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Abstract

This study presents the synthesis, characterization, and application of molybdenum
diselenide/single-wall carbon nanotube (MoSe,/SWNT) core-shell structures as a new platform
for in-materio physical reservoir computing. The hybrid material was fabricated via a modified
hydrothermal process, yielding a conductive SWNT network uniformly coated with
semiconducting MoSe,. Structural and electrical characterizations (XPS, XRD, SEM, TEM, -V,
and EIS) confirm a crystalline fibrous core—shell morphology that exhibits a voltage-driven
transition from a capacitive high-resistance state to a space-charge limited conduction (SCLC)
regime. Physical reservoir computing based on MoSe,/SWNT thus leverages SCLC dynamics,
where trap-controlled transport generates higher harmonics and short-term memory, providing the
essential nonlinearity and fading memory required for temporal processing. Consequently, the
MoSe,/SWNT device achieves strong performance in benchmark tasks, including waveform
reconstruction (NMSE < 0.1 across multiple periodic functions), NARMA?2 time-series prediction
(90% accuracy), and memory capacity evaluation. These results establish a direct link between
device physics and computational capability, highlighting MoSe,/SWNT hybrids as a scalable

candidate for next-generation neuromorphic hardware.

Keywords: Core-shell structure, metal-semiconductor hybrid material, Memristive devices;

Neuromorphic computing; Nonlinear dynamics; Space-charge limited conduction.

1. Introduction

The rapid advancement of materials science has catalysed the development of novel nanostructures

with unique electrical and electrochemical properties, making them promising candidates for
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36  physical reservoir computing (PRC) and hardware implementations of neuromorphic computing
37 systems'™. PRC leverages the inherent dynamic behaviours of physical systems to perform
38 complex information processing tasks>S, offering a simplified training process and significantly
39  reduced power consumption compared to conventional recurrent neural networks. This approach
40  makes PRC an attractive solution for overcoming the limitations of traditional von Neumann
41  architectures®>>~/, particularly in applications such as time-series prediction, classification, and
42  pattern recognition. The core principle of PRC involves transforming input signals into a high-
43  dimensional state space using a dynamic reservoir, followed by a simple linear classification or
44  regression®®. The reservoir, composed of a network of nonlinear elements, is essential for
45  providing the nonlinearity and memory required to capture temporal dependencies. PRC has
46  demonstrated success across various domains, including robotics, autonomous systems, and
47  emulation of biological neural networks®29,

48 Among the various nanostructures investigated for in-materio PRC, memristive nanowire

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

49  networks have attracted significant attention due to their self-organizing, designless nature that

50 mimics the topology and emergent behaviours of biological neuronal circuits?>'—2°. Noteworthy

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.
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51 examples include Ag nanowire random network!%212326-31 "and Ag-Ag,S core-shell nanoparticle
52 network3?73? which typically rely on metallic or filamentary conduction to generate nonlinear
53  dynamics. Alongside these filamentary systems, reservoirs such as sulfonated polyaniline
54  networks?® and single-wall carbon nanotube and polyoxometalate (SWNT/POM)*, as well as
55  Todobismuthate complexes*!, which exhibit redox-based conduction, have been explored and have
56  shown demonstrated high proficiency in waveform reconstruction and temporal pattern
57  recognition in reservoir tasks. In addition, semiconducting polymers like P3HT#> have

58  demonstrated nonlinear responses arising from molecular orientation effects, further broadening
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the range of explored materials. Despite progress in the development of metal/insulator core—shell
nanostructures and semiconducting polymer nanowires, the potential of metal/semiconductor
core—shell nanostructures for PRC remains underexplored. Such hybrid systems are particularly
attractive because they can merge efficient charge transport from a conductive network with the
tuneable nonlinearity of a semiconductor shell, enabling both stability and richer temporal
dynamics. In particular, molybdenum diselenide/Single-wall carbon nanotube (MoSe,/SWNT)
core—shell structures combine the exceptional electrical conductivity of SWNTs* with the
semiconducting nature of MoSe,**7, offering enhanced electrochemical activity, high surface
area, and unique nonlinear dynamics.

MoSe,/SWNT hybrids have already been applied in diverse fields, such as solar cells*¥-30,
photonics!4, optoelectronics’!3, sensors®*, hydrogen evolution®-%, supercapacitors®!-6> | and
batteries®*%. However, their potential for PRC applications has remained largely untapped. The
intrinsic properties of these hybrids, specifically their rich nonlinear response and dynamic charge
transport, align closely with the fundamental requirements of PRC. Previous in-materio PRC
devices show that the conduction mechanism strongly influences task performance. Ag,S
islands?38, Ag-Ag,S nanoparticle systems’?35, and Ag nanowire systems?’:?$2% rely on
filamentary switching, which can produce nonlinear dynamics but often leads to variability in
waveform and NARMA tasks. Redox-based systems, such as sulfonated polyaniline networks??,
iodobismuthate complexes*!, nickel complexes®, and SWNT/POM*%67 hybrids have achieved
good task performance, yet their reliance on faradaic processes can introduce variability and limit
harmonic preservation. Semiconducting polymers such as P3HT#2, on the other hand, exhibit
orientation-dependent conduction that supports certain temporal tasks but provides limited

harmonic richness. In contrast, the MoSe,/SWNT hybrid operates in an SCLC regime, where trap-
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82  controlled conduction generates higher harmonics and short-term memory, providing a more
83  favourable basis for achieving high accuracy in diverse Al benchmarks. Recent studies on
84  electrochemical reactions and nonlinear dynamics in similar composites further underscore their
85  suitability for such applications*%->.

