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é 13 The potential for producing iron oxide magnetic particle imaging (MPI) tracers using an alternative

E 14 synthesis method based on esterification of iron oleate with oleyl alcohol was evaluated. The

g 15  defined reaction mechanism allows monitoring of reaction progress with Fourier Transform

g 16  Infrared (FTIR) spectroscopy. The influence of reaction temperature and precursor flow rate on

g 17  esterification reactions of Fe (II) oleate for tuning iron oxide nanoparticle size and dispersity was

é 18  studied, identifying conditions for producing larger nanoparticles suitable as MPI tracers.

% 19  Increasing temperature and decreasing flow rates were found to increase the resulting nanoparticle

£ 20 sizeand reduce dispersity. Furthermore, the effect of the iron source used to prepare the iron oleate
21  precursor was evaluated by characterization of nanoparticle magnetic properties, composition, and
22 MPI performance. Although the nature of the precursor did not appear to affect nanoparticle

g 23 morphology or growth, it influenced magnetic properties and MPI performance. Saturation
24 magnetization was close to the bulk value of magnetite and the discrepancy between physical and
25  magnetic diameters was lowest for nanoparticles synthesized with oleates prepared using Fe (II)
26  or Fe (IIl), as opposed to nanoparticles synthesized using an oleate prepared with a 1:2 molar
27  mixture of Fe (II) and Fe (II1). X-ray diffraction characterized that nanoparticles synthesized using
28  the Fe (IIl) oleate are the most crystalline, followed by Fe (II) and the 1:2 Mix, respectively.
29  Mossbauer spectroscopy was used to verify iron oxide phases, suggesting nanoparticles
30  synthesized using the Fe (III) oleate consist of a mixture of y-Fe,O; and Fe;O4, in contrast to those
31  obtained from the Fe (II) and 1:2 Mix oleates, which consisted of a mixture of wiistite, y-Fe,O;
32  and Fe;0,. Characterization of MPI performance using a MOMENTUM™ scanner demonstrated
33 the capability of the esterification reaction to yield high-quality monodisperse MPI tracers.
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Iron oxide is ubiquitous in nature, but fine control at the nanoscale is crucial for maximizing
its potential for many biomedical applications, including magnetic particle imaging (MPI). MPI is
a rapidly developing imaging modality that relies on the nonlinear magnetization of
superparamagnetic nanoparticles to generate a signal, which is proportional to the tracer mass.!
This allows for quantification and visualization of tracer distribution in a volume of interest
without significant tissue attenuation or applying ionizing radiation.! MPI has been applied in pre-
clinical studies and holds promise for clinical applications such as cell tracking, blood pool
imaging, drug delivery, and stroke detection.?!* Tracers with enhanced sensitivity and resolution
are critical for advancing MPI applications,'®> where imaging performance is primarily governed
by nanoparticle composition, size, and magnetic properties.!® 17 The composition of most MPI
tracers is iron oxide, and it is expected that MPI performance improves with the diameter cubed
and linearly with the saturation magnetization.'®: '7 However, a recent study shows that reducing
the discrepancy between physical and magnetic diameters is also key for enhancing MPI
performance.'® For decades, thermal decomposition synthesis has been the gold standard to obtain
magnetic nanoparticles suitable for applications that require fine control over nanoparticle size,
shape, and properties, including in producing high-quality MPI tracers.* !> 13. 1925 However,
common challenges include formation of mixed iron oxide phases, use of toxic solvents, surface
ligand effects, and high temperatures (300-350 °C) than can decompose solvents and surfactants.?%
27 The formation of wiistite, an antiferromagnetic iron oxide phase, requires synthesis
modifications for oxidation to improve magnetic properties,?® 2° which include post-synthesis
oxidation,'® 28 in situ synthesis oxidation,* ?° and addition of oxidizing reagents to the reaction
medium, such as dibenzyl ether.?® Additionally, thermal decomposition has reproducibility
challenges and a poorly defined reaction mechanism, which can often hinder optimization.'? 28,31
New synthesis methods that provide fine control of both physical and magnetic properties are
attractive for producing new MPI tracers, as further optimization of current methods has proved to

be challenging.

The esterification reaction of carboxylic acids with alcohols to produce organic esters at
temperatures below 200 °C is widely practiced, and esters compose some of the highest volume

