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Introduction

Prediction of the low-temperature properties of
electrolyte solvents for lithium-ion batteries via
machine learning

Jiechen Guo,?® Yifan Chai,>® Cancan Hong,*° Hao Liu,®® Lijing Xie,® Tianle Wang,*®
Jingpeng Chen,? Ge Song,® Zonglin Yi*® and Fangyuan Su (2 *?

Electrolytes with low melting points (MPs), high boiling points (BPs), and high dielectric constants (¢) can
effectively mitigate performance degradation in lithium-ion batteries (LIBs) under low-temperature con-
ditions. However, the lack of systematic experimental data on electrolyte properties poses a significant
challenge to traditional design approaches. To address this limitation, we developed a machine learning
workflow that integrates data acquisition using large language models, model construction, and interpret-
ability analysis, aiming to predict key molecular properties, with a focus on MPs, BPs and ¢. We con-
structed a multi-source database, LiElectroDB, that contains over 150 000 electrolyte molecules relevant
to LIBs. The prediction models demonstrate strong performance across all three properties, achieving an
R? of 0.8864 and a root mean square error (RMSE) of 23.3 K for the MP, a coefficient of determination (R?)
of 0.9608 and an RMSE of 14.3 K for the BP using the XGBoost algorithm, and an R? of 0.8718 and a
RMSE of 6.7 for e using an artificial neural network. To further uncover structure—property relationships,
t-SNE and SHAP are employed to analyze the molecular features contributing to thermal behavior at a
microscopic level. Finally, by integrating molecular neighborhood search with high-throughput screening,
nine candidate molecules are identified as promising low-temperature electrolytes for LIBs. This work
provides an efficient and generalizable framework for the design of low-temperature electrolytes in LIBs.

Recently, machine learning (ML) has emerged as a powerful
tool to accelerate material design and property prediction. In

Lithium-ion batteries (LIBs) have been widely applied as prom-
ising electrochemical energy storage materials due to their
high energy density, long cycle life, and the absence of the
memory effect.”” Unfortunately, the practical application of
LIBs in extremely cold environments is limited by their unsa-
tisfactory energy retention at low temperature, owing to the
deterioration of the electrolytes, which severely hinders the
migration of lithium ions.>* The optimization of electrolytes is
considered a crucial strategy to enhance the low-temperature
performance of LIBs.””” The ideal low-temperature electrolyte
solvents should exhibit the following properties: (i) low
melting points (MPs) to enhance system fluidity;® (ii) high
dielectric constants (¢) to promote the dissolution of lithium
salts;”*° and (iii) medium-to-high boiling points (BPs) to sup-
press the consumption of electrolytes and prevent thermal
runaway."* However, the lack of systematic experimental data
on electrolyte properties poses a significant challenge to trial-
and-error design approaches.
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the field of LIBs, high-throughput experimentation and data-
driven modelling enable the development of key components,
such as cathodes,'>'® anodes,"*" and electrolytes.'®"® The
application of molecular simulation and ML to screen ideal
electrolytes facilitates the advancement of next-generation low-
temperature LIBs. In recent years, various ML algorithms have
been employed—such as random forests, support vector
machines, and neural networks—to predict key electrolyte pro-
perties including ionic conductivity,"®?° the electrochemical
stability window,*">* and viscosity.>*>® However, these purely
data-driven approaches often suffer from limited generaliz-
ation ability and the lack of interpretability. To address these
limitations, researchers have proposed the knowledge-data
dual-driven Knowledge-based Property prediction Integration
(KPI) framework to predict the critical thermophysical pro-
perties of electrolyte molecules including melting points
(MPs), boiling points (BPs), and flash points (FPs).>’ KPI is
specifically designed for applications requiring a wide temp-
erature range and high-safety battery operation. KPI integrates
expert domain knowledge with data-driven learning. This inte-
gration not only enhances predictive accuracy but also signifi-
cantly improves model interpretability and generalization.
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Leveraging molecular neighbourhood search and high-
throughput virtual screening, KPI successfully identified 29
promising electrolyte candidates with desirable safety and
thermal properties, demonstrating its effectiveness in acceler-
ating electrolyte discovery. However, due to the significant
differences in the datasets used across various studies, the
existing models still exhibit insufficient generalization capa-
bilities across different datasets or under specific operating
conditions, such as low-temperature environments (Fig. 1a).

