following an approach adapted from several methods, 

108 with modifications to the precursor amounts and SWNT content 47,71. All chemicals were 

109 purchased from Sigma Aldrich, except for hydrazine hydrate (N₂H₄·H₂O, 97%), which was 

110 obtained from Wako. To start the synthesis, 0.5 mmol of sodium molybdate dihydrate 

111 (Na2MoO4·2H2O) and 1 mmol of selenium powder were used as precursors. To prepare the 

112 precursor solution, sodium molybdate was dissolved in a mixture of 20 mL deionized (DI) water 

113 and 10 mL ethanol together with varying amounts of SWNTs (0 mg, 1 mg, 5 mg, and 10 mg). 

114 Separately, selenium powder was dissolved in 10 mL hydrazine hydrate under magnetic stirring at 

115 room temperature, resulting in a dark red solution that confirmed the formation of the selenium 

116 precursor. The two solutions were combined and transferred into a Teflon-lined stainless-steel 

117 autoclave, which was then sealed and heated at 180°C for 12 hours to facilitate the hydrothermal 

118 reaction and form the MoSe2/SWNT composite. After the reaction, the product was thoroughly 

119 washed several times with ethanol and DI water to remove residual reactants and by-products. The 

120 final MoSe2/SWNT powder was filtered and dried in an oven at 70 °C. This modified synthesis 

121 yields composites with systematically varied SWNT content, enabling a detailed investigation of 

122 the effects of precursor concentration and SWNT loading on material properties.

123
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124 2.2. Structural characterization

125 X-ray diffraction spectroscopy (XRD) was performed using a Rigaku Smart Lab with a Cu–Kα 

126 source. X-ray photoelectron spectroscopy (XPS) (Kratos Axis) with a monochromatic Al Kα X-

127 ray source was utilized. Scanning electron microscopy (SEM) was performed using the Thermo 

128 Scientific Quattro SEM, and transmission electron microscopy (TEM) was performed using JEOL 

129 JEM-2100 Plus.

130 2.3. Electrical characterization

131 I-V measurements were performed by using a semiconductor parameter analyser (Keysight 

132 B1500A). V-t measurements were performed by using a data acquisition (DAQ) system (National 

133 Instruments PXIe-6363 and SCB-68A). A custom LabVIEW program was used to apply input 

134 signals and record the output responses. Electrochemical impedance spectroscopy (EIS) 

135 measurements were performed on a Zurich MFIA impedance analyser. In these plots, the 

136 imaginary component of impedance (Z″) is plotted against the real component (Z′), obtained from 

137 absolute impedance and phase angle measurements across a frequency range of 1 Hz to 1 MHz 

138 The DC offset voltage was varied from 0 V to 5 V, while the AC perturbation signal had an 

139 amplitude of 300 mV. The Nyquist plots were fitted using the free EIS analyser software, Yappari72. 

140 In this study, a simplified Randle’s circuit is employed, consisting of a single resistor R𝑝 in parallel 

141 with a constant‐phase element (CPE)70,73. The total impedance is described by:

142 𝒁(𝝎) =  [ (𝟏/𝑹𝒑) + (𝟏)

143 where 𝑸 (Ω―𝟏𝒔𝒏) is the CPE coefficient, and n is the CPE exponent. The characteristic 

144 time constant for this parallel branch is:

145 𝝉  =   𝑹ₚ 𝑸
𝟏
𝒏(𝟐)

146
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147 2.4. PRC Tasks

148 We employed a 16-electrode MoSe2/SWNT device as the physical reservoir following previous 

149 methods where one electrode was used for input and 15 electrodes for outputs8,15,20,42. Devices 

150 were fabricated on thermally oxidized SiO2/Si substrates. A 16-electrode aluminium (Al) array (50 

151 nm thick, 100 μm gap) was patterned using standard photolithography with a chromium photomask, 

152 followed by sputtering (base pressure 10-5 Torr) and a bi-layer lift-off process. The synthesized 

153 MoSe2/SWNT composite was dispersed in ethanol (40 mg/mL), and 3 μL was drop-cast onto the 

154 central electrode gap at 70°C. The chip was then packaged on a PCB and wire-bonded with silver 

155 paste for measurements. Full fabrication details are provided in the Supporting Information.

156 The schematic for the setup is shown in Figure 1a & b, where the device was driven by an 

157 external input signal 𝒖(𝒕) and the resulting voltages at each electrode, 𝑶𝒊(𝒕) for 𝑖 ∈  {𝟏, …, 𝑵}, 

158 were recorded at discrete time steps 𝒕. These electrode outputs collectively form the reservoir state 

159 vector:

160 𝒙(𝒕) = ⌈𝑶𝟏(𝒕)
𝑶𝟐(𝒕)

⋮
𝑶𝑵(𝒕)⌉(𝟑)

161 where 𝑵 is the total number of electrodes (e.g., 𝑵 =  𝟏𝟓). In a typical software-based 

162 reservoir, one would define an explicit update equation, but in our approach, the device’s intrinsic 

163 memristive and electrochemical properties govern the transformation from 𝒙(𝒕) and 𝒖(𝒕) to 

164 𝒙(𝒕 + 𝟏). Symbolically, we can write:

165 𝒙(𝒕 + 𝟏) = 𝒇device 𝒙(𝒕), 𝒖(𝒕) (𝟒)

166 where 𝒇𝒅𝒆𝒗𝒊𝒄𝒆 represents the physical dynamics of the MoSe2/SWNT material. Because 

167 these dynamics are embodied in the device, we do not need an explicit functional form; we simply 

168 measure 𝒙(𝒕) at each time step.
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169

170

Figure 1. (a) General framework: the input signal 𝒖(𝒕) is projected into a high-dimensional nonlinear dynamical system (reservoir), 
where the internal states 𝒙(𝒕) are generated through recurrent connections. The output layer is trained by adjusting only the readout 
weights 𝐖𝐨𝐮𝐭 to approximate the target signal 𝒚(𝒕). (b) Experimental/implementation schematic: a sine wave or uniform white noise 
input ±5V is injected into the physical reservoir. The reservoir dynamics are sampled to produce output states (𝑶𝟏(𝒕), 𝑶𝟐(𝒕),..., 𝑶𝟏𝟓
(𝒕)), which are linearly combined to reproduce different target functions such as triangle, square, and sawtooth waves, as well as 
the NARMA2 benchmark task.
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171 2.4.1. Readout Training

172 To map the measured reservoir states 𝒙(𝒕) to a target output 𝒚(𝒕), a linear readout via ridge 

173 regression is trained. The predicted output 𝒚(𝒕) is a linear combination of these states with readout 

174 weights 𝒘𝒊, given by:

175 𝒚(𝒕) =
𝟏𝟓

𝒊=𝟏
𝒘𝒊  𝑶𝒊(𝒕)(𝟓)

176 For compactness, we can write this in vector form as:

177 𝒚(𝒕) = 𝑾𝒐𝒖𝒕 𝒙(𝒕)

178 where 𝐖𝐨𝐮𝐭 =  (𝒘𝟏, 𝒘𝟐,..., 𝒘𝟏𝟓)𝑻  is the readout weight vector, and 𝒙(𝒕) =  

179 (𝑶𝟏(𝒕), 𝑶𝟐(𝒕),..., 𝑶𝟏𝟓(𝒕))𝑻 is the reservoir state vector. During ridge regression, the readout 

180 weights are trained by minimizing the following cost function:

181 𝑱(𝐖out) =
𝑻

𝒕=𝟏
𝒚(𝒕) ― 𝒚(𝒕)

𝟐
+ 𝝀 |𝐖out|𝟐(𝟔)

182 where λ is the regularization parameter. The value is automatically optimized using grid 

183 search and cross-validation for all PRC tasks, which was then applied in the ridge regression 

184 readout to mitigate overfitting and ensure stable training performance. This value was determined 

185 empirically and provided a suitable balance between model complexity and numerical robustness. 

186 The closed-form solution for ridge regression is:

187 𝐖out = (𝐗𝐓𝐗 +𝛌I)― 1𝐗𝐓𝐘(𝟕)

188 where 𝐗 ∈ ℝ𝑻×𝟏𝟓 the reservoir state matrix, and 𝐘 ∈ ℝ𝑻×𝟏 is the target signal vector.

189 2.4.2. Performance Metric

190 To assess how accurately the reservoir system reproduces the target signal, we use the normalized 

191 mean square error (NMSE). This metric is computed separately for both the training and testing 

192 phases:
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193 𝐍𝐌𝐒𝐄 =
𝟏
𝑻

∑𝑻
𝒕=𝟏 𝒚(𝒕) ― 𝒚(𝒕)

𝟐

𝝈𝟐
𝒚

(𝟖)

194 In this expression, T denotes the number of time steps in the respective evaluation interval 

195 (either training or testing). The terms 𝒚(𝒕) and 𝒚(𝒕) represent the target signal and the predicted 

196 output at time t, respectively. The denominator 𝝈𝟐
𝒚 is the variance of the target signal computed 

197 over the same interval. By normalizing the mean square error by the signal variance, NMSE 

198 provides a scale-independent measure of predictive performance, allowing comparisons across 

199 different signal types or amplitudes.

200 2.4.3. Waveform reconstruction task

201 In the waveform reconstruction task, an 11 Hz sine wave with an amplitude of 10 Vpp was applied 

202 as the input to the MoSe2/SWNT device, and the resulting signals at the 15 electrodes were 

203 recorded as the reservoir state. A linear readout layer was then trained to map these 15 electrode 

204 outputs to the desired target waveform. Specifically, the readout weights were obtained via ridge 

205 regression to minimize the difference between the predicted and actual waveforms, and the 

206 performance was quantified by NMSE. This procedure ensured that the reservoir’s intrinsic 

207 nonlinear dynamics were effectively harnessed to reconstruct the input waveforms with high 

208 accuracy.