of industrial organic compounds produced.’> More recently, conversion of metal carboxylates to
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65 metal hydroxides through esterification in neat alcohol was demonstrated to produce another
66  desirable product — metal oxide nanoparticles.>®> A slow precursor injection technique was
67 implemented to enable production of metal oxide nanoparticles with controlled size.3* 3* This
68  approach is similar to a semi-batch thermal decomposition synthesis,? reported to afford better
69  control of nanoparticle properties, albeit at lower temperatures such that thermal decomposition of
70  the precursors should be negligible. Prior work with the esterification synthesis has focused on
71  indium oxide (In,O3), with some reports of other metal oxides (e.g., y-Fe;O3, Mn3;0,, CoO, ZnO)
72 at temperatures below 290 °C, all resulting in oleic acid-stabilized nanoparticles.?* 344 For the
73 synthesis of iron oxide nanoparticles, the reaction mechanism involves esterification of iron oleate
74  and oleyl alcohol, catalyzed by the metal ion, producing the ester oleyl oleate and metal hydroxides
75  (Scheme 1). The hydroxyl groups then undergo a dehydration reaction, producing water as a side-
76  product and forming metal oxygen bonds (Fe-O-Fe) that initiate nanoparticle formation. Finally,
77  the remaining oleate ligands on the nanoparticle surface also undergo esterification reactions with
78  oleyl alcohol to further grow the nanoparticle. Removing the water produced is crucial, as it can
79  accelerate metal carboxylate hydrolysis, causing uncontrolled growth and precipitation.?* Also,
80  because esterification reactions are equilibrium-limited, removal of water and excess of alcohol is

81  desirable in driving the esterification reaction forward.??> An advantage of this synthesis method is

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

82  the well-defined reaction mechanism that incoporates oxygen, potentially eliminating the need for

83  oxidation treatments needed with the thermal decomposition synthesis. Additionally, the reaction

Open Access Article. Published on 08 January 2026. Downloaded on 1/10/2026 9:58:11 AM.

84  progress can be monitored via Fourier transform infrared (FTIR) spectroscopy. Authors have

(cc)

85  called this a “living nanoparticle synthesis”, similar to polymerization reactions, as it can be
86  stopped and restarted by controlling the precursor addition.3¢ 4 This continuous synthesis method

87  also provides fast nanoparticle formation, within 60 seconds of precursor addition at 230 °C.3*
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Scheme 1. Reaction mechanism for esterification synthesis of iron oxide nanoparticles

Studies of the synthesis of In,0O; have demonstrated that nanoparticle size and uniformity
can be increased through tailored reaction conditions, such as increasing reaction temperature from
230 °C to 290 °C and lowering precursor flow rate.*® Others have shown that surface reactivity of
nanoparticles is influenced by the choice of surface capping agent, which in turn affects
nanoparticle formation and growth. For example, for In,O5 at 290 °C, switching oleyl alcohol to
oleylamine results in faster amidation reactions, which results in rapid generation of reactive metal
precursors and larger nanoparticles.** The esterification synthesis method also yields precise
control for doped In,O3 nanoparticles, which is challenging in thermal decomposition due to
differences in decomposition temperatures and reactivities of different metal precursors.3%37 Thus
far, only a few studies have focused on synthesis of iron oxide.?% 39 4. 42 Importantly, intrinsic
magnetic properties of iron oxide nanoparticles produced via esterification reactions remain

largely unreported, as is their characterization for specific applications, including MPI.

The nature of the iron oleate precursor used has been shown to affect nanoparticle properties in
both the thermal decomposition?® 33 448 and esterification*! synthesis literature. This is not
surprising, as early studies in thermal decomposition used iron pentacarbonate*®- %or iron
acetylacetonate®!- 32 salts directly in a batch reactor, but preparing iron oleate precursor as an
intermediate has provided finer control. 26 3% 33 The influence of iron oleate structure, binding
mode, oleic acid content, and purification treatments have been shown to affect resulting
nanoparticle properties.?® 46 Hence, a method was developed for a reproducible synthesis of iron
oleate from Fe (III) acetylacetonate at 325 °C with precise iron concentration that can be used
without further purification steps.®> This oleate has been used to produce magnetite MPI tracers
via thermal decomposition with oxidation treatments,* '%2° motivating comparison to the standard
iron oleate precursor primarily used in the esterification synthesis literature, prepared from Fe (II)
acetate at 150 °C.3438,39.41,42 The effect of iron precursor ligation and oxidation state on iron oxide
nanoparticle synthesis via the esterification route has been explored at low temperatures of
nanoparticle synthesis (230 °C) and precursor synthesis (150 °C).#! Fe (II) acetate has been the
primary salt used for preparing the iron oleate precursor for the esterification synthesis, and
nanoparticles produced using an Fe (III) acetylacetonate had twin defects.#! Although a higher
temperature for Fe (III) precursor synthesis (190 °C) led to fewer twin defects, this route was not

persued due to the likeliness of reducing the iron, a possibility previously demonstrated by Kemp
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120 et al.?® Plummer et al. state that after ~ 3 mmol of Fe addition with the Fe (II) oleate, nanocrystals
121 became highly polydisperse and irreproducible.*! Therefore, to achieve larger sizes, an Fe (II) and
122 Fe (III) precursor was obtained by mixing the two precursors at a 1:2 molar ratio, corresponding
123 to the stoichiometric Fe ratio in magnetite. Addition of 20 mmol of Fe from the mixed oleate at
124 230 °C resulted in 19 nm nanoparticles, but extending size beyond that faced issues of dispersion

125  after purification.*!