In this work, we propose a modelling method that inte-
grates multi-level chemical knowledge to achieve highly
precise prediction of the key physical properties of low-temp-
erature electrolytes, including MPs, BPs and e. Firstly, we con-
structed a LIB electrolyte database (LiElectroDB), a structurally
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diverse electrolyte database containing more than 150
000 molecules, assembled through multi-source data inte-
gration and LLM-assisted extraction. To fulfil the modelling
requirements of different properties, XGBoost*® (XGB) and
neural network-based modelling strategies are designed to
uncover the relationships between molecular structures and
target properties. By embedding multi-level chemical knowl-
edge including chemical composition, structural character-
istics, and electronic descriptors, the models not only achieve
high predictive accuracy but also exhibit enhanced interpret-
ability. Additionally, by combining molecular neighbourhood
search with high-throughput screening strategies, nine promis-
ing molecules are successfully identified as low-temperature
electrolyte candidates for LIBs. This workflow not only estab-
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Fig. 1 Overall workflow of machine learning. (a) Background. (b) Data collection. (c) Preparation of training sets. (d) Feature engineering. (e) Model

training and validation.
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lishes a novel and scalable paradigm for electrolyte discovery
but also demonstrates significant potential to accelerate mole-
cular screening, reduce experimental costs, and provide action-
able insights to guide future electrolyte design.

Results and discussion
Workflow overview

This study presents a framework for molecular property predic-
tion, supported by the construction of a high-quality molecular
database, LiElectroDB, integrated from multiple data sources.
LiElectroDB is built with QM9 serving as the core dataset and
is further supplemented with literature data and external data-
bases, such as PubChem?® and the National Institute of
Standards and Technology (NIST)*® (Fig. 1b). Additionally, an
LLM (GPT-4-turbo) is utilized to assist in data acquisition
(Fig. 1c), leading to a multi-source dataset containing over
150 000 unique molecules. To ensure model stability and gen-
eralization, strategies such as data augmentation and feature
engineering are introduced (Fig. 1d). Several ML models based
on various algorithms are systematically evaluated. Through
five-fold cross-validation, the performance of each model is
compared on the same task. The XGB-based model is ulti-
mately selected for predicting MPs and BPs, while an artificial
neural network (ANN)*' is used for predicting e (Fig. 1e).
t-Distributed stochastic neighbour embedding (t-SNE)** and
Shapley additive explanations (SHAP) analyses are further
applied to provide interpretability. By integrating molecular
neighbourhood exploration with high-throughput screening,
nine candidate molecules are identified as promising low-
temperature electrolytes for LIB applications. This workflow
covers data construction, preprocessing, model optimization,
and result interpretation, with the goal of offering reliable data
support and interpretable modelling strategies for molecular
property prediction.

Dataset construction

The study begins with the QM9*® dataset, which contains
ab initio properties of approximately 134 000 molecules, and is
further extended to include common organic solvents and
representative inorganic compounds based on literature
data®®***” and external databases. Simplified molecular input
line entry system (SMILES)®® strings are used as unique identi-
fiers, and the PubChem API is employed to standardize mole-
cular structures and eliminate duplicates. LLMs are also used
to assist in extracting data from textual sources, with all
retrieved information manually verified. This hybrid approach
enables efficient scaling while maintaining data accuracy.
Ultimately, the multi-source fusion database LiElectroDB is
constructed (Fig. 1b), providing a structurally diverse foun-
dation for downstream modelling.

To build a high-quality training set, we obtain property
parameters such as MP, BP, and ¢ from authoritative sources,
including the NIST and PubChem. During data collection,
SMILES strings serve as a unified primary key to retrieve struc-
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tured chemical information via the PubChem API. An LLM
(GPT-4-turbo) is further applied to extract physical properties
—MPs, BPs, and e—for molecules in LiElectroDB (Fig. 1c). All
extracted data are manually annotated to ensure accuracy and
serve as the basis for subsequent model training and evalu-
ation. Information from SMILES strings is integrated as the
primary input, and three types of molecular characteristics are
additionally extracted using the RDKit** in Python 3.11.7,
including chemical composition, molecular structure, and
electronic structure (Fig. 2a and Tables S1-S3).

To ensure physical plausibility, chemical diversity, and
model stability, we restrict the molecular weight to 0-300 and
the number of heavy atoms to 0-30 (Fig. S1). The final dataset
includes 1251 MP data points, 1502 BP data points, and 895 ¢
data points. The resulting chemical space primarily consists of
organic molecules containing C, H, O, N, S, and P, with
diverse linear, cyclic, and aromatic scaffolds and a broad distri-
bution of polar functional groups (ethers, carbonyls, amines,
nitriles, sulfones, and alcohols). The property ranges—MP
(50-450 K), BP (300-650 K), and ¢ (1-60)—are well aligned with
electrolyte-relevant regimes, supporting reliable model train-
ing within the applicability domain.