209 2.4.4. NARMA2 task

210 For this task, the input to the device was uniform white noise 𝒖(𝒌) within the range 0 to 5 V. This 

211 input was normalized and mapped to the range 0 to 0.5 V during the training phase to ensure 

212 numerical stability74,75. The raw uniform white noise input sequences and the corresponding 

213 recorded reservoir responses for this task are visualized in Figure S5. Without normalization, the 

214 calculations could potentially diverge, causing instability and leading the system to unpredictable 
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215 behaviours or infinite values. Normalizing the input helps mitigate this risk and ensures that the 

216 device operates within a manageable dynamic range throughout the task. The NARMA2 target is 

217 generated by the following equation74:

218 𝒚𝒕(𝒌 + 𝟏) =  𝟎.𝟒𝒚𝒕(𝒌)  +  𝟎.𝟒𝒚𝒕(𝒌)𝒚𝒕(𝒌 ― 𝟏)  +  𝟎.𝟔𝒖𝟑(𝒌)  + (𝟗)

219 This task followed the same experimental protocol as the waveform reconstruction task, differing 

220 only in the nature of the input signal and the target sequence being predicted.

221 2.4.5. Memory capacity

222 For the memory capacity experiment, the input was uniform white noise, like the NARMA2 task, 

223 but mapped to the range -1 to 1 V for numerical stability and consistency with standard memory 

224 capacity experiments74,76. The reason for this mapping is that it is a common practice in memory 

225 capacity evaluations to ensure that the input remains within a bounded range, allowing for a better 

226 assessment of how the system handles information retention without the risk of instability. We 

227 then trained the readouts to predict delayed versions of the input 𝒖(𝒕 ― 𝒌) for delays 𝒌 = 𝟏,𝟐,…,𝑲. 

228 The memory capacity MC, is computed as the sum of the squared correlation coefficients 𝒓𝟐(𝒌) 

229 between the predicted and actual delayed inputs given by:

230 MC =
𝑲

𝒌=𝟏
𝒓𝟐 𝒚,𝒚𝒌 ; 𝒓𝟐 𝒚,𝒚𝒌 =

cov 𝒚(𝒕 ― 𝒌),𝒚(𝒕)
𝟐

var 𝒚(𝒕 ― 𝒌) ⋅ var 𝒚(𝒕)
(𝟏𝟎)

231 where 𝒓𝟐 𝒚,𝒚𝒌  represents the squared correlation between the true past input 𝒚(𝒕 ― 𝒌) 

232 and the predicted output 𝒚(𝒕). Here, cov 𝒚(𝒕 ― 𝒌),𝒚(𝒕)  is the covariance between the two signals, 

233 and var( ⋅ ) denotes their respective variances. A higher MC value indicates that the reservoir 

234 retains past inputs over a longer timescale, reflecting its short-term memory performance.

235
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236 3. Results and discussion

237 3.1. Material characterization

238 The material characterization of the MoSe2/SWNT composite was carried out using multiple 

239 complementary techniques, as shown in Figure 2. The XPS full survey (Figure 2a) displays 

240 distinct peaks for Mo 3d, Se 3d, C 1s, and O 1s, confirming that molybdenum, selenium, and 

241 carbon are the key constituents of MoSe2 and SWNT. In the high-resolution XPS spectrum of Mo 

242 3d (Figure 2b), peaks at 228.4 eV, 231.6 eV, and 235.8 eV are observed, corresponding to the 

243 Mo⁴⁺ and Mo⁶⁺ oxidation states43,77,78. The appearance of Mo⁶⁺ suggests some surface oxidation 

244 during synthesis, which could potentially benefit the device's electrical properties. Similarly, the 

245 Se 3d spectrum (Figure 2c) shows peaks at 54.34 eV and 55.59 eV, which are characteristic of 

246 Se²⁻ in MoSe2 71,79. This indicates that selenium is present in its expected oxidation state, 

247 suggesting that the material retains its stoichiometric composition, which is important for its 

248 semiconducting properties.
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249

250

251 The X-ray diffraction (XRD) pattern of the MoSe2/SWNT composite (Figure 2d) exhibits 

252 distinct reflections at 2θ values of 12°, 25°, 33°, 41°, 46°, and 54°, corresponding to the (002), 

253 (004), (100), (006), (105), and (110) planes of hexagonal 2H- MoSe2 respectively60,80. These 

Figure 2. (a) XPS survey spectrum of the MoSe₂/SWNT composite confirming the presence of Mo, Se, C, and O, (b) XPS 
spectrum of Mo 3d showing mixed oxidation states, (c) XPS spectrum of Se 3d indicating selenium in its reduced state, (d) XRD 
pattern revealing the characteristic diffraction peaks of the hexagonal MoSe₂ phase, (e) SEM image showing an interconnected 
SWNT network uniformly coated with MoSe₂, (f) TEM image displaying a fibrous core–shell structure where MoSe₂ forms a 

shell around bundles of SWNTs with a defined interface and some discontinuities
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254 features confirm the successful formation of crystalline MoSe2 within the composite, consistent 

255 with its layered structure and indicative of good crystallinity, which is an essential attribute for 

256 maintaining reliable interlayer charge transport and electrochemical activity. Although the 

257 composite contains SWNTs, characteristic graphitic peaks typically observed near 25–26° of 2θ, 

258 which are associated with the (002) reflection of sp² carbon frameworks, are not clearly resolved. 