126 Here we report a series of studies using the esterification synthesis route to synthesize iron
127  oxide nanoparticles with sizes and magnetic properties suitable for use as tracers in MPI. The
128  effects of higher reaction temperatures (290 °C to 350 °C) and lower precursor flow rates (0.025
129 mmol/min to 2.5 mmol/min) were evaluated to identify conditions resulting in iron oxide
130 nanoparticles of ~20 nm diameter. Nanoparticles obtained under similar synthesis conditions using
131  Fe(II) and Fe (III) oleates, as well as another prepared by a 1:2 mixture of them, were characterized

132 physically, magnetically and in terms of their MPI performance.
133 Results and Discussion

134 Low temperature (290 °C) esterification of Fe (II) oleate yielded iron oxide nanoparticles

135 that were too small to be effective MPI tracers.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

136 The esterification synthesis of metal oxide nanoparticles has been reported for a range of

137  temperatures (230-290 °C) and precursor flow rates (0.17-0.35 mL/min). Although the influence

Open Access Article. Published on 08 January 2026. Downloaded on 1/10/2026 9:58:11 AM.

138  of these parameters has only been studied for indium oxide nanoparticles,*® these studies suggest

(cc)

139  that higher temperatures and lower flow rates yield larger and more uniform particles. As such, we
140  initially evaluated the esterification synthesis of iron oxide at a temperature of 290 °C and flow
141  rate of 0.2 mL/min, as these were at the high range of temperature and low range of flow rate

142 evaluated for indium oxide nanoparticles.*

143 Fourier transform infrared spectroscopy (FTIR) of reaction aliquots (Figure 1A) facilitates
144  tracking of the reaction progress (Figure 1B), revealing a halt in the production of esters and the
145  consumption of the iron oleate precursor at around 60 min, which corresponds to the addition of 6
146  mmolg.. After the growth region denoted in Figure 1B (i), ester peaks decrease in region (ii) most
147  likely due to decomposition, as the decomposition temperature of the ester oleyl oleate is 250-
148 300 °C.>* Additionally, in region (ii) the Fe-oleate COO peak starts to increase suggesting it is
149  accumulating in the reactor. This is to be expected if alcohol has been depleted, halting the
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esterification reactions. The resulting nanoparticles were characterized physically via transmission
electron microscopy (TEM) to obtain the size distributions shown in Figure 1C, showing that
nanoparticle formation occurs early in the reaction, with a median diameter of 6 nm after 5 minutes,
in contrast to thermal decomposition that may require a longer period before nanoparticles are
observed.?> 3336 After 60 min of reaction (6 mmolg.), corresponding to the maximum for the ester
peak observed in the FTIR (Figure 1A and B), the nanoparticles reach a median diameter of 8.6
nm (Figure 1C). Further addition to 12 mmolg, produced polydisperse nanoparticles of ~10 nm
(Figure 1C and Figure S1). Under similar conditions, Plummer ef al. reported that particles
become highly polydisperse after addition of 3 mmolg..*! We observe polydisperse nanoparticles
from the first aliquot at 5 min, which corresponds to addition of 0.5 mmolg.. Further, the 10 nm

particle size obtained is not suitable to be a high-quality single core MPI tracer.!”
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163  Figure 1. Low temperature esterification of Fe (II) oleate for synthesis of iron oxide
164  nanoparticles at 290 °C and a precursor addition rate of 0.1 mmol/min yields particles that
165 are too small to be effective MPI tracers. (A) Fourier Transform Infrared (FTIR) facilitates
166  tracking of reaction progress, as the main peaks for the reagents (iron oleate and oleyl alcohol) and
167  the ester product can be obtained from reaction aliquots. (B) Tracking FTIR intensity over reaction
168  time demonstrates ester formation (yellow) and alcohol consumption (teal) in region (i) with the
169  addition of 6 mmol of Fe. Further addition, results in iron oleate (brown) accumulation due to the
170  alcohol depletion observed in region (ii). (C) Physical size distributions obtained from analysis of
171  transmission electron microscopy (TEM) images show that polydisperse particles of ~ 6 nm
172 quickly form after 5 min of reaction and grow to a size of ~ 10 nm after 120 min and 12 mmol Fe
173 is added. Scale bars are 20 nm.

174
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Tuning esterification of Fe (II) oleate reaction temperature and precursor flow rate yields

iron oxide nanoparticles with diameters suitable for use as MPI tracers.

Temperature and precursor flow rate have been shown to significantly affect indium oxide
nanoparticle growth, influencing their size, shape, and quality.*® Along with the desire to further
increase nanoparticle size, this motivated a study to explore the effect of temperature and flow rate
for the synthesis of iron oxide nanoparticles with addition of 1 mmolg.. The esterification reaction
has been primarily conducted at temperatures between 230-290 °C to mitigate any reducing effects
that can occur at higher temperatures and avoid thermal decomposition.? 4! However, higher
temperatures are typically used for the thermal decomposition of iron oleate,* 18- 26, 28,29, 35,46, 33, 57
motivating us to study higher temperatures in the esterification synthesis. Increasing temperature
from 290 °C to 350 °C resulted in an increase in iron oxide nanoparticle diameter from 6 to 9 nm
and a decrease in the geometric deviation (In o,) after adding 1 mmolg. (Figure 2A and Figure
S2). These results agree with trends reported in a study of indium oxide esterification synthesis,
where larger nanoparticles with narrower size distributions were observed at 290 °C, compared to