86 Conventional MoSe,-based devices typically employ vertical or sandwich-type
87  architectures with filamentary conduction mechanisms*’-68%°  which can compromise device
88  reproducibility and scalability. In contrast, our approach utilizes MoSe,/SWNT hybrids with non-
89  reactive aluminium electrodes in a horizontal architecture. This design intentionally suppresses the
90 extrinsic filamentary effects (i.e., electrochemical metallization) often associated with active
91 electrodes like Ag, shifting the conduction mechanism toward intrinsic, bulk-limited space-charge
92  limited conduction (SCLC). This design emphasizes intrinsic resistive switching over extrinsic
93 filamentary effects, offering improved suitability consistent switching dynamics, utilizing the

94  random network's heterogeneity for high-dimensional projection while maintaining stability

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

95  through bulk-dominated conduction. Additionally, the SWNT network plays a critical role in

96  enhancing electrical conductivity and fostering the essential non-linear dynamics required for

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.
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97  PRC70. By systematically investigating the synthesis, characterization, and PRC performance of
98  MoSe,/SWNT hybrids, this study bridges a critical gap in current research and highlights a
99  promising pathway toward stable, scalable, and energy-efficient neuromorphic computing devices.
100 Our work introduces a novel materials platform that synergistically combines designless self-
101  organization with intrinsic nonlinear dynamics, paving the way for the development of next-
102 generation Al hardware capable of supporting edge computing, robotics, and energy-efficient,
103 thereby addressing the urgent demand for greener and smarter computational technologies.

104
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2. Experimental Method

2.1. Synthesis of MoSe,/SWNT core-shell structure

MoSe,/SWNT composites were synthesized following an approach adapted from several methods,
with modifications to the precursor amounts and SWNT content 477!, All chemicals were
purchased from Sigma Aldrich, except for hydrazine hydrate (N;H, -H,O, 97%), which was
obtained from Wako. To start the synthesis, 0.5 mmol of sodium molybdate dihydrate
(Na;M00O,4-2H,0) and 1 mmol of selenium powder were used as precursors. To prepare the
precursor solution, sodium molybdate was dissolved in a mixture of 20 mL deionized (DI) water
and 10 mL ethanol together with varying amounts of SWNTs (0 mg, 1 mg, 5 mg, and 10 mg).
Separately, selenium powder was dissolved in 10 mL hydrazine hydrate under magnetic stirring at
room temperature, resulting in a dark red solution that confirmed the formation of the selenium
precursor. The two solutions were combined and transferred into a Teflon-lined stainless-steel
autoclave, which was then sealed and heated at 180°C for 12 hours to facilitate the hydrothermal
reaction and form the MoSe,/SWNT composite. After the reaction, the product was thoroughly
washed several times with ethanol and DI water to remove residual reactants and by-products. The
final MoSe,/SWNT powder was filtered and dried in an oven at 70 °C. This modified synthesis
yields composites with systematically varied SWNT content, enabling a detailed investigation of

the effects of precursor concentration and SWNT loading on material properties.
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124 2.2. Structural characterization

125  X-ray diffraction spectroscopy (XRD) was performed using a Rigaku Smart Lab with a Cu—Ka
126  source. X-ray photoelectron spectroscopy (XPS) (Kratos Axis) with a monochromatic Al Ko X-
127  ray source was utilized. Scanning electron microscopy (SEM) was performed using the Thermo
128  Scientific Quattro SEM, and transmission electron microscopy (TEM) was performed using JEOL
129  JEM-2100 Plus.

130  2.3. Electrical characterization

131  I-V measurements were performed by using a semiconductor parameter analyser (Keysight
132 B1500A). V-t measurements were performed by using a data acquisition (DAQ) system (National
133 Instruments PXIe-6363 and SCB-68A). A custom LabVIEW program was used to apply input
134  signals and record the output responses. Electrochemical impedance spectroscopy (EIS)
135 measurements were performed on a Zurich MFIA impedance analyser. In these plots, the

136  imaginary component of impedance (Z") is plotted against the real component (Z'), obtained from

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

137  absolute impedance and phase angle measurements across a frequency range of 1 Hz to 1 MHz

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.

138  The DC offset voltage was varied from 0 V to 5 V, while the AC perturbation signal had an

(cc)

139  amplitude of 300 mV. The Nyquist plots were fitted using the free EIS analyser software, Yappari’>.
140  Inthis study, a simplified Randle’s circuit is employed, consisting of a single resistor R, in parallel
141  with a constant-phase element (CPE)’%73. The total impedance is described by:

142 Z(w) = [(1/Ry) + (1)

143 where Q (Q~1s™) is the CPE coefficient, and n is the CPE exponent. The characteristic

144  time constant for this parallel branch is:

S|m

145 T = (R Q) 2)

146
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2.4. PRC Tasks
We employed a 16-electrode MoSe,/SWNT device as the physical reservoir following previous
methods where one electrode was used for input and 15 electrodes for outputs®!3-2042, Devices
were fabricated on thermally oxidized SiO,/Si substrates. A 16-electrode aluminium (Al) array (50
nm thick, 100 um gap) was patterned using standard photolithography with a chromium photomask,
followed by sputtering (base pressure 10~ Torr) and a bi-layer lift-off process. The synthesized
MoSe,/SWNT composite was dispersed in ethanol (40 mg/mL), and 3 uLL was drop-cast onto the
central electrode gap at 70°C. The chip was then packaged on a PCB and wire-bonded with silver
paste for measurements. Full fabrication details are provided in the Supporting Information.