We note that certain sparsely sampled regions—such as
highly fluorinated systems, large polycyclic aromatics, and
molecules containing fewer common heteroatoms—carry
higher predictive uncertainty. Molecules with extremely high
polarity or very limited conformational flexibility are likewise
under-represented. These constitute the limitations of our
mode. Overall, the curated structural and property diversity
provides a robust basis for generalizable and physically mean-
ingful predictions across conventional organic electrolyte
candidates.

Kernel Density Estimation (KDE)*® analysis is conducted on
the numerical distributions of MP, BP, and ¢ to verify the
rational division and representativeness of the dataset. The MP
and BP datasets are randomly divided into training and test
sets at a ratio of 4:1, while the ¢ dataset is randomly divided
into training, validation, and test sets at a ratio of 8:1:1
(Fig. S2-S4). The distribution curves of each subset are gener-
ally consistent with the overall dataset, showing good uniform-
ity. These differences are slightly reflected in the smoothness
and local peaks of the curves, but the overall differences are
minimal, indicating that the data partitioning process effec-
tively retains the representativeness and diversity of the orig-
inal data and avoids oversampling or bias. This consistency is
essential in data modelling and model evaluation, ensuring
that model training, validation, and testing processes are con-
ducted under similar distribution conditions, thereby enhan-
cing the robustness and generalization ability of the model.

Feature engineering

A systematic feature preprocessing pipeline is implemented,
which mainly includes three steps: missing value imputation,
removal of low-variance features, and elimination of highly
correlated features, aiming to enhance training efficiency and
model prediction performance.
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Fig. 2 Feature engineering. (a) Feature extraction. (b) Pearson correlation heatmaps. (c) Feature importance ranking based on XGBoost.

First, missing values in the dataset are detected and pro-
cessed. Since missing values are inevitable in real-world data
collection, using the data directly for modelling affects the
accuracy and stability of the model. Therefore, the mean impu-
tation method is applied to fill missing values in numerical
features. Specifically, the SimpleImputer class from the
sklearn.impute module®! is employed to replace missing
values in each column with the mean of the available values.

Next, low-variance feature selection is performed on the
completed dataset. In modelling, low-variance features typi-

cally fluctuate minimally across samples and provide limited
explanatory power for the target variable, potentially introdu-
cing redundant information. Based on this, the
VarianceThreshold class from the sklearn.feature_selection
module is applied to remove features with variance below 0.01.
This step helps to reduce feature dimensionality and improve
both training speed and model generalization.

Furthermore, to address potential multicollinearity among
features, we computed the Pearson correlation coefficients for
all feature pairs and visualized the results using a correlation

Nanoscale This journal is © The Royal Society of Chemistry 2026
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heatmap (Fig. S5-510). Feature pairs with absolute correlation
coefficients exceeding a predefined threshold were considered
strongly correlated. In such cases, only one feature from each
pair was retained for subsequent modelling. This procedure
was adopted to prevent highly correlated features from jointly
influencing the model, which could lead to unstable para-
meter estimates and potential overfitting. Fig. 2b shows
Pearson correlation heatmaps of the engineered features.*

Finally, feature importance is assessed using a preliminary
XGB model (Fig. S11-S13). Importance scores are derived from
the internal gain-based metric, which quantifies the total
information gain a feature contributes across all tree splits
during model construction. Features with low importance
scores are removed to reduce dimensionality and mitigate
noise, except in the case of the ANN model, where such impor-
tance-based filtering is not directly applicable due to its non-
tree-based architecture. Based on the above-mentioned feature
engineering process, a representative subset of core features is
selected as the final feature set (Fig. 2c), resulting in 17 fea-
tures for melting-point prediction, 18 features for boiling-
point prediction, and 61 features for dielectric constant
prediction.

Model training and validation

During the training process, all input features were standar-
dized using the StandardScaler from the sklearn.preprocessing
module. Eight ML regression models are evaluated, including
Decision Tree Regressor (DT),** Bagging Regressor (BG),**
Random Forest Regressor (RF),*> Extra Trees Regressor (ET),*®
AdaBoost Regressor (ADBR),"” Gradient Boosting Regressor
(GBR),*® XGB, and ANN (Fig. $14-S40). All models underwent
hyperparameter tuning via grid search. Using 5-fold cross-vali-
dation, we systematically compared the performance of each
model on different prediction tasks (MPs, BPs, and ¢). The main
evaluation metrics include the root mean square error (RMSE)
and the coefficient of determination (R?). In the MP and BP pre-
diction tasks, tree-based ensemble models, particularly XGB, are
well adapted to such combined feature sets. They exhibit robust-
ness to feature scaling variations, effective handling of non-
linear interactions, and stable performance against noisy or par-
tially correlated descriptors. Consistently, XGBoost achieved the
lowest RMSE and highest R* among all tree-based models in MP
and BP cross-validation (Tables 1 and 2), validating its suitability
for these thermophysical properties.