259 This absence can be attributed to the inherently broad and low-intensity diffraction features of 

260 SWNTs, their possible amorphous or turbostratic arrangement, and the overlap with the MoSe2 

261 (004) reflection at 25.2°. Such peak suppression or convolution is commonly reported in MoSe2 

262 SWNT hybrid systems, especially when the carbonaceous component is present in low 

263 concentrations or is well-dispersed at the nanoscale43,71,81.

264 The SEM image (Figure 2e) provides additional insight into the composite’s morphology. 

265 The image reveals that the SWNTs form a highly interconnected network, which likely enhances 

266 the charge transport properties by offering multiple conductive pathways throughout the 

267 nanocomposite. MoSe2 appears to coat this SWNT network uniformly, combining the high surface 

268 area of the nanotubes with the functional properties of MoSe2. This uniform coating is essential 

269 for facilitating both charge injection and retention, which is critical for the enhanced switching and 

270 conduction behaviours observed in electrical measurements such as I–V and SCLC.

271 The TEM image (Figure 2f) further elucidates the composite’s microstructure. The TEM 

272 analysis reveals a fibrous core-shell structure where MoSe2 forms a shell encapsulating the core of 

273 SWNT bundles rather than individual nanotubes. This morphology is characterized by distinct 

274 contrast differences that indicate a layered coating, suggesting that the MoSe2 is forming a shell 

275 structure over SWNT bundles43,77. The core-shell interface appears well-defined, though not 

276 entirely uniform, and is crucial for charge transport because it influences electronic pathways. The 
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277 TEM image also shows discontinuities in the MoSe2 shell, which may indicate regions of 

278 incomplete coating. These structural features could lead to localized variations in electrical 

279 characteristics, potentially affecting the overall device behaviour, including resistive switching and 

280 neuromorphic performance.

281 3.2. Electrical characterization

282 The junctions formed between MoSe2 and SWNTs play a critical role in the conduction of 

283 mechanisms and nonlinear behaviour of these hybrid structures. The random network of these 

284 nanojunctions creates a complex pathway for electron transport, contributing to the overall 

285 nonlinearity observed in the system. Research indicates that these nanojunctions can lead to the 

286 formation of localized states and trap sites, which significantly influence the charge transport 

287 properties82–84. Zhang et al. discussed how the interfaces in nanostructured materials like MoSe2 

288 /SWNTs can result in diverse charge transport behaviours, including SCLC and trap-controlled 

289 conduction mechanisms85. These mechanisms are essential for the resistive switching behaviour 

290 observed in PRC applications. Furthermore, the random network configuration of MoSe2/SWNT 

291 hybrids can enhance the reservoir's richness by providing multiple, diverse conduction pathways. 

292 This network complexity is beneficial for PRC, as the structural randomness creates the diverse, 

293 high-dimensional internal states required for nonlinear transformation. Furthermore, while 

294 individual nano-junctions exhibit variability, the high density of the SWNT network (5 mg 

295 loading) ensures that the macroscopic response is governed by ensemble averaging86,87.

296 The I-V characteristics of the MoSe2/SWNT memristive devices were measured for 

297 different concentrations of SWNT (0 mg, 1 mg, 5 mg, and 10 mg) to evaluate the impact of SWNT 

298 content on the electrical behaviour and switching dynamics. The pure MoSe2 device (0 mg SWNT, 

299 Figure 3a) exhibited a near-linear I-V curve with slight curvature at higher voltages, suggesting 
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300 limited nonlinear behaviour and a lack of pronounced resistive switching. The observed response 

301 is consistent with a predominantly semiconducting material exhibiting weak space-charge effects 

302 at higher voltages. In contrast, the device containing 1 mg SWNT (Figure 3b) shows a more 

303 pronounced nonlinearity in its I-V characteristics, with the emergence of a hysteresis loop, 

304 indicating resistive switching behaviour. This suggests that the inclusion of SWNT enhances 

305 charge transport by increasing conductivity and enabling charge trapping and releasing 

306 mechanisms, essential for memristive switching.

307
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308

309

310 As the SWNT content increases to 5 mg (Figure 3c), the device demonstrates stronger 

311 resistive switching, exhibiting a clear counterclockwise hysteresis loop with a sharper transition 

312 between the high and low resistance states. The I-V curve shows a larger hysteresis window, which 

313 indicates enhanced charge storage capability and more significant nonlinearity in the transport 

Figure 3. I–V curves showing the emergence of memristive behaviour with increasing SWNT content, confirming the role of the 
hybrid structure in nonlinear conduction. (a) I-V curve for pure MoSe₂, (b) I-V curve for MoSe₂ with 1 mg SWNT showing the 
emergence of a counter-clockwise hysteresis loop (arrows indicate sweep direction) hysteresis loop, (c) I-V curve for MoSe2 with 
5 mg SWNT exhibiting enhanced resistive switching, (d) I-V curve for MoSe2 with 10 mg SWNT displaying near-linear behaviour, 
(e) Log-log plot of the SET transition for the 5 mg device (from c), and (f) Log-log plot of the RESET transition for the 5 mg 
device (from c), both confirming SCLC conduction mechanisms.
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314 characteristics. This is likely due to the increased percolation pathways provided by the SWNT 

315 network, facilitating more efficient charge injection and trapping88. At the highest SWNT 

316 concentration (10 mg, Figure 3d), the I-V curve displays continuous, near-linear behaviour with 