lower temperatures.*

Since larger nanoparticles were observed at 350 °C, longer reactions were evaluated at this
temperature. A lower flow rate of 0.05 mmolg./min was chosen based on studies with indium
oxide.*® However, attempts to carry out longer reactions at 350 °C proved to be difficult, as FTIR
tracking shows depletion of alcohol after 25 min of reaction (Figure S3A). This is much faster
than the 60 min observed for the synthesis at 290 °C (Figure 1). Still, larger (~13 nm) and more
uniform size (In 6, = 0.1) nanoparticles were obtained using significantly less iron (Figure S3B).
Precursor addition was halted after 25 min (1.25 mmolg.) and alcohol was replenished by adding
13 mL of oleyl alcohol at 0.35 mL/min, which was the original volume in the reactor. Yet, this
was only partially effective, as FTIR (Figure S3A) shows a low amount of alcohol in the reactor
at the end of alcohol addition (ii), possibly because of boil-off or decomposition. Nevertheless, the
particle size analysis (Figure S3B) demonstrates that nanoparticle size and distribution remain
consistent, showing nanoparticle growth stopped once precursor addition was halted. Adding a
condenser to reduce oleyl alcohol boil-off resulted in water condensation, leading to a less uniform
final nanoparticle product (Figure S3B). These studies at 350 °C suggested that although

increasing temperature yields larger nanoparticles with narrower size distributions, further growth
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205 is limited due to depletion of oleyl alcohol, which has a boiling point of 333 °C and starts
206  decomposing at lower temperatures.>* Based on these observations, subsequent studies were

207  performed at a synthesis temperature of 320 °C.

208 Next, the influence of iron oleate precursor addition rate was evaluated at 320 °C (Figure
209  2B) with addition of 1 mmolg, at various flow rates. The results in Figure 2B show that decreasing
210  precursor flow rate resulted in an increase in nanoparticle diameter and a reduction in
211  polydispersity (geometric deviation, In ). However, nanoparticle size increased only to a certain
212 extent, as decreasing the flow rate further from 0.1 mmolg./min resulted in a reduction in
213 nanoparticle size. Representative TEM images are shown in Figure S4 and results for the effect
214 of flow rate at 350 °C exhibiting the same behavior are shown in Figure S5. These studies suggest
215  that esterification synthesis of iron oxide nanoparticles at 320 °C and a precursor flow rate of

216 0.1 mmolg/min may be suitable to produce larger nanoparticles with narrow size distribution.

217 Finally, we evaluated nanoparticle growth for longer esterification syntheses at 290 °C and
218 320 °C, and a precursor flow rate of 0.1 mmolg/min (Figure 2C). Both synthesis temperatures
219  preserve the expected linear growth in nanoparticle volume with mmolg. added to the reaction,

220  suggesting that these grow continuously, with a larger rate of growth for nanoparticles synthesized

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

221  at 320 °C. These results agree with studies of In,O; nanoparticle synthesis, where growth rate
222 increased with increasing reaction temperature from 230 °C to 290 °C.4° The synthesis at 320 °C

223 yielded particles of ~18 nm with addition of 5 mmolg, at 0.1 mmolg/min, suggesting this condition

Open Access Article. Published on 08 January 2026. Downloaded on 1/10/2026 9:58:11 AM.

224 is appropriate to obtain nanoparticles that are suitable for MPI. This motivated subsequent studies
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225  using these conditions to explore other synthesis parameters.
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Figure 2. Higher esterification reaction temperatures and slower precursor addition rates
yield larger and more monodisperse nanoparticles. Shorter reactions with addition of 1 mmol
of Fe were used to explore the influence of temperature and precursor flow rate for iron oxide
nanoparticles. (A) Increasing temperature from 290 °C to 350 °C increases physical diameter (D)
from 6 to 9 nm and decreases polydispersity (geometric deviation, In ) after addition of 1 mmolg,
at a rate of 0.175 mmolg./min. (B) Decreasing precursor flow rate to 0.1 mmolg./min increases
physical diameter and decreases polydispersity after addition of 1 mmol of Fe at 320 °C. (C) A

10
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235  longer reaction with addition of 5 mmol of Fe at 320 °C and 0.1 mmolg./min shows a significant
236  increase in nanoparticle growth rate compared to the original conditions explored in Figure 1 (290
237  °C and 0.1 mmolg./min).