The XGB regression model is optimized to improve the
accuracy of MP and BP predictions. Key hyperparameters are
fine-tuned using grid search combined with five-fold cross-
validation (Fig. S11 and S20). Model performance is evaluated
using cross-validated RMSE and R®> scores. The MP model
achieves an R* of 0.8868 and an RMSE of 23.3 K under five-
fold cross-validation (Table 1). The BP model further improves
upon this, reaching an R*> of 0.9608 and an RMSE of 14.3 K
(Table 2). ¢ depends more strongly on electronic descriptors—
including dipole-related features, partial charge distributions,
and energy-state indices—which introduce complex higher-
order nonlinear relationships. The ANN exhibits superior capa-
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Table 1 Performance comparison of
prediction

regression models for MP

Test set (cross-

Training set Test set validation)

R RMSE (K) R® RMSE (K) R® RMSE (K)
DT 0.9028 21.60 0.7805 32.36 0.7664  33.46
BG 0.9368 17.41 0.8498 26.77 0.8402 27.67
RF 0.9795  9.92 0.8722  24.69 0.8642 25.51
ET 0.9530 15.02 0.8467 27.04 0.8432 27.41
ADBR 0.7329 30.46 0.7617  28.00 0.7017 37.81
GBR  0.9814  9.45 0.8546  26.34 0.8611 25.19
XGB  0.9795 9.91 0.8856 23.41 0.8864 23.30
ANN  0.9447 11.83 0.8193  22.90 0.8463 19.84

Table 2 Performance comparison of
prediction

regression models for BP

Test set (cross-

Training set Test set validation)

R® RMSE (K) R® RMSE (K) R® RMSE (K)
DT 0.9581 15.10 0.8998 21.54 0.8635 26.85
BG 0.9695 12.89 0.9316 17.79 0.9187 20.73
RF 0.9896  7.51 0.9461 15.80 0.9359 18.40
ET 0.9815 10.05 0.9403  16.62 0.9379  18.1094
ADBR 0.8077 27.52 0.7552  28.10 0.7938  33.03
GBR  0.9813 10.08 0.9440 16.10 0.9398 18.19
XGB  0.9787 10.78 0.9550  14.43 0.9608 14.30
ANN 09751 11.48 0.9323 18.46 0.9513  15.90

bility in capturing such intricate nonlinear mappings within
high-dimensional spaces, thus achieving the highest predictive
accuracy among all evaluated models; specifically, the ANN
model achieves an R* of 0.8863 and an RMSE of 6.7 (Table 3).
Upon implementing the Keras framework, the network adopts
a simple yet effective architecture with two fully connected
hidden layers and a single output node. The input layer
receives a 61-dimensional feature vector generated from mole-
cular features, covering the electronic properties, molecular
structure, and chemical composition. Each hidden layer con-
tains 300 neurons with ReLU activation to enhance non-linear
representation and mitigate vanishing gradients. To improve

Table 3 Performance comparison of
prediction

regression models for ¢

Test set (cross-

Training set Test set validation)
R? RMSE R* RMSE R® RMSE
DT 0.5330 13.18 0.4715 13.14 0.5007 13.46
BG 0.8704 6.9415 0.7022 9.87 0.7421 9.67
RF 0.9687 3.41 0.7285 9.42 0.7826 8.88
ET 0.9725 3.20 0.5927 11.54 0.7662 9.21
ADBR 0.5878 12.38 0.3345 12.43 0.3471 15.12
GBR 0.9856 2.31 0.7538 8.97 0.7904 8.17
XGB 0.9090 5.81 0.6743 10.32 0.7428 8.95
ANN 0.9779 2.85 0.8870 7.91 0.8718 6.70
Nanoscale
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Fig. 3 Predicted versus actual values for (a) the MP, (b) the BP using the XGBoost algorithm, and (c) ¢ using an artificial neural network.

generalisation ability and prevent overfitting, each hidden
layer is followed by a 10% dropout layer. Weight parameters
are initialized using a random normal distribution, and L2
regularization (1 = 0.001) is applied to limit model complexity.
The output layer consists of a single neuron. The model is
trained using the MSE loss function and optimized with the
Adam algorithm to ensure stable and efficient convergence.
The training and validation loss curves show rapid initial con-
vergence and sustained stability during training epochs, with
minimal differences between training and validation losses
(Fig. S39).

To further benchmark the model performance, a classical
Group Contribution (GC) baseline was implemented using a
Joback-type correlation. A validation subset of 47 structurally
diverse molecules—covering linear, cyclic, aromatic, and
heteroatom-containing species (O, N, S, and halogens), as well
as functional groups such as ethers and carbonyls—was
selected from the curated database. For each molecule, GC-
estimated MP and BP were computed and compared against
the corresponding experimental measurements and ML pre-
dictions. Across all three properties, the ML models consist-
ently achieved significantly lower RMSE and MAE relative to
the GC baseline, demonstrating their superior accuracy and
generalizability (Tables S7 and S8) (Fig. 3).