317 minimal hysteresis, suggesting that the device's conductance is now dominated by the SWNT 

318 network. The lack of pronounced resistive switching at this concentration could be attributed to 

319 the formation of a highly conductive percolation network, which bypasses the trap-controlled 

320 SCLC regime observed at lower SWNT concentrations. Here, the SWNT network likely provides 

321 a low-resistance path for charge carriers, diminishing the switching characteristics observed at 

322 lower concentrations. These results highlight the critical role of SWNT content in tuning the 

323 memristive behaviour of the device. At low SWNT concentrations, the device shows strong 

324 switching characteristics, ideal for applications in neuromorphic computing where nonlinear 

325 transformations are required. However, at higher concentrations, the device becomes highly 

326 conductive, which could be better suited for applications requiring high-speed, low resistance 

327 switching.

328 Building on the I-V analysis of the optimal 5 mg device (Figure 3c), the log-log plot 

329 provides further confirmation of the conduction mechanism in both the high-resistance state (HRS) 

330 and low-resistance state (LRS), as well as the set and reset transitions. In both plots (Figure 3e for 

331 the SET transition and Figure 3f for the RESET transition), distinct regions corresponding to 

332 different conduction mechanisms are evident, consistent with the SCLC model. In the HRS, the 

333 current follows a power-law dependence on the voltage (I ∝ Vn, where n > 1), indicating the 

334 presence of trap-controlled SCLC. This behaviour is more prominent at intermediate voltage 

335 ranges, where the traps within the MoSe2/SWNT matrix are progressively filled by injected 

336 carriers. The transition to the LRS occurs when the traps are fully filled, and the current increases 
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337 more rapidly with voltage, reflecting a transition into a trap-free SCLC regime47. During the 

338 RESET and SET transitions, the steep slope in the log-log plot indicates a rapid increase consistent 

339 with trap filling / TFL-related transition, which is characteristic of charge injection from the 

340 electrodes and the filling of deeper traps 89. This further supports the observation from the I-V 

341 curves that the memristive switching behaviour is driven by the modulation of space-charge 

342 regions within the device. Overall, the combined analysis of the I-V characteristics and log-log 

343 plots confirms the dominant role of SCLC in the charge transport mechanism of the MoSe2/SWNT 

344 device. This power-law behaviour, resulting from the use of non-reactive Al electrodes, is 

345 consistent with other studies on similar TMD-based memristors where SCLC is identified as the 

346 dominant intrinsic conduction mechanism47,89.

347 This bulk-dominated transport also confers significant energy advantages. Based on the 

348 static current in the LRS at a read voltage of 0.1 V and the estimated junction density, the static 

349 power consumption is approximately 0.006 nW per MoSe2/SWNT junction. This is notably lower 

350 than values reported for other random network reservoirs such as 0.07 nW per junction in Ag2Se 

351 networks8  and 0.02 nW per domain in YMnO3
90. These results highlight the potential of the 

352 MoSe2/SWNT platform for ultra-low-power neuromorphic applications.

353
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354 3.3. Electrochemical Impedance Spectroscopy

355 The electrical behaviour of the MoSe2/SWNT core-shell memristive structure was investigated 

356 using EIS and current-voltage (I-V) measurements to elucidate its charge transport mechanisms. 

357 The EIS data reveal a voltage-dependent evolution of a single, depressed semicircle from a highly 

358 resistive state at low voltages (0–2 V) to a lower-resistance state at higher voltages (3–5 V), 

359 consistent with resistive switching behaviour as shown in Figure 4. The parameters extracted from 

360 fitting the spectra with an R || CPE equivalent circuit at each bias (resistance R, CPE magnitude 

361 Q, exponent, and the corresponding characteristic time constant τ) are summarized in Table 1.

362 At low voltages (0V-1V), the Nyquist plot rises steeply from the origin and forms only an 

363 incomplete arc, suggesting that the system is dominated by capacitive behaviour. The high 

364 resistance (R ≈ 1000 MΩ) and large constant phase element (CPE) values indicate significant 

365 charge trapping within the MoSe2 shell and at the MoSe2/SWNT interface, restricting current flow. 

366 The high-resistance state (HRS) is attributed to the Schottky-like barriers at the metal-

367 semiconductor junction and deep trap states in the MoSe2 shell, which limit carrier injection. This 

368 behaviour is consistent with trap-controlled charge storage effects superimposed on bulk-limited 

369 transport rather than purely Ohmic conduction in the low-bias regime91. As the voltage increases 

370 to 2V, the Nyquist plot starts to show some curvature, reflecting a reduction in resistance (R = 246 

371 MΩ) and the onset of conduction, though the spectrum is still dominated by a single, incompletely 

372 formed semicircle and the capacitive contribution remains strong. The incomplete semicircle 

373 indicates that while some charge transport pathways are beginning to form, the device has not fully 

374 transitioned to a conductive state.
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375

376

377

Figure 4. EIS measurements for different DC offset voltages where the perturbation AC voltage was set to 300 mV. All 
measurements were performed in 1 Hz – 1 MHz range. The inset arrows show the frequencies where the fluctuations start to 
stabilize.
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Table 1. Values obtained after fitting to the R/CPE equivalent circuit.