238

239  The nature of the iron oleate precursor did not influence nanoparticle morphology or

240 growth trends

241 Next, we evaluated the effect of iron oleate precursor composition, as it has been
242 demonstrated to influence nanoparticle properties in both thermal decomposition and esterification
243  synthesis.?® 35 46,48 Fe (II) and Fe (III) oleates were prepared via methods corresponding to those
244 commonly used in esterification and thermal decomposition syntheses using Fe(ac), and Fe(acac)s,
245  respectively. The oxidation state of iron in the salts used to prepare the iron oleates was used to
246  label the corresponding oleates and differentiate the nanoparticles obtained using them in this
247  study. Additionally, a mixed oleate was produced at a 1:2 molar ratio of Fe (II): Fe (III), which is
248  labeled as the 1:2 Mix oleate. FTIR spectra of Fe (II) and Fe (III) oleates are shown in Figure S6,
249  highlighting the main peaks of interest to compare them. The carboxylic acid C=0 stretch of oleic
250  acid at 1710 cm™! was used to calculate the percentage of free oleic acid in the oleate by comparing

251  tothe absorbance of pure oleic acid. The Fe (II) oleate contains 62% free oleic acid and the Fe (I1I)

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

252 oleate contains 35% free oleic acid. The metal carboxylate IR bands were observed in the range of

253 1650-1510 cm™ for the asymmetrical vibrations, and 1500-1375 cm! for the symmetric

Open Access Article. Published on 08 January 2026. Downloaded on 1/10/2026 9:58:11 AM.

254  vibrations.*® The separation (Av) of the bands in these regions has been used to deduce the

255  carboxylate coordination mode. The maximum peak absorbance in these regions were subtracted

(cc)

256  to obtain a Av of 184 cm! and 159 cm™! for the Fe (IT) and the Fe (III) oleates, respectively, which
257  corresponds to a bridging coordination mode. These results suggest that the Fe (II) and Fe (III)
258  oleates contain similar metal carboxylate coordination modes but have a notable difference in their
259  free oleic acid content. The latter is to be expected as the oleic acid to metal ratio is 6.3 and 5 for
260  the Fe (II) and Fe (III) oleate synthesis procedures, respectively, and the stoichiometric amount

261  required for Fe (II) and Fe (III) salts is different as well.

262 The same volume of Fe (II) and Fe (III) precursors (8 mL) was added to each reactor at
263 320 °C to test the influence of iron oleate precursor on nanoparticle properties. Due to their
264  different iron concentrations (0.5 M for the Fe (II) oleate, 0.63 M for the Fe (III) oleate, and 0.58

265 M for the 1:2 Mix oleate), the number of moles of Fe used in the reaction varied from 4 to 5

11
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mmolg.. Comparing trends in FTIR peaks associated with ester formation and oleyl alcohol
consumption (Figure 3A) suggests similar rates of ester formation and alcohol consumption for
the three oleates. Furthermore, similar nanoparticle growth trends were observed for the three
oleates (Figure 3B). Finally, similar nanoparticle morphology and size distributions were observed
for the final product of each synthesis (Figure 3C and Figure S6). Although the median physical
diameter for the nanoparticles obtained using the Fe (II) oleate was smaller (18.7 nm) than that
obtained with the Fe (III) and 1:2 Mix oleate (21.9 nm and 21.2 nm), it must be noted that there is
a 1 mmolg, difference in the iron added to that reaction compared to the Fe (III) oleate. These
observations suggest that esterification synthesis at 320 °C and 0.1 mmolg./min using these three

oleates results in similar nanoparticle morphologies, growth trends, and size distributions.

12
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280  Figure 3. Esterification synthesis of iron oxide nanoparticles using iron oleates prepared
281  from different iron salts resulted in similar nanoparticle growth trends and morphologies.
282  (A) FTIR tracking of the main ester and alcohol peaks show similar behavior for reactions using
283  the Fe (II), Fe (III), and 1:2 Mix oleates. (B) Similar trends in nanoparticle growth were observed
284  for reactions with all three oleates. (C) TEM images and corresponding physical diameter
285  distribution histograms show similar size, shape, and distribution of nanoparticles for reactions
286  with all three oleates. Scale bars are 20 nm.

[{ec

287

288  The nature of the iron oleate precursor influences the magnetic properties and composition

289 of iron oxide nanoparticles obtained via esterification synthesis

290 Nanoparticle composition and magnetic properties influence MPI performance,!” hence
291  further characterization of nanoparticles obtained via esterification synthesis using the three

292  oleates is crucial. The basic adiabatic theory of x-space MPI suggests that signal strength and
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resolution both improve with increasing initial magnetic susceptibility and saturation
magnetization of the nanoparticle tracer.! 7 According to the Langevin model for
superparamagnetism, the initial susceptibility increases with the cube of the nanoparticle diameter.
Additionally, prior work highlights the importance of minimizing discrepancy between physical