Structure-property visualization

The t-SNE algorithm is employed for dimensionality reduction
and visualization analysis, focusing on BPs, MPs, and e.
Initially, molecular structures are transformed into fingerprint
vectors through numerical encoding, enabling the quantitative
characterization of structural information. Subsequently, mole-
cular structure labels (aromatic, linear, and cyclic) are incor-
porated into the analytical framework to guide the clustering
process. Furthermore, violin plots are utilized to evaluate the
distribution characteristics of different structural categories
across various physicochemical dimensions. This comprehen-
sive strategy not only facilitates an in-depth exploration of the
intrinsic relationships between molecular structure and
physicochemical properties but also effectively assesses the

Nanoscale

discriminative ability of molecular features for different struc-
tural classes.

In the t-SNE plot based on MPs and BPs (Fig. 4a and b), dis-
tinct clustering patterns emerge across the three structural
types. Aromatic compounds form a compact cluster in the left
region, reflecting the rigidity and symmetry conferred by aro-
matic rings and conjugated systems, which contribute to
higher and more consistent MPs (BPs).***° Linear compounds
are dispersed across the right side of the plot with weak clus-
tering, attributed to variations in chain length, branching, and
functional groups, resulting in widely scattered thermal
properties.”’”* Cyclic compounds occupy the lower-central
region, showing intermediate clustering behaviour. Although
lacking aromatic stabilization, their ring-induced rigidity still
imparts some packing regularity. It can also be observed that
the boundaries between the three structural types are less
distinct.

Aromatic compounds exhibit broader dispersion and
overlap with cyclic compounds due to the influence of polar
substituents (e.g., hydroxyl and carboxyl groups), which
enhance hydrogen bonding and increase the variability of MPs
and BPs (Fig. 4a and b). Linear compounds remain on the
right with increased density but fuzzy borders, reflecting the
complex nonlinear interactions among chain length, polarity,
and branching.>® These observations suggest that while struc-
ture-property associations are evident, MPs and BPs offer
limited discriminative power for structural classification in
certain cases. Violin plots further support the observed cluster-
ing patterns, revealing significant differences in MP and BP
distributions across structural classes (Fig. S41 and S42).
Aromatic compounds exhibit narrow and high-centered distri-
butions, reflecting the inherent rigidity and symmetry of their
conjugated ring systems. In contrast, linear compounds show
broad and multimodal distributions, indicative of substantial
structural diversity and corresponding variability in thermal
properties. Cyclic compounds exhibit intermediate behaviour
in both spread and central tendency. Overall, the distribution
of MPs and BPs is closely linked to molecular polarity and
functional group composition. Strongly polar compounds (e.g.,

This journal is © The Royal Society of Chemistry 2026
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Fig. 4 t-SNE-based visualization of molecular distributions for the MP (a), BP (b), and ¢ (c).

carboxylic acids and phenols) tend to exhibit high MPs and
BPs due to enhanced intermolecular interactions. Compounds
of moderate polarity (e.g., aldehydes and ketones) occupy an
intermediate range, while nonpolar molecules (e.g., hydro-
carbons and ethers) cluster at the lower end of the spectrum.
The inclusion of heteroatoms such as nitrogen and sulfur
further amplifies polarity differences, broadening the overall
property distribution.

In contrast, as for ¢, the clustering distinction among mole-
cular structural types is significantly weakened (Fig. 4c). The
overall distribution is highly scattered, with substantial overlap
across aromatic, linear, and cyclic compounds, and without
the emergence of distinct boundaries. Aromatic compounds
are loosely scattered in the upper region of the map, while
linear and cyclic structures run throughout the entire region.
This distribution reflects that ¢ is primarily influenced by elec-
tronic structure, especially charge distribution, conjugation
effects, and polar substituents rather than by the molecular
backbone or topology.”*>® Linear compounds typically contain
a wide range of polar functional groups and exhibit a particu-
larly broad spread in ¢, ranging from nonpolar alkanes (e ~ 1)
to highly polar amines and carboxylic acids (¢ > 30). Cyclic
compounds exhibit similar diffuse distributions, falling
between the two extremes and contributing to the overall
overlap. Violin plots further confirm this trend: oxygen-rich,
highly polar compounds (e.g., alcohols, carboxylic acids, and
phenols) consistently show elevated ¢ (30-50), while nonpolar
species such as aromatics and alkanes cluster in the low-per-
mittivity region (¢ = 1-3). Heteroatom-containing compounds
(e.g., amides and sulfones) exhibit wide variability due to their
diverse polar characteristics (Fig. S43). These results indicate
that ¢ primarily captures the electronic responsiveness of
molecules, with limited correlation to structural symmetry or
geometry.