The schematic for the setup is shown in Figure 1a & b, where the device was driven by an
external input signal u(t) and the resulting voltages at each electrode, 0;(t) for i € {1, .., N},
were recorded at discrete time steps t. These electrode outputs collectively form the reservoir state

vector:

v = |00

OoN(D)

(3)

where N is the total number of electrodes (e.g., N = 15). In a typical software-based
reservoir, one would define an explicit update equation, but in our approach, the device’s intrinsic
memristive and electrochemical properties govern the transformation from x(t) and u(t) to
x(t + 1). Symbolically, we can write:
X(t + 1) = Fgoice(2(0), u(D)) (4)
where f gevice represents the physical dynamics of the MoSe,/SWNT material. Because
these dynamics are embodied in the device, we do not need an explicit functional form; we simply

measure x(t) at each time step.
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Figure 1. (a) General framework: the input signal u(¢) is projected into a high-dimensional nonlinear dynamical system (reservoir),
where the internal states x(t) are generated through recurrent connections. The output layer is trained by adjusting only the readout
weights Wy, to approximate the target signal y(t). (b) Experimental/implementation schematic: a sine wave or uniform white noise
input £5V is injected into the physical reservoir. The reservoir dynamics are sampled to produce output states (01 (t), O3 (t),..., O15
(t)), which are linearly combined to reproduce different target functions such as triangle, square, and sawtooth waves, as well as
the NARMA?2 benchmark task.
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2.4.1. Readout Training
To map the measured reservoir states x(t) to a target output y(t), a linear readout via ridge
regression is trained. The predicted output y(t) is a linear combination of these states with readout

weights w;, given by:

15
§©) = ) wi 0,()(5)
i=1

For compactness, we can write this in vector form as:
Y(t) = Woy x(t)
where Weoye = (Wq, Wa,., Wwis)T is the readout weight vector, and x(t) =
(01(t), 05(b),..., 015(t))T is the reservoir state vector. During ridge regression, the readout

weights are trained by minimizing the following cost function:

T
JWod = ) (® = 3®) + 2 Wou [26)
t=1

where A is the regularization parameter. The value is automatically optimized using grid
search and cross-validation for all PRC tasks, which was then applied in the ridge regression
readout to mitigate overfitting and ensure stable training performance. This value was determined
empirically and provided a suitable balance between model complexity and numerical robustness.
The closed-form solution for ridge regression is:

Wou = X' X+A) XY (7)

where X € RT*15 the reservoir state matrix, and Y € RT¥1 is the target signal vector.
2.4.2. Performance Metric
To assess how accurately the reservoir system reproduces the target signal, we use the normalized

mean square error (NMSE). This metric is computed separately for both the training and testing

phases:

10
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13, 6 -3®)’

193 NMSE = T 0'32, (8)
194 In this expression, T denotes the number of time steps in the respective evaluation interval

195  (either training or testing). The terms y(t) and y(t) represent the target signal and the predicted
196  output at time ¢, respectively. The denominator af, is the variance of the target signal computed
197  over the same interval. By normalizing the mean square error by the signal variance, NMSE
198  provides a scale-independent measure of predictive performance, allowing comparisons across
199  different signal types or amplitudes.

200  2.4.3. Waveform reconstruction task

201 In the waveform reconstruction task, an 11 Hz sine wave with an amplitude of 10 V,,, was applied
202  as the input to the MoSe)/SWNT device, and the resulting signals at the 15 electrodes were
203  recorded as the reservoir state. A linear readout layer was then trained to map these 15 electrode

204  outputs to the desired target waveform. Specifically, the readout weights were obtained via ridge

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

205  regression to minimize the difference between the predicted and actual waveforms, and the

206  performance was quantified by NMSE. This procedure ensured that the reservoir’s intrinsic

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.
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207  nonlinear dynamics were effectively harnessed to reconstruct the input waveforms with high
208  accuracy.

209  2.4.4.NARMA2 task

210  For this task, the input to the device was uniform white noise u(k) within the range 0 to 5 V. This
211  input was normalized and mapped to the range 0 to 0.5 V during the training phase to ensure
212 numerical stability’*75. The raw uniform white noise input sequences and the corresponding
213 recorded reservoir responses for this task are visualized in Figure S5. Without normalization, the

214  calculations could potentially diverge, causing instability and leading the system to unpredictable

11
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behaviours or infinite values. Normalizing the input helps mitigate this risk and ensures that the
device operates within a manageable dynamic range throughout the task. The NARMA? target is
generated by the following equation’:

ye(k+1) = 04y,(k) + 04y,(k)y,(k—1) + 0.6u3(k) + (9)
This task followed the same experimental protocol as the waveform reconstruction task, differing
only in the nature of the input signal and the target sequence being predicted.
2.4.5. Memory capacity
For the memory capacity experiment, the input was uniform white noise, like the NARMA?2 task,
but mapped to the range -1 to 1 V for numerical stability and consistency with standard memory
capacity experiments’#76. The reason for this mapping is that it is a common practice in memory
capacity evaluations to ensure that the input remains within a bounded range, allowing for a better
assessment of how the system handles information retention without the risk of instability. We
then trained the readouts to predict delayed versions of the input u(t — k) for delays k = 1,2,... K.
The memory capacity MC, is computed as the sum of the squared correlation coefficients 12 (k)

between the predicted and actual delayed inputs given by:

K 2
) ) (cov(y(t— k)3 (®)))
— 2 . 2 — P
MC ;r (i) r2(y3n) W s D g (t))\lo)

where 12 (y,jlk) represents the squared correlation between the true past input y(t — k)
and the predicted output y(t). Here, cov(y(t - k),j/(t)) is the covariance between the two signals,

and var( -) denotes their respective variances. A higher MC value indicates that the reservoir

retains past inputs over a longer timescale, reflecting its short-term memory performance.