and magnetic diameters for improving MPI performance.'®

Magnetic properties were evaluated by measuring magnetization of nD-PEG coated nanoparticles
in water as a function of applied magnetic field at 300 K (Figure 4A and Figure S7). All three
nanoparticles display superparamagnetic behavior, with no observed hysteresis and with magnetic
saturation. The initial susceptibility was largest for nanoparticles synthesized using the Fe (III)
oleate, followed by nanoparticles synthesized using the Fe (II) oleate, and then nanoparticles
synthesized using the 1:2 Mix oleate. Magnetic diameters (D,,,) were estimated by fitting the
magnetization measurements to the Langevin function, weighted by a lognormal diameter
distribution. Results in Table 1 show that nanoparticles synthesized using the Fe (III) oleate
possess the largest magnetic diameter, 20 nm, compared to those synthesized using the Fe (II) and
1:2 Mix oleates, with 16 nm and 12.5 nm, respectively. The saturation specific magnetizations for
all three nanoparticles are shown in Table 1 and are close to the value for bulk magnetite
(120 A m?/kgg.). The nanoparticles obtained using the Fe (III) oleate had the smallest discrepancy
between physical and magnetic diameters (1.9 nm), and a high saturation magnetization
(128 A m?/kgg.). Next, the nanoparticles obtained with the Fe (II) oleate had similarly high
saturation magnetization (127 A m?/kgr.), but a larger discrepancy between physical and magnetic
diameters (2.7 nm). Finally, the nanoparticles synthesized using the 1:2 Mix oleate had a high (but
comparably lower) saturation magnetization (115 A m?/kgg.), and the largest discrepancy between
physical and magnetic diameters (8.7 nm). This discrepancy between physical and magnetic
diameters was observed in 20 nm commercial nanoparticles from Ocean Nanotech and has been
studied in the thermal decomposition synthesis, where an oxidizing agent is needed to reduce the
so-called “magnetic dead layer”.?° Sub-10 nm iron oxide particles prepared from the Fe (II) oleate
via the esterification synthesis at lower temperature (230 °C) were previously shown to have very
similar physical and magnetic diameters,> but a larger discrepancy is observed for the larger

nanoparticles obtained at the reaction conditions of this study.

Iron oxide phases were identified using X-ray diffraction (XRD), which show broader peaks

for nanoparticles synthesized using the Fe (II) and 1:2 Mix oleates, relative to the sharper peaks

14
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324  for nanoparticles synthesized using the Fe (III) oleate (Figure 4B). This difference in broadening
325  is most clearly observed in peaks at higher angles (50-65 °). The locations and relative intensities
326  of the most prominent peaks were consistent with magnetite (Fe;04) and maghemite (Fe,O3)
327  crystal structures. However, these two phases are difficult to distinguish due to their similar XRD
328  patterns and, further, the broadening that results from the nanometer-scale sizes. Despite their
329  similarities and peak broadening, there was evidence of coexistence of the magnetite and
330  maghemite phases in the Fe (II) and 1:2 Mix samples. The shoulder in the 35 ° peak and the shift
331  inthe 44 ° peak indicate a mixed phase product, but no peaks indicate the formation of the wiistite
332 (FeO) phase. The absence of FeO is an advantage to thermal decomposition methods, where the
333  formation of this nonmagnetic phase has been demonstrated before being oxidized to Fe;O4 or
334 Fe,0;.46 5860 However, detection of small impurities or other iron oxide phases can be difficult
335  due to overlapping peaks, along with peak broadening. Minos peaks observed at 27, 32, and 51 °
336  suggest iron oxide hydroxide species, but cannot be fully resolved and identified at the
337 measurement conditions. Previous XPS characterization reported the presence of surface
338  hydroxyls on the nanoparticle along with oleate ligands at lower synthesis temperatures.?*. These
339  observations can motivate further characterization of the nanoparticle surface to investigate the

340 potential of forming iron oxide hydroxides with long-range ordering detectable by XRD.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

341  Crystallite sizes estimated using Scherrer’s equation and the main peaks are shown in Table 1 and

342  were largest for the nanoparticles obtained using the Fe (III) oleate (17.1 nm), followed by those

Open Access Article. Published on 08 January 2026. Downloaded on 1/10/2026 9:58:11 AM.

343  synthesized using the 1:2 Mix oleate (14.8 nm), and those synthesized using the Fe (II) oleate

(cc)

344  (13.1 nm). Crystal sizes determined from XRD have been previously found to correlate with the
345 magnetic diameters estimated from analysis of the equilibrium magnetization curves, as the
346  magnetic dipole is a result of the crystal’s long-range ferroic ordering.?® This motivated
347  comparison in this study, where the crystallite sizes (Dxrp) did not match the magnetic sizes (D).
348  However, the discrepancy between physical and magnetic diameters (D, - Dy,) correlates with the
349  discrepancy between physical and crystal sizes (D, - Dxrp) (Table 1), which suggests one can be

350 informative of the other.