Voltage R (MΩ) Q (nΩ-1 ⋅ sn) n τ (s)

0 V 1000.00 1.67 0.851 ≈ 1.83 s

1 V 1000.00 0.76 0.878 ≈ 0.73 s

2 V 246.00 1.49 0.858 ≈ 0.31 s

3 V 76.10 1.33 0.860 ≈ 0.07 s

4 V 3.52 1.04 0.893 ≈ 1.90 ms

5 V 2.37 1.13 0.885 ≈ 1.20 ms

378

379 At 3V, a clear semicircle appears in the Nyquist plot, corresponding to a significant 

380 reduction in resistance (R = 76.1 MΩ). This marks the transition to a low-resistance state (LRS), 

381 where conductive pathways, likely facilitated by the SWNT core, have been established. The 

382 appearance of this semicircle suggests that the capacitive components are becoming less dominant, 

383 and the system is now characterized by both resistive and capacitive contributions. The fitted R || 

384 CPE parameters at 3 V (Table 1) indicate a still large but reduced time constant, showing that the 

385 dominant relaxation process is shifting toward faster charge transport in the MoSe2/SWNT 

386 network. Moreover, the plot shows increased scatter in the lowest-frequency points below ~160 

387 Hz, which we attribute to long-time drift and the onset of slower auxiliary processes not resolved 

388 as a separate semicircle in the measured frequency window. The MoSe2/SWNT interface plays a 

389 crucial role, as the highly conductive SWNT core acts as an electron reservoir, modulating charge 

390 transport through the surrounding MoSe2 shell. The formation of conductive percolation pathways 

391 within MoSe2 domains is likely driven by field-induced carrier delocalization within defect-rich 

392 MoSe2 regions and charge hopping between localized trap sites3,92.
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393 At higher voltages (4V-5V), the semicircle becomes more pronounced and complete, and 

394 the resistance drops to 3.52 MΩ at 4V and 2.37 MΩ at 5V (Table 1). The Nyquist plots at these 

395 voltages are well described by a single depressed semicircle that rises essentially from the origin, 

396 indicating that no distinct high-frequency charge-transfer resistance can be resolved and that the 

397 impedance is dominated by bulk processes in the MoSe2/SWNT network66. The lowest-frequency 

398 points (< ~200 Hz) exhibit some fluctuation, which we ascribe to measurement drift rather than a 

399 well-developed Warburg-type diffusion tail. The decrease in CPE values at these voltages suggests 

400 that charge storage mechanisms are less significant, and the device exhibits predominantly 

401 resistive behaviour. The characteristic time constant extracted from the 5 V spectrum is τ ≈ 1.2 ms, 

402 which we treat as the dominant time scale of the device in the subsequent reservoir-computing 

403 analysis. The system behaves more like an ideal resistor with minimal capacitive effects at this 

404 stage.

405 The I-V measurements further support this resistive switching behaviour. At low voltages, 

406 the device exhibits a near-Ohmic response, likely dominated by trap-limited conduction. However, 

407 under AC excitation (as in EIS), the same voltage range shows a capacitive-dominated response 

408 with high impedance, suggesting significant charge trapping and limited carrier mobility. As the 

409 voltage increases, the device transitions into the trap-filled limit (TFL) region, characteristic of the 

410 SCLC mechanism47,88,93 where the filling of traps can produce a sharp increase in current once the 

411 trap-filled limit is reached. This provides a natural explanation for the abrupt SET transition 

412 without the need to assume metallic filament formation. Both the HRS and LRS I–V curves can be 

413 fitted by SCLC-type power laws over a broad voltage range, indicating that space-charge-limited 

414 transport in the MoSe2/SWNT bulk is the dominant conduction mechanism, while any interfacial 

415 or redox contributions are not resolved as separate elements in the EIS spectra. The coexistence of 
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416 Ohmic-like behaviour in DC I-V and capacitive response in EIS highlights the complex interplay 

417 of resistive and dielectric effects in the high-resistance state. This duality is further confirmed as 

418 the system transitions to a low-resistance, predominantly resistive state at higher voltages.

419 3.4. PRC tasks

420 3.4.1. Waveform reconstruction benchmark tasks

421 The goal is to employ the MoSe2/SWNT core-shell structure as a reservoir in a reservoir computing 

422 framework to transform input signals into a high-dimensional space, facilitating complex signal 

423 processing tasks. By feeding a sine wave with a fundamental frequency of 11 Hz into the device, 

424 we observed its output through FFT analysis as shown in Figure S2 in the Supporting Information, 

425 revealing the presence of harmonics at integer multiples of the input frequency (22 Hz, 33 Hz, 

426 etc.). This harmonic generation indicates nonlinearity in the device's response, a desirable 

427 characteristic for effective reservoir computing. 