12
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3. Results and discussion

3.1. Material characterization

The material characterization of the MoSe,/SWNT composite was carried out using multiple
complementary techniques, as shown in Figure 2. The XPS full survey (Figure 2a) displays
distinct peaks for Mo 3d, Se 3d, C Is, and O 1s, confirming that molybdenum, selenium, and
carbon are the key constituents of MoSe, and SWNT. In the high-resolution XPS spectrum of Mo
3d (Figure 2b), peaks at 228.4 eV, 231.6 eV, and 235.8 eV are observed, corresponding to the
Mo** and Mo®* oxidation states*>”778, The appearance of Mo®* suggests some surface oxidation
during synthesis, which could potentially benefit the device's electrical properties. Similarly, the
Se 3d spectrum (Figure 2¢) shows peaks at 54.34 eV and 55.59 eV, which are characteristic of
Se?” in MoSe, 717, This indicates that selenium is present in its expected oxidation state,
suggesting that the material retains its stoichiometric composition, which is important for its

semiconducting properties.
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Figure 2. (a) XPS survey spectrum of the MoSe,/SWNT composite confirming the presence of Mo, Se, C, and O, (b) XPS
spectrum of Mo 3d showing mixed oxidation states, (c) XPS spectrum of Se 3d indicating selenium in its reduced state, (d) XRD
pattern revealing the characteristic diffraction peaks of the hexagonal MoSe, phase, (¢) SEM image showing an interconnected
SWNT network uniformly coated with MoSe,, (f) TEM image displaying a fibrous core—shell structure where MoSe, forms a
shell around bundles of SWNTs with a defined interface and some discontinuities

The X-ray diffraction (XRD) pattern of the MoSe,/SWNT composite (Figure 2d) exhibits
distinct reflections at 26 values of 12°, 25°, 33°, 41°, 46°, and 54°, corresponding to the (002),

(004), (100), (006), (105), and (110) planes of hexagonal 2H- MoSe, respectively®®80. These
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254  features confirm the successful formation of crystalline MoSe, within the composite, consistent
255  with its layered structure and indicative of good crystallinity, which is an essential attribute for
256  maintaining reliable interlayer charge transport and electrochemical activity. Although the
257  composite contains SWNTs, characteristic graphitic peaks typically observed near 25-26° of 26,
258  which are associated with the (002) reflection of sp? carbon frameworks, are not clearly resolved.
259  This absence can be attributed to the inherently broad and low-intensity diffraction features of
260  SWNTs, their possible amorphous or turbostratic arrangement, and the overlap with the MoSe,
261  (004) reflection at 25.2°. Such peak suppression or convolution is commonly reported in MoSe,
262  SWNT hybrid systems, especially when the carbonaceous component is present in low
263  concentrations or is well-dispersed at the nanoscale*3-7181,

264 The SEM image (Figure 2e) provides additional insight into the composite’s morphology.
265  The image reveals that the SWNTSs form a highly interconnected network, which likely enhances

266  the charge transport properties by offering multiple conductive pathways throughout the

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

267  nanocomposite. MoSe, appears to coat this SWNT network uniformly, combining the high surface

268  area of the nanotubes with the functional properties of MoSe,. This uniform coating is essential

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.
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269  for facilitating both charge injection and retention, which is critical for the enhanced switching and
270  conduction behaviours observed in electrical measurements such as /- and SCLC.

271 The TEM image (Figure 2f) further elucidates the composite’s microstructure. The TEM
272 analysis reveals a fibrous core-shell structure where MoSe, forms a shell encapsulating the core of
273  SWNT bundles rather than individual nanotubes. This morphology is characterized by distinct
274  contrast differences that indicate a layered coating, suggesting that the MoSe, is forming a shell
275  structure over SWNT bundles*>”’. The core-shell interface appears well-defined, though not

276  entirely uniform, and is crucial for charge transport because it influences electronic pathways. The
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TEM image also shows discontinuities in the MoSe, shell, which may indicate regions of
incomplete coating. These structural features could lead to localized variations in electrical
characteristics, potentially affecting the overall device behaviour, including resistive switching and
neuromorphic performance.
3.2. Electrical characterization
The junctions formed between MoSe, and SWNTs play a critical role in the conduction of
mechanisms and nonlinear behaviour of these hybrid structures. The random network of these
nanojunctions creates a complex pathway for electron transport, contributing to the overall
nonlinearity observed in the system. Research indicates that these nanojunctions can lead to the
formation of localized states and trap sites, which significantly influence the charge transport
properties®?-#. Zhang et al. discussed how the interfaces in nanostructured materials like MoSe,
/SWNTs can result in diverse charge transport behaviours, including SCLC and trap-controlled
conduction mechanisms®. These mechanisms are essential for the resistive switching behaviour
observed in PRC applications. Furthermore, the random network configuration of MoSe,/SWNT
hybrids can enhance the reservoir's richness by providing multiple, diverse conduction pathways.
This network complexity is beneficial for PRC, as the structural randomness creates the diverse,
high-dimensional internal states required for nonlinear transformation. Furthermore, while
individual nano-junctions exhibit variability, the high density of the SWNT network (5 mg
loading) ensures that the macroscopic response is governed by ensemble averaging®6-37.