Interpretability and knowledge discovery

We use the SHAP method to systematically analyse feature
importance, aiming to enhance the interpretability of mole-
cular MP and BP prediction models, as shown in Fig. 5a and b.
Molecular features are divided into three categories: chemical

This journal is © The Royal Society of Chemistry 2026

composition, structural features, and electronic properties.
The importance of all molecular features is analysed, and the
features are visualized. The vertical axis reflects the distri-
bution of molecules for each feature, while the horizontal axis
indicates the contribution of feature values to the prediction
results, enabling both local and global interpretations of the
complex nonlinear models.

In the MP model (Fig. 5a), chemical composition features
play a dominant role with heavy-atom molecular weight
(HeavyAtomMolWt) emerging as the single most influential
feature (mean |SHAP| = 0.26), while the impact of the number
of heteroatoms (Het, 0.10) and the ratio of oxygen atoms to
carbon atoms (O/C, 0.04) is also pronounced. Critically, the
O/C ratio shows structure-dependent behaviour: in highly
polar, oxygen-rich scaffolds, it tends to increase the MP,
whereas in other contexts, it may exert a negative influence.
For BP prediction (Fig. 5b), chemical-composition features
exert an even more decisive influence: three of the five most
predictive variables encode molecular size and elemental con-
stitution, namely the number of heavy atoms (Heavy, 0.20),
hydrogen-bond donor count (0.18), and HeavyAtomMolWt
(0.15). Elevated HeavyAtomMolWt values are associated with
positive SHAP contributions, implying that larger and heavier
molecules are assigned higher predicted BPs. The analogous
behaviour of hydrogen bond donor counts underscores the
pivotal role of hydrogen bonding in enhancing cohesive inter-
actions. This comparative analysis reveals that the BP is gov-
erned primarily by global molecular properties, whereas the
MP is more sensitively modulated by specific functional group
interactions.

In MP prediction (Fig. 5a), structural features account for
~38.5% of explanatory power. The maximum number of atoms
of the ring (Max Ring Size, 0.09) and the number of aromatic
rings (NumAromaticRings, 0.08) confer moderate positive con-
tributions, suggesting that extended ring systems and aromati-
city enhance structural rigidity and thus the MP. The number
of rotatable bonds (NumRotatableBonds, 0.05) shows a weaker
negative contribution, consistent with the notion that melting
involves the disruption of crystal packing, which is a process
less sensitive to conformational flexibility than vaporization.

Nanoscale


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nr03942h

Open Access Article. Published on 13 January 2026. Downloaded on 1/24/2026 7:56:41 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

High

a HeavyAtomMolWt . iy~ PR

MaxAbsEstatelndex - -*-L-“-—-

MinPartialCharge

View Article Online

Nanoscale

+0.26

HeavyAtomMolWt
MaxAbsEstatelndex
MinPartialCharge

d qed
qae I Branches
Branches -’-‘O—‘—- .. ik
Het ) amn— - R
Max Ring Size QL.-— - ax 'TCgh 1ze
MinAbsPartialCharge .+—- M':"A :Partna Rarge
ticRi
NumAromaticRings "-—_ umaroma II\: :";3:
MolWt -‘. o
NumRotatableBonds -*o- N‘umRotata.bleBonds
MinAbsPartialCharge B At MinAbsPartialCharge
o/c i orc
Number of Rings — - - Number of Rings
FDMorgan —t FDMorgan
AvgX ~ semeeee .4. AvgX
NumAromaticeC cofp— NumAromaticeC
T T T T
-0.75 -0.50-0.25 0.00 0.25 0.50 0.75 1.00 1.25 LOW 000 005 o010 015 020 035
SHAP value Mean (|SHAP value|)
b High
Heavy
Heavy -——-0‘*"‘"'— ot NumHDonors
NumHBPenors ‘ T HeavyAtomMolWt
HeavyAtomMolWt e s e vy
MolWt MolWt
o
MaxEStatelndex
MaxEStatelndex i Het
Het A-—
NumRotatableBonds .. NumRotatabeeBon'd s
< 8 Max Ring Size
Max Ring Size .
Number of Rings —— Number of Rings
C - e C

NumAromaticeC
MaxAbsPartialCharge
MaxPartialCharge
MinAbsEstatelndex
AvgX
MinAbsPartialCharge
o/C

NumSaturatedH

T I
-0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00 Low

SHAP value

Fig. 5

For BP prediction (Fig. 5b), structural features contribute
approximately 30-35% to the predictability. Here, increased
NumRotatableBonds (0.09) yields more pronounced negative
SHAP values, indicating that highly flexible molecules (e.g.,
long-chain alkanes) more readily access conformational
freedom, thereby lowering the BP. Conversely, Max Ring Size
and NumAromaticRings exert positive contributions, attesting
to the beneficial influence of molecular rigidity and n—= stack-
ing on elevating the BP.