428 To evaluate the device’s capability for nonlinear transformation and periodic signal 

429 modelling, ridge regression was applied to fit its 15 output signals to various target waveforms, as 

430 illustrated in Figure 5. These included cosine, triangle, sawtooth, square, and sinusoidal waves at 

431 higher harmonic frequencies. The results showed consistently low NMSE values (all below 0.1), 

432 with accuracy metrics presented in Table 2. The cosine waveform (Figure 5a), comprising a single 

433 frequency component, was reconstructed with 99.9% accuracy, demonstrating that the device can 

434 reliably preserve both the amplitude and phase of fundamental harmonic content. Triangle 

435 (Figure 5b) and square waves (Figure 5c), which consist of odd harmonics, were also 

436 reconstructed with high accuracy (99.7% and 93.5%, respectively), indicating that the device 

437 effectively captures both smooth and abrupt waveform features. For the sawtooth waveform 
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438 (Figure 5d), which contains both odd and even harmonics with linearly decreasing amplitude, the 

439 reservoir successfully reproduced its asymmetric profile, achieving 89.0% accuracy.

440

441

442 Performance on higher-order sinusoidal waveforms further confirmed the device’s 

443 nonlinear capacity. The Sin2ω waveform (Figure 5e) was fitted with 99.7% accuracy, while the 

444 more complex Sin3ω waveform (Figure 5f) achieved 95.1%. These results suggest that the 

445 reservoir retains sufficient nonlinearity to support the reconstruction of signals composed of higher 

446 harmonic content. Together, these findings highlight the MoSe2/SWNT device’s effectiveness as 

447 a physical reservoir for waveform reconstruction, capable of handling a wide range of periodic 

Figure 5. Waveform reconstruction tasks representation where target wave (black line), training wave (orange), and   predicted 
wave (green) respectively. Accuracies for: (a) Cosine: 99.9%, (b) Triangle: 99.7%, (c) Square: 93.5%, (d) Sawtooth: 89.0%, (e) 
Sin2ω: 99.7%, (f) Sin3ω: 95.1%
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448 structures from fundamental components to more complex, harmonically rich signals. We compare 

449 our results up to Sin2ω on this task with those of other works and summarize them in Table 2.

Table 2. Waveform reconstruction accuracy comparison of different in-materio reservoir computing systems. 

The table highlights both task accuracy and the underlying conduction mechanism, showing how device physics 

correlates with computational performance.

Waveforms fitting accuracy (%)Device 

structure/Materials

Conduction 

mechanism Cosine Triangle Sawtooth Square Sin2ω

Ag2S polycrystalline 

film39
Filamentary 98.6 94.3 75.4 89.7

SWNT/Por-POM 

complexes40
Redox 99.0 99.4 71.0 87.0

SPAN electrochemical 

network20
Redox 99.0 88.0 91.0 93.0

Ag2Se nanowire8 Filamentary 99.8 98.6 62.3 82.1

SWNT/H4TPP-POM 

complexes 94
Redox 99.0 72.0 86.0 79.0

Ag nanowire95 Filamentary 97.0 86.0 83.0 87.0

Ag−Ag2S 

nanoparticle35
Filamentary 99.9 98.3 70.2 87.5

RR−P3HT thin film42
Molecular 

orientation
99.0 99.0 65.0 85.0 61.0

MoSe2/SWNT core-

shell (this work)
SCLC 99.9 99.7 89.0 93.5 99.7

450

451 The comparison in Table 2 underscores the strong influence of conduction mechanism on 

452 task performance. Filamentary systems such as Ag2S, Ag nanowires, and Ag–Ag2S exhibit 
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453 nonlinear dynamics that enable waveform fitting but often result in reduced accuracy for 

454 harmonically rich signals such as sawtooth and square waves. Ionic or redox-based polymer 

455 systems (SPAN, SWNT–POM) provide improved performance on some temporal tasks but remain 

456 limited in harmonic preservation. In contrast, the MoSe2/SWNT device operating in the SCLC 

457 regime achieves consistently high accuracy across all waveforms, particularly for higher-order 

458 harmonics (Sin2ω = 99.7%). This advantage arises from higher harmonic generation and short-

459 term memory in the trap-controlled conduction process. FFT analysis of the device outputs (Figure 

460 S1) clearly shows pronounced peaks at the fundamental and harmonic frequencies, while Lissajous 

461 plots (Figure S2) reveal asymmetric ellipses and hysteresis, both confirming rich nonlinear 

462 dynamics that support accurate waveform reconstruction. (Figure S3) details the Total Harmonic 

463 Distortion (THD) measurements, revealing a heterogeneous distribution of nonlinearity across the 

464 electrodes that is essential for rich feature encoding. The raw experimental signals are presented 

465 in (Figure S4), where the output waveform exhibits clear distortion compared to the sinusoidal 

466 input, confirming the nonlinear transformation capabilities of the device. These results highlight 

467 how SCLC dynamics provide a more favourable basis for nonlinear transformation compared to 

468 filamentary or redox systems.

469 3.4.2. NARMA2 prediction tasks

470 The NARMA2 task, a widely used benchmark for assessing the computational capacity of 

471 reservoir systems, was employed to evaluate the performance of the MoSe2/SWNT core-shell 

472 device. This task tests the device’s ability to handle nonlinear dynamics and short-term memory, 

473 both crucial for reservoir computing applications. The goal of the NARMA2 task is to predict the 

474 future values of a nonlinear autoregressive moving average process of order 2, based on the past 

475 inputs74–76. The results are displayed in Figure 6. In the upper plot, the blue points represent the 
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476 model's predictions during training, while the orange points represent the predictions during testing. 