The I-V characteristics of the MoSe,/SWNT memristive devices were measured for
different concentrations of SWNT (0 mg, 1 mg, 5 mg, and 10 mg) to evaluate the impact of SWNT
content on the electrical behaviour and switching dynamics. The pure MoSe, device (0 mg SWNT,

Figure 3a) exhibited a near-linear /-V curve with slight curvature at higher voltages, suggesting

16


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5nr03974f

Page 17 of 41

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

300

301

302

303

304

305

306

307

Nanoscale

View Article Online
DOI: 10.1039/D5NR03974F

limited nonlinear behaviour and a lack of pronounced resistive switching. The observed response
is consistent with a predominantly semiconducting material exhibiting weak space-charge effects
at higher voltages. In contrast, the device containing 1 mg SWNT (Figure 3b) shows a more
pronounced nonlinearity in its /-J characteristics, with the emergence of a hysteresis loop,
indicating resistive switching behaviour. This suggests that the inclusion of SWNT enhances
charge transport by increasing conductivity and enabling charge trapping and releasing

mechanisms, essential for memristive switching.
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Figure 3. I-V curves showing the emergence of memristive behaviour with increasing SWNT content, confirming the role of the
hybrid structure in nonlinear conduction. (a) I-V curve for pure MoSe,, (b) I-V curve for MoSe, with 1 mg SWNT showing the
emergence of a counter-clockwise hysteresis loop (arrows indicate sweep direction) hysteresis loop, (c) I-V curve for MoSe, with
5 mg SWNT exhibiting enhanced resistive switching, (d) I-V curve for MoSe, with 10 mg SWNT displaying near-linear behaviour,
(e) Log-log plot of the SET transition for the 5 mg device (from c), and (f) Log-log plot of the RESET transition for the 5 mg
device (from c), both confirming SCLC conduction mechanisms.

As the SWNT content increases to 5 mg (Figure 3c), the device demonstrates stronger
resistive switching, exhibiting a clear counterclockwise hysteresis loop with a sharper transition
between the high and low resistance states. The /- curve shows a larger hysteresis window, which

indicates enhanced charge storage capability and more significant nonlinearity in the transport

18
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314  characteristics. This is likely due to the increased percolation pathways provided by the SWNT
315 network, facilitating more efficient charge injection and trapping®®. At the highest SWNT
316  concentration (10 mg, Figure 3d), the I-V curve displays continuous, near-linear behaviour with
317  minimal hysteresis, suggesting that the device's conductance is now dominated by the SWNT
318 network. The lack of pronounced resistive switching at this concentration could be attributed to
319  the formation of a highly conductive percolation network, which bypasses the trap-controlled
320  SCLC regime observed at lower SWNT concentrations. Here, the SWNT network likely provides
321  a low-resistance path for charge carriers, diminishing the switching characteristics observed at
322 lower concentrations. These results highlight the critical role of SWNT content in tuning the
323  memristive behaviour of the device. At low SWNT concentrations, the device shows strong
324  switching characteristics, ideal for applications in neuromorphic computing where nonlinear
325 transformations are required. However, at higher concentrations, the device becomes highly

326  conductive, which could be better suited for applications requiring high-speed, low resistance

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

327  switching.

328 Building on the /-V analysis of the optimal 5 mg device (Figure 3c), the log-log plot

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.
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329  provides further confirmation of the conduction mechanism in both the high-resistance state (HRS)
330 and low-resistance state (LRS), as well as the set and reset transitions. In both plots (Figure 3e for
331  the SET transition and Figure 3f for the RESET transition), distinct regions corresponding to
332  different conduction mechanisms are evident, consistent with the SCLC model. In the HRS, the
333 current follows a power-law dependence on the voltage (I o« V?, where n > 1), indicating the
334  presence of trap-controlled SCLC. This behaviour is more prominent at intermediate voltage
335  ranges, where the traps within the MoSe,/SWNT matrix are progressively filled by injected

336  carriers. The transition to the LRS occurs when the traps are fully filled, and the current increases
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more rapidly with voltage, reflecting a transition into a trap-free SCLC regime*’. During the
RESET and SET transitions, the steep slope in the log-log plot indicates a rapid increase consistent
with trap filling / TFL-related transition, which is characteristic of charge injection from the
electrodes and the filling of deeper traps %. This further supports the observation from the I-V
curves that the memristive switching behaviour is driven by the modulation of space-charge
regions within the device. Overall, the combined analysis of the /-V characteristics and log-log
plots confirms the dominant role of SCLC in the charge transport mechanism of the MoSe,/SWNT
device. This power-law behaviour, resulting from the use of non-reactive Al electrodes, is
consistent with other studies on similar TMD-based memristors where SCLC is identified as the
dominant intrinsic conduction mechanism*7-%.

This bulk-dominated transport also confers significant energy advantages. Based on the
static current in the LRS at a read voltage of 0.1 V and the estimated junction density, the static
power consumption is approximately 0.006 nW per MoSe,/SWNT junction. This is notably lower
than values reported for other random network reservoirs such as 0.07 nW per junction in Ag,Se
networks® and 0.02 nW per domain in YMnOs”. These results highlight the potential of the

MoSe,/SWNT platform for ultra-low-power neuromorphic applications.
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354  3.3. Electrochemical Impedance Spectroscopy

355  The electrical behaviour of the MoSe,/SWNT core-shell memristive structure was investigated
356  using EIS and current-voltage (I-V) measurements to elucidate its charge transport mechanisms.
357  The EIS data reveal a voltage-dependent evolution of a single, depressed semicircle from a highly
358  resistive state at low voltages (0—2 V) to a lower-resistance state at higher voltages (3—5 V),
359  consistent with resistive switching behaviour as shown in Figure 4. The parameters extracted from
360 fitting the spectra with an R || CPE equivalent circuit at each bias (resistance R, CPE magnitude
361  Q, exponent, and the corresponding characteristic time constant T) are summarized in Table 1.
362 At low voltages (0V-1V), the Nyquist plot rises steeply from the origin and forms only an
363 incomplete arc, suggesting that the system is dominated by capacitive behaviour. The high
364  resistance (R = 1000 MQ) and large constant phase element (CPE) values indicate significant
365  charge trapping within the MoSe, shell and at the MoSe,/SWNT interface, restricting current flow.