In MP prediction (Fig. 5a), electronic features account for
~29% of explanatory power. The maximum value of the elec-
tron state exponent for all atoms (MaxEStateIndex, 0.20) and
the minimum partial charge of an atom (MinPartialCharge,

Nanoscale
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Interpretation of the machine learning models for the MP (a) and the BP (b) using the SHAP algorithm.

0.17) emerge among the most influential features, underscor-
ing the pronounced role of localized extreme charge sites in
intensifying intermolecular electrostatic attraction. This domi-
nant electronic contribution highlights the exceptional rele-
vance of electronic properties to crystal stability, as optimal
lattice packing necessitates precise electrostatic complemen-
tarity. By comparison, electronic structure features contribute
modestly (~19%) to global BP predictability while still furnish-
ing critical local interpretability for polar architectures
(Fig. 5b). Positive correlations observed for MaxEStateIndex
and average electronegativity (AvgX) indicate that enhanced
electron delocalization or polarity strengthens intermolecular
electrostatic interactions, thereby elevating the BP.

This journal is © The Royal Society of Chemistry 2026
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These differential patterns work synergistically in the collec-
tive model interpretations. The MP model reveals a reordered
importance result where chemical-composition features
(~32.5%) drive variations by modulating polarity and inter-
molecular interaction strength; electronic structure features
collectively contribute ~29%, attesting to their pervasive influ-
ence; and structural features provide secondary modulation
(~38.5%). This configuration indicates that MP changes are
governed primarily by the intensity of intermolecular forces,
jointly determined by molecular composition and electronic
structures (Fig. 5a).

The BP model presents a fundamentally distinct hierarchy:
chemical-composition variables dominate (%58% of explained
variance), primarily encoding molecular size and hydrogen
bond capacity. Structural features contribute 23% with aroma-
ticity and ring architecture being paramount, while electronic
structural features contribute ~#19% (Fig. 5b). This contrast sig-
nifies that the BP is determined primarily by global molecular
attributes, whereas the MP is governed by electronic and struc-
tural considerations.

In summary, based on the results of t-SNE clustering, violin
plot distribution, and SHAP feature importance analysis, this
study proposes the key structural features associated with the
excellent low-temperature electrolyte performance. First, mole-
cules with high conformational flexibility, as reflected by the
increased NumRotatable bonds and the scattered t-SNE distri-
bution of linear structures, achieved lower melting points
(MPs) and boiling points (BPs). Second, moderately polar func-
tional groups such as ethers and carbonyl units, can enhance
the dielectric constant (¢) while avoiding excessive hydrogen
bonding interactions that lead to elevated MPs/BPs—a charac-
teristic validated by the SHAP contributions of the O/C ratio
and MinPartialCharge. Third, electronic features such as dis-
tributed partial charges and moderate electronic state end-
points, captured by MaxEStateIndex and MinPartialCharge,
facilitate low melting transitions by weakening structural stabi-
lity. In contrast, rigid aromatic systems and macrocyclic
systems, which cluster in the high MP/BP region in t-SNE plots
and exhibit positive SHAP contributions, are generally detri-
mental to low-temperature electrolyte performance due to
enhanced molecular rigidity and significant cohesive inter-
actions. These comprehensive insights provide practical struc-
tural guidance for designing electrolyte molecules with
improved low-temperature performance.

Electrolyte design and screening

In addition, we construct a low-dimensional molecular embed-
ding map via clustering-based dimensionality reduction,
enabling efficient neighbourhood search within high-dimen-
sional chemical space. This map facilitates intuitive identifi-
cation of molecular communities with similar structures and
properties, enhancing both interpretability and candidate
localization. For example, in our molecular space, DOL (1,3-
dioxolane)*”*® and DMS (dimethyl sulfite)’ are grouped into
the same region due to their low melting points and favourable
low-temperature fluidity, both pointing to their suitability as