351 Further characterization using >’Fe Mdssbauer spectroscopy probes the environment of iron
352  atoms, providing information on oxidation states and phase compositions. Stacked Mdssbauer
353  spectra of samples measured at 293 K are displayed in Figure 4C, with hyperfine fit parameters
354  in Table S1. All samples exhibit two magnetically split spinel sextets: a tetrahedral A-site Fe3*

15
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component (teal) and an octahedral B-site valence-averaged (Fe*") component characteristic of
magnetite above the Verwey transition (pink). In addition, the nanoparticles obtained using the Fe
(IT) and 1:2 Mix oleates show a central Fe?* doublet (orange) attributed to wiistite (FeO), whereas
the Fe(IIl) oleate sample does not. Stacked spectra at 6 K are displayed in Figure 4D, with fit
parameters in Table S2. At low temperature, all samples display three spinel sextets: tetrahedral
A site Fe3* (teal), octahedral B site Fe3* (pink), and a distinct octahedral B site Fe?* sextet (purple)
that is indicative of magnetite. Additionally, sextets assigned to wiistite Fe?" (orange) were
observed for the Fe (II) and 1:2 Mix oleate samples. Fe-atom fractions corresponding to magnetite,
maghemite, and wiistite (Table 1) were from the 293 K site areas. The wiistite fraction was taken
from its doublet area (Site 3 in Table S1) and excluded from the spinel total. The maghemite
fraction was calculated by subtracting half of the area assigned to the Fe?>* valence averaged site
(Site 2 in Table S1) from the area assigned to Magnetite A (tetrahedral) site Fe3" and Maghemite
A & B sites Fe3* (Site 1 in Table S2). Estimated maghemite contents for each sample are indicated
in Table 1. These estimates indicate that nanoparticles synthesized using the Fe(Ill) oleate
correspond to a mixture of magnetite and maghemite, whereas the nanoparticles synthesized using
the Fe(Il) and 1:2 Mix oleates contain wiistite and a mixture of magnetite and maghemite, with a

spinel fraction dominated by maghemite.

The oxidation state of the Fe oleate precursors prepared in this study were not investigated,
but oxidative decarboxylation of the oleate has been reported to reduce Fe (III) to Fe (II) starting
at temperatures below 180 °C.?8 Although the oleate precursor is dripped into the reactor for the
esterification synthesis, the Fe (III) oleate synthesis method used requires heating it over 300 °C,
which could cause reduction to Fe (II). This mechanism could explain formation of Fe;O4 from

the Fe (III) oleate precursor, but further investigation would be necessary.

Prior studies have demonstrated partial oxidation of magnetite nanoparticles when bubbling
with air or O,, with the extent of oxidation being dependent on the ligand at the particle surface
and being minimal for oleic acid coated particles and maximal for particles coated with
tetramethylammonium hydroxide.®! During our ligand exchange at 101°C the particles are
suspended in toluene, there is no bubbled oxygen source, and are coated initially with oleic acid
and eventually with the much stronger capping agent nitroDOPA-PEG. Because of this

combination of low oxygen solubility in toluene, no active source of oxygen, and particles coated
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with strong ligands we do not expect significant oxidation during the ligand exchange process and

leave study of this potential phenomenon to future work.

Regardless, the Fe (III) oleate tailored for thermal decomposition yields highly crystalline
magnetic nanoparticles obtained by esterification synthesis at high temperature. Optimizing both
reaction conditions and iron sources eliminated the need to synthesize both Fe (II) and Fe (III)
precursors to yield larger Fe;O4 nanoparticles. Although particle growth and morphology were
similar using the three oleates, they differed in their magnetic properties, crystallinity, and
Mossbauer spectra. The high saturation magnetization and crystallinity, along with the small
discrepancy between physical and magnetic diameters, suggests the nanoparticles synthesized

from the Fe (II) and Fe (III) oleates have potential as high sensitivity and resolution MPI tracers.
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Figure 4. Different mixtures of iron oxide phases are observed for esterification synthesis
using various iron oleate precursors (Fe (II), Fe (III), and 1:2 Mix). (A) Magnetization vs
magnetic field curves at 300 K of nD-PEG coated nanoparticles used to estimate magnetic
diameters (D,,) and saturation magnetizations (M;). (B) X-ray diffraction (XRD) at 1.5 A shows
broad magnetite (Fe;O04) or maghemite (y-Fe,O3) peaks for Fe (II) and 1:2 Mix samples, as these
are indistinguishable with XRD, meanwhile, sharper peaks were obtained for the Fe (III) sample.
(C) Mossbauer spectroscopy at 293 K, with fitted subspectra corresponding to magnetite A
(tetrahedral) site Fe** and maghemite A & B sites Fe3* (teal sextet), magnetite B (octahedral) site
Fe2>* (valence averaged, pink sextet), and Wiistite (Fe;,O) Fe?" site (orange doublet). (D)
Maossbauer spectroscopy at 6 K, with fitted subspectra corresponding to magnetite A (tetrahedral)
site Fe3* and maghemite A & B sites Fe?* (teal sextet), magnetite B (octahedral) site Fe3* (pink
sextet), magnetite B-site Fe?" and wiistite (Fe;.,O) Fe?* site (orange sextet), and magnetite B-site
Fe?* (purple sextet).
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412  Esterification synthesis yields MPI tracers with high sensitivity and resolution performance