366 The high-resistance state (HRS) is attributed to the Schottky-like barriers at the metal-

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

367  semiconductor junction and deep trap states in the MoSe, shell, which limit carrier injection. This

368  behaviour is consistent with trap-controlled charge storage effects superimposed on bulk-limited

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.
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369 transport rather than purely Ohmic conduction in the low-bias regime®!. As the voltage increases
370  to 2V, the Nyquist plot starts to show some curvature, reflecting a reduction in resistance (R = 246
371  MQ) and the onset of conduction, though the spectrum is still dominated by a single, incompletely
372  formed semicircle and the capacitive contribution remains strong. The incomplete semicircle
373  indicates that while some charge transport pathways are beginning to form, the device has not fully

374  transitioned to a conductive state.
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Table 1. Values obtained after fitting to the R/CPE equivalent circuit.
Voltage R (MQ) Q (nQ1-sm) n T (8)

ov 1000.00 1.67 0.851 ~1.83s
g 1V 1000.00 0.76 0.878 ~0.73 s
@
;’i 2V 246.00 1.49 0.858 ~031s
§ 3V 76.10 1.33 0.860 ~0.07s
2 4V 3.52 1.04 0.893 ~1.90 ms
% 5v 2.37 1.13 0.885 ~1.20 ms
.
§ 378
;% 379 At 3V, a clear semicircle appears in the Nyquist plot, corresponding to a significant
% 380  reduction in resistance (R = 76.1 MQ). This marks the transition to a low-resistance state (LRS),
é 381  where conductive pathways, likely facilitated by the SWNT core, have been established. The
% 382  appearance of this semicircle suggests that the capacitive components are becoming less dominant,
E

383  and the system is now characterized by both resistive and capacitive contributions. The fitted R ||

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.

384  CPE parameters at 3 V (Table 1) indicate a still large but reduced time constant, showing that the

(cc)

385 dominant relaxation process is shifting toward faster charge transport in the MoSe,/SWNT
386  network. Moreover, the plot shows increased scatter in the lowest-frequency points below ~160
387  Hz, which we attribute to long-time drift and the onset of slower auxiliary processes not resolved
388 as a separate semicircle in the measured frequency window. The MoSe,/SWNT interface plays a
389  crucial role, as the highly conductive SWNT core acts as an electron reservoir, modulating charge
390 transport through the surrounding MoSe, shell. The formation of conductive percolation pathways
391  within MoSe; domains is likely driven by field-induced carrier delocalization within defect-rich

392  MoSe, regions and charge hopping between localized trap sites>-22.
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At higher voltages (4V-5V), the semicircle becomes more pronounced and complete, and
the resistance drops to 3.52 MQ at 4V and 2.37 MQ at 5V (Table 1). The Nyquist plots at these
voltages are well described by a single depressed semicircle that rises essentially from the origin,
indicating that no distinct high-frequency charge-transfer resistance can be resolved and that the
impedance is dominated by bulk processes in the MoSe,/SWNT network. The lowest-frequency
points (< ~200 Hz) exhibit some fluctuation, which we ascribe to measurement drift rather than a
well-developed Warburg-type diffusion tail. The decrease in CPE values at these voltages suggests
that charge storage mechanisms are less significant, and the device exhibits predominantly
resistive behaviour. The characteristic time constant extracted from the 5 V spectrumis 1t~ 1.2 ms,
which we treat as the dominant time scale of the device in the subsequent reservoir-computing
analysis. The system behaves more like an ideal resistor with minimal capacitive effects at this
stage.

The I-V measurements further support this resistive switching behaviour. At low voltages,
the device exhibits a near-Ohmic response, likely dominated by trap-limited conduction. However,
under AC excitation (as in EIS), the same voltage range shows a capacitive-dominated response
with high impedance, suggesting significant charge trapping and limited carrier mobility. As the
voltage increases, the device transitions into the trap-filled limit (TFL) region, characteristic of the
SCLC mechanism*7-8%-93 where the filling of traps can produce a sharp increase in current once the
trap-filled limit is reached. This provides a natural explanation for the abrupt SET transition
without the need to assume metallic filament formation. Both the HRS and LRS -V curves can be
fitted by SCLC-type power laws over a broad voltage range, indicating that space-charge-limited
transport in the MoSe,/SWNT bulk is the dominant conduction mechanism, while any interfacial

or redox contributions are not resolved as separate elements in the EIS spectra. The coexistence of
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416  Ohmic-like behaviour in DC /-} and capacitive response in EIS highlights the complex interplay
417  of resistive and dielectric effects in the high-resistance state. This duality is further confirmed as
418  the system transitions to a low-resistance, predominantly resistive state at higher voltages.