This journal is © The Royal Society of Chemistry 2026
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components in low-temperature lithium battery electrolytes, as
shown in Fig. 6a. Notably, in the vicinity of this cluster, we
also identified molecules such as MeTHF (2-methyl-
tetrahydrofuran) that exhibit comparable potential for low-
temperature performance. This observation underscores the
effectiveness of our method in identifying structurally and
functionally similar candidate solvents. The clustering-neigh-
bourhood strategy not only reveals underlying structural simi-
larities but also supports rapid identification of property-
related molecular clusters, laying a solid foundation for high-
throughput screening guided discovery. Finally, leveraging our
curated organic electrolyte database, we apply this strategy to
screen molecules for low-temperature electrolyte applications.
We define performance criteria of MP below —40 °C to ensure
liquid stability, BP above 100 °C for thermal robustness, and &
ranging from 10 to 50 is essential to ensure adequate ionic
conductivity. This is because ¢ is a major determinant of salt
dissociation and ion-pair equilibrium—higher & values
enhance salt solubility, suppress ion-pair formation, and
promote efficient ionic conduction. Moreover, ¢ partially
reflects molecular polarity and solvation ability; thus, the
upper limit was set at 50 to mitigate the impact of desolvation
difficulties on capacity fading at low temperatures. Meanwhile,
viscosity is another critical factor affecting ionic mobility.
However, the lack of high-quality viscosity data with consistent
temperature and measurement conditions may introduce
noise into the model. Consequently, ¢ was employed as the

o
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Fig. 6 Workflow for identifying low-temperature electrolyte candi-

dates. (a) Local exploration around DOL and DMS. (b) High-throughput.
(c) Nine candidate electrolyte molecules.
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primary conductivity-related descriptor in this study, while vis-
cosity will be incorporated in future work. Beyond the three cri-
teria outlined above, molecules containing reactive hydrogen
groups (e.g., -OH and -COOH) were excluded to avoid uncon-
trolled side reactions. Based on these criteria, we identify nine
candidate electrolyte molecules characterized by functional
groups such as nitrile, fluorine, and phosphorus-containing
moieties that confer favourable electrochemical properties and
thermal stability (Fig. 6¢). Notably, compounds bearing nitrile,
phosphorus, or fluorine functionalities have already been
employed as electrolyte solvents or additives in various high-
performance battery systems.®"®® These findings validate the
effectiveness of the clustering-neighbourhood strategy and
offer a feasible path for the rational design of advanced
electrolytes.

To further evaluate their practical relevance, the nine
screened candidate molecules were compared with existing
experimental data. The deviations fall within the RMSE range
of the model (Tables S4 and S5). We have also compared the
candidate molecules with widely used low-temperature sol-
vents, such as 1,3-dioxolane (DOL), 1,2-dimethoxyethane
(DME), and 2-methyltetrahydrofuran (MeTHF). These mole-
cules are generally consistent with the criteria we established,
which confirms the rationality of our screening process and
demonstrates the potential of the nine selected molecules as
low-temperature electrolytes. Although this work focuses on
large-scale ML-based screening, further validation is planned
in future studies, focusing primarily on the candidate mole-
cules with available CAS numbers. Beyond the primary screen-
ing properties, we have reported the HOMO and LUMO values
of the nine electrolyte molecules (Table S4) and compared
them with those of commercial low-temperature electrolyte
molecules to gain further insights into their electrochemical
stability (Table S5). The results confirm the adequacy of the
electrochemical window for the nine screened molecules. In
future studies, we intend to incorporate HOMO and LUMO
descriptors into the large-scale screening workflow.

Conclusions

In this work, we established an integrated machine learning
workflow that combines data acquisition, feature-model
synergy, and interpretable analysis to enable accurate predic-
tion of MPs, BPs, and ¢. We constructed LiElectroDB, a com-
prehensive electrolyte property database encompassing 150
000 molecules from multiple sources. The structure-property
relationships for MPs, BPs, and ¢ are systematically analysed.
XGB models are employed for MP and BP prediction due to
their effectiveness in feature selection and segmented fitting.
We achieved R* values of 0.8868 and 0.9608 and RMSEs of
16.8 K and 9.15 K under five-fold cross-validation, respectively.
In contrast, an ANN is adopted to model &, which shows strong
nonlinearity with respect to molecular polarity and electron
distribution. The model achieves an R* of 0.8863 and an RMSE
of 6.7. t-SNE visualization reveals that the distributions of the
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MP and BP are closely related to molecular polarity and func-
tional group composition while ¢ primarily reflects electronic
response characteristics. SHAP analysis further confirms that
the BP depends on global molecular features such as size and
hydrogen-bonding capacity, whereas the MP is influenced by
intermolecular interactions. These insights not only validate the
predictive models but also provide actionable guidance for
rational electrolyte design. Finally, by combining molecular
neighbourhood search with high-throughput screening, nine
candidate molecules are identified as promising low-tempera-
ture electrolytes for lithium-ion batteries. This work establishes
an efficient and generalizable framework for the rational design
of advanced electrolytes under low-temperature conditions.
Overall, this study contributes a novel data-driven framework
that accelerates molecular screening, reduces experimental cost,
and enables interpretable and generalizable design of advanced
electrolytes under low-temperature conditions.
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