477 The grey line shows the target NARMA2 values, providing a reference for comparison. The model 

478 was trained on 800 time steps, and the transition between the training and test phases is marked by 

479 a vertical green line. During the test phase, the model was tasked with predicting the next 200 time 

480 steps based solely on the past inputs without further training.

481

482

483 During the training phase, the predictions closely follow the target values, demonstrating 

484 that the device successfully learned the underlying dynamics of the NARMA2 task. The alignment 

485 between the blue points (predictions) and the grey line (target) indicates that the device effectively 

486 modelled the nonlinear relationships inherent in the NARMA2 system. In the testing phase, 

487 represented by the orange points, the device continued to perform well, closely tracking the target 

488 values with only minor deviations. The bottom plot zooms in on the 200 test points to provide a 

Figure 6. NARMA2 prediction task. a) The full plot showing both training and the predicted plot with total of 1000 data points used. 
b) The zoomed plot of the 200 datapoints of the prediction of 90% accuracy
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489 clearer view of the model’s predictive performance. The red points indicate the predicted values, 

490 while the grey line corresponds to the actual target values. The device’s ability to follow the 

491 oscillations and fluctuations of the NARMA2 time series is evident, as most predicted points align 

492 closely with the target. Although there are occasional small deviations, the overall performance 

493 remains robust. The model achieved an accuracy of 90% on the NARMA2 task, indicating the 

494 device's strong capability in handling complex, nonlinear temporal dependencies. The remaining 

495 10% error can be attributed to small discrepancies between the predicted and target values, 

496 especially during periods of rapid fluctuation in the NARMA2 time series. Nonetheless, the high 

497 accuracy suggests that the MoSe2/SWNT core-shell device can effectively process and model 

498 complex time-series data.

499 3.4.3. Memory capacity

500 The memory capacity (MC) task is another important benchmark for evaluating the computational 

501 abilities of a reservoir system, specifically its ability to retain information over time. In this task, 

502 the device is evaluated on its ability to recall previous inputs after a specified delay. Memory 

503 capacity is crucial in tasks like time-series prediction, where the system needs to retain past 

504 information to make accurate future predictions. This task directly complements the NARMA2 

505 task, as both rely on the device's ability to process and retain temporal information effectively9,74,96.

506 Figure 7 shows the squared correlation (Cor2) between the input signal and the reservoir's output 

507 as a function of the delay. The memory capacity (MC) is determined by summing the squared 

508 correlation values across different delays, with a higher MC indicating that the reservoir can recall 

509 information from further back in time. For this device, the total memory capacity was measured to 

510 be 5.2, meaning that the system can effectively retain and utilize information over approximately 

511 5 time steps.
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512

513

514 Examining the plot, the squared correlation reaches a maximum value of 1.0 at zero delay, 

515 indicating that the system perfectly retains the current input. As the delay increases, the correlation 

516 drops steeply, showing that the device’s ability to recall past inputs decreases rapidly. By the time 

517 the delay reaches around 5 steps, the correlation drops to approximately 0.2, indicating that the 

518 system still retains some memory, but it has significantly decayed. Beyond 10 delays, the 

519 correlation becomes quite small, reflecting that the system has little memory of inputs from that 

520 far in the past. This result is consistent with the device's performance on the NARMA2 task. A 

521 memory capacity of 5.2 indicates that the device can handle tasks requiring short-term memory 

522 over a few time steps. In the NARMA2 task, where the system needs to predict the next value 

523 based on the past two inputs, this level of memory capacity is sufficient to capture the required 

524 temporal dependencies, which explains the relatively high accuracy of 90% achieved in the 

525 NARMA2 task. The NARMA2 task, with its short-term memory requirement, aligns well with the 

526 observed memory capacity of the device, as it requires the system to retain relevant information 

527 for a small number of time steps.

528

Figure 7: Memory capacity of MoSe2/SWNT device with noise input.
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529 4. Conclusion

530 In conclusion, the MoSe2/SWNT core–shell structure demonstrates significant promise as a 

531 physical reservoir for neuromorphic computing applications. The unique combination of the high 

532 conductivity provided by SWNTs and the semiconducting, nonlinear characteristics of MoSe2 

533 enables the device to exhibit pronounced memristive switching and dynamic behaviour under 

534 different electrical biases. Detailed experimental analyses confirmed that the device transitions 

535 from a capacitive-dominated high-resistance state to a resistive low-resistance state with clear 

536 SCLC behaviour, essential for effective reservoir computing. Performance in benchmark tasks 

537 such as waveform reconstruction, NARMA2 prediction, and memory capacity tests validates the 

538 ability of the material system to transform input signals into high-dimensional representations, 

539 making it a strong candidate for future AI hardware. While this study established the fundamental 

540 SCLC dynamics and baseline performance on NARMA2, future investigations will extend this 

541 platform to higher-order temporal tasks, such as speech recognition handwritten digit recognition, 

542 to further validate the system's scalability for real-world neuromorphic applications. By offering a 

543 designless, bottom-up approach to neuromorphic computing, this work opens new pathways 

544 toward ultra-low-power, flexible, and scalable artificial intelligence hardware that could enable 

545 next-generation applications in robotics, edge computing, and beyond. 
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