419  3.4. PRC tasks

420  3.4.1. Waveform reconstruction benchmark tasks

421  The goal is to employ the MoSe,/SWNT core-shell structure as a reservoir in a reservoir computing
422  framework to transform input signals into a high-dimensional space, facilitating complex signal
423  processing tasks. By feeding a sine wave with a fundamental frequency of 11 Hz into the device,
424  we observed its output through FFT analysis as shown in Figure S2 in the Supporting Information,
425  revealing the presence of harmonics at integer multiples of the input frequency (22 Hz, 33 Hz,
426  etc.). This harmonic generation indicates nonlinearity in the device's response, a desirable
427  characteristic for effective reservoir computing.

428 To evaluate the device’s capability for nonlinear transformation and periodic signal

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

429  modelling, ridge regression was applied to fit its 15 output signals to various target waveforms, as

430  illustrated in Figure 5. These included cosine, triangle, sawtooth, square, and sinusoidal waves at

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.
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431  higher harmonic frequencies. The results showed consistently low NMSE values (all below 0.1),
432  with accuracy metrics presented in Table 2. The cosine waveform (Figure 5a), comprising a single
433 frequency component, was reconstructed with 99.9% accuracy, demonstrating that the device can
434  reliably preserve both the amplitude and phase of fundamental harmonic content. Triangle
435  (Figure5b) and square waves (Figure5c), which consist of odd harmonics, were also
436  reconstructed with high accuracy (99.7% and 93.5%, respectively), indicating that the device

437  effectively captures both smooth and abrupt waveform features. For the sawtooth waveform

25


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5nr03974f

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

438

439

440

441
442

443

444

445

446

447

Nanoscale Page 26 of 41

View Article Online
DOI: 10.1039/D5NR03974F

(Figure 5d), which contains both odd and even harmonics with linearly decreasing amplitude, the

reservoir successfully reproduced its asymmetric profile, achieving 89.0% accuracy.
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Figure 5. Waveform reconstruction tasks representation where target wave (black line), training wave (orange), and predicted
wave (green) respectively. Accuracies for: (a) Cosine: 99.9%, (b) Triangle: 99.7%, (c) Square: 93.5%, (d) Sawtooth: 89.0%, (e)
Sin2®: 99.7%, () Sin3®: 95.1%

Performance on higher-order sinusoidal waveforms further confirmed the device’s
nonlinear capacity. The Sin2® waveform (Figure 5e) was fitted with 99.7% accuracy, while the
more complex Sin3w waveform (Figure Sf) achieved 95.1%. These results suggest that the
reservoir retains sufficient nonlinearity to support the reconstruction of signals composed of higher
harmonic content. Together, these findings highlight the MoSe,/SWNT device’s effectiveness as

a physical reservoir for waveform reconstruction, capable of handling a wide range of periodic
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448  structures from fundamental components to more complex, harmonically rich signals. We compare

449  our results up to Sin2® on this task with those of other works and summarize them in Table 2.

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.

Table 2. Waveform reconstruction accuracy comparison of different in-materio reservoir computing systems.
The table highlights both task accuracy and the underlying conduction mechanism, showing how device physics
% correlates with computational performance.
é Device Conduction Waveforms fitting accuracy (%)
§_ structure/Materials | mechanism | Cogine | Triangle | Sawtooth | Square | Sin2o
< Ag,S polycrystalline
T Filamentary | 98.6 94.3 75.4 89.7
< film3®
£ SWNT/Por-POM
8 Redox 99.0 99.4 71.0 87.0
2 complexes*
B
o SPAN electrochemical
o Redox 99.0 88.0 91.0 93.0
B network?°
i
= Ag,Se nanowire? Filamentary | 99.8 98.6 62.3 82.1
& SWNT/H,TPP-POM
£ Redox 99.0 72.0 86.0 79.0
complexes **
Ag nanowire® Filamentary | 97.0 86.0 83.0 87.0
g
Ag—AgQS
' Filamentary | 99.9 98.3 70.2 87.5
nanoparticle®
) Molecular
RR-P3HT thin film* _ ‘ 99.0 99.0 65.0 85.0 61.0
orientation
MoSe,/SWNT core-
SCLC 99.9 99.7 89.0 93.5 99.7
shell (this work)
450
451 The comparison in Table 2 underscores the strong influence of conduction mechanism on

452  task performance. Filamentary systems such as Ag,S, Ag nanowires, and Ag—Ag,S exhibit
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nonlinear dynamics that enable waveform fitting but often result in reduced accuracy for
harmonically rich signals such as sawtooth and square waves. lonic or redox-based polymer
systems (SPAN, SWNT-POM) provide improved performance on some temporal tasks but remain
limited in harmonic preservation. In contrast, the MoSe,/SWNT device operating in the SCLC
regime achieves consistently high accuracy across all waveforms, particularly for higher-order
harmonics (Sin2m = 99.7%). This advantage arises from higher harmonic generation and short-
term memory in the trap-controlled conduction process. FFT analysis of the device outputs (Figure
S1) clearly shows pronounced peaks at the fundamental and harmonic frequencies, while Lissajous
plots (Figure S2) reveal asymmetric ellipses and hysteresis, both confirming rich nonlinear
dynamics that support accurate waveform reconstruction. (Figure S3) details the Total Harmonic
Distortion (THD) measurements, revealing a heterogeneous distribution of nonlinearity across the
electrodes that is essential for rich feature encoding. The raw experimental signals are presented
in (Figure S4), where the output waveform exhibits clear distortion compared to the sinusoidal
input, confirming the nonlinear transformation capabilities of the device. These results highlight
how SCLC dynamics provide a more favourable basis for nonlinear transformation compared to
filamentary or redox systems.

3.4.2. NARMAZ2 prediction tasks

The NARMA? task, a widely used benchmark for assessing the computational capacity of
reservoir systems, was employed to evaluate the performance of the MoSe,/SWNT core-shell
device. This task tests the device’s ability to handle nonlinear dynamics and short-term memory,
both crucial for reservoir computing applications. The goal of the NARMAZ2 task is to predict the
future values of a nonlinear autoregressive moving average process of order 2, based on the past

inputs’#76. The results are displayed in Figure 6. In the upper plot, the blue points represent the

28


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5nr03974f

Page 29 of 41

476
477
478
479

480

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

Open Access Article. Published on 10 January 2026. Downloaded on 1/21/2026 4:19:45 AM.

(cc)

482
483

484

485

486

487

488

Nanoscale

View Article Online
DOI: 10.1039/D5NR03974F

model's predictions during training, while the orange points represent the predictions during testing.

The grey line shows the target NARMAZ2 values, providing a reference for comparison. The model

was trained on 800 time steps, and the transition between the training and test phases is marked by

a vertical green line. During the test phase, the model was tasked with predicting the next 200 time

steps based solely on the past inputs without further training.

a)
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Figure 6. NARMA?2 prediction task. a) The full plot showing both training and the predicted plot with total of 1000 data points used.
b) The zoomed plot of the 200 datapoints of the prediction of 90% accuracy

During the training phase, the predictions closely follow the target values, demonstrating

that the device successfully learned the underlying dynamics of the NARMAZ2 task. The alignment

between the blue points (predictions) and the grey line (target) indicates that the device effectively

modelled the nonlinear relationships inherent in the NARMA?2 system. In the testing phase,

represented by the orange points, the device continued to perform well, closely tracking the target

values with only minor deviations. The bottom plot zooms in on the 200 test points to provide a
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clearer view of the model’s predictive performance. The red points indicate the predicted values,
while the grey line corresponds to the actual target values. The device’s ability to follow the
oscillations and fluctuations of the NARMAZ2 time series is evident, as most predicted points align
closely with the target. Although there are occasional small deviations, the overall performance
remains robust. The model achieved an accuracy of 90% on the NARMAZ2? task, indicating the
device's strong capability in handling complex, nonlinear temporal dependencies. The remaining
10% error can be attributed to small discrepancies between the predicted and target values,
especially during periods of rapid fluctuation in the NARMAZ2 time series. Nonetheless, the high
accuracy suggests that the MoSe,/SWNT core-shell device can effectively process and model
complex time-series data.

3.4.3. Memory capacity

The memory capacity (MC) task is another important benchmark for evaluating the computational
abilities of a reservoir system, specifically its ability to retain information over time. In this task,
the device is evaluated on its ability to recall previous inputs after a specified delay. Memory
capacity is crucial in tasks like time-series prediction, where the system needs to retain past
information to make accurate future predictions. This task directly complements the NARMA2
task, as both rely on the device's ability to process and retain temporal information effectively®74%.
Figure 7 shows the squared correlation (Cor?) between the input signal and the reservoir's output
as a function of the delay. The memory capacity (MC) is determined by summing the squared
correlation values across different delays, with a higher MC indicating that the reservoir can recall
information from further back in time. For this device, the total memory capacity was measured to
be 5.2, meaning that the system can effectively retain and utilize information over approximately

5 time steps.
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Memory Capacity
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513 Figure 7: Memory capacity of MoSe,/SWNT device with noise input.

514 Examining the plot, the squared correlation reaches a maximum value of 1.0 at zero delay,
515  indicating that the system perfectly retains the current input. As the delay increases, the correlation
516  drops steeply, showing that the device’s ability to recall past inputs decreases rapidly. By the time
517  the delay reaches around 5 steps, the correlation drops to approximately 0.2, indicating that the

518  system still retains some memory, but it has significantly decayed. Beyond 10 delays, the

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

519  correlation becomes quite small, reflecting that the system has little memory of inputs from that

520  far in the past. This result is consistent with the device's performance on the NARMA?2 task. A
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(cc)

521  memory capacity of 5.2 indicates that the device can handle tasks requiring short-term memory
522 over a few time steps. In the NARMAZ2 task, where the system needs to predict the next value
523  based on the past two inputs, this level of memory capacity is sufficient to capture the required
524  temporal dependencies, which explains the relatively high accuracy of 90% achieved in the
525 NARMA?2 task. The NARMAZ2 task, with its short-term memory requirement, aligns well with the
526  observed memory capacity of the device, as it requires the system to retain relevant information

527  for a small number of time steps.

528
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4. Conclusion

In conclusion, the MoSe,/SWNT core—shell structure demonstrates significant promise as a
physical reservoir for neuromorphic computing applications. The unique combination of the high
conductivity provided by SWNTs and the semiconducting, nonlinear characteristics of MoSe,
enables the device to exhibit pronounced memristive switching and dynamic behaviour under
different electrical biases. Detailed experimental analyses confirmed that the device transitions
from a capacitive-dominated high-resistance state to a resistive low-resistance state with clear
SCLC behaviour, essential for effective reservoir computing. Performance in benchmark tasks
such as waveform reconstruction, NARMAZ2 prediction, and memory capacity tests validates the
ability of the material system to transform input signals into high-dimensional representations,
making it a strong candidate for future Al hardware. While this study established the fundamental
SCLC dynamics and baseline performance on NARMAZ2, future investigations will extend this
platform to higher-order temporal tasks, such as speech recognition handwritten digit recognition,
to further validate the system's scalability for real-world neuromorphic applications. By offering a
designless, bottom-up approach to neuromorphic computing, this work opens new pathways
toward ultra-low-power, flexible, and scalable artificial intelligence hardware that could enable
next-generation applications in robotics, edge computing, and beyond.
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