413 First, we evaluated the point spread function (PSF) for each nanoparticle, using the
414  RELAX™ module in the MOMENTUM™ MPI scanner (Figure 5A). In the PSF, signal intensity
415  corresponds to sensitivity and the full width half-maximum (FWHM) corresponds to resolution.
416  Nanoparticles synthesized using the Fe (II) and Fe (III) oleates had a high signal intensity, with
417  values of 77.4 and 108.5 mgg."!, respectively. In contrast, nanoparticles synthesized using the 1:2
418  Mix oleate had a lower sensitivity of 40.7 mgg."!, which agrees with expectations based on the
419  larger discrepancy between physical and magnetic diameters and poorer crystallinity. The
420  nanoparticles synthesized using the Fe (II) and 1:2 Mix oleates had similar FWHM of 10.5 and
421  10.4 mT, respectively. Nanoparticles synthesized using the Fe (III) oleate had a lower FWHM of
422 8.6 mT, which suggests superior imaging resolution. The nanoparticles synthesized using the 1:2
423 Mix oleate had similar magnetic properties and MPI performance as VivoTrax in our scanner,®
424  meanwhile the nanoparticles synthesized using the Fe (II) and Fe (III) oleates had superior
425  magnetic properties and MPI performance. Specifically, nanoparticles synthesized using the Fe
426  (II) oleate have comparable performance to VivoTrax+, a recently developed version enhancing
427  MPI performance to a signal intensity of 97.5 mgg.' and a FWHM of 7.1 mT. These results suggest
428  that the esterification synthesis is a valuable route for synthesizing and optimizing monodisperse

429  MPI tracers.

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.
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430 MPI 2D standard mode scans were obtained for serial dilutions of each of the nanoparticles,

431  resulting in the expected linear relationship between MPI signal and iron mass (Figure 5B). The

(cc)

432  dotted horizontal line represents the background signal of non-magnetic material based on the
433 average signal of water samples. For nanoparticles synthesized using the Fe (II) and Fe (III)
434  oleates, a real signal in the known location of the sample was observed down to 50 ngg., meanwhile
435  for the nanoparticles synthesized using the 1:2 Mix oleate a real signal was distinguished down to
436 100 ngp.. Figure 5C shows 2D scans comparing 1 mgp., which shows the nanoparticles
437  synthesized using the Fe (III) oleate had a brighter signal, followed by nanoparticles synthesized
438  using the Fe (II) and 1:2 Mix oleates, respectively. To compare resolution, standard 2D imaging
439  was used to obtain line scans of resolution phantoms separated by various distances until the signal
440  between them has a signal higher than half of the maximum signal. This corresponds to separation
441  of signal when the signal between the two sources is less than half the maximum (dotted line in

442  Figure 5D). This allows for estimating imaging resolution, where results show that the signals
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443 from the nanoparticles synthesized using the Fe (III) oleate are well separated at a distance between

444 3.75-4 mm, meanwhile the nanoparticles synthesized using the Fe (II) and 1:2 Mix oleates require

§ 445  distance larger than 4 mm to have well separated signals.
g_ 446  Table 1. Properties obtained from characterization of iron oxide nanoparticles synthesized at 320
é 447  °C using different iron oleate precursors at an addition flow rate of 0.1 mmol/min.
%é Properties Fe (II) Fe (IIT) 1:2 Mix
§ D, [nm] 18.7 21.9 21.2
g Ino, 0.06 0.06 0.05
pd
5 Dy, [nm] 16 20 12.5
é In 6, 0.33 0.26 0.57
P D, - Dy 2.7 1.9 8.7
§ Crystal Size — Dxgp [nm] 13.1 17.1 14.8
E Crystal Size Error [nm] 0.8 0.8 0.9
g D, - Dxxo 5.6 438 6.4
g M, [A m¥/kgg.] 128 127 115
g
% Fe;04 (Fe %)" 87% 63% 78%
5 v-Fe,0;3 (Fe %) 4% 37% 5%
2 FeO (Fe %)’ 9% 0% 17%
‘% MPI Signal Intensity [a.u./mg Fe] 77.4 108.5 40.7
= MPI FWHM [mT] 10.5 8.6 10.4
448 “Based on site relative areas obtained from fitting of 293 K Mdssbauer spectra.
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Figure 5. Esterification synthesis yields high-quality iron oxide MPI tracers with various
precursors at optimized reaction conditions. (A) Comparison of signal intensity and resolution
(FWHM) based on RELAX™ scans show superior performance for nanoparticles synthesized with
Fe (III) oleate. (B) 2D MPI scans of serial dilutions in standard mode show the expected linear
relationship between signal and iron mass for all samples, agreeing with the higher signal obtained
from RELAX™ scans for the Fe (IIT) sample. (C) 2D scans of 1 mg of Fe for the three tracers are
shown for visual comparison. (D) Line scans of linear resolution phantoms agree with expectations
from RELAX™ scans, showing signals of Fe (IIT) sample can be separated by smaller distances
than the Fe (II) and 1:2 Mix samples.
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Conclusions

This study demonstrates the use of an esterification synthesis method to obtain high-quality
MPI tracers with fine control of nanoparticle size, properties, and composition, highlighting an
alternative approach to the often-used thermal decomposition synthesis. The results show that
tracking the reaction progress with FTIR can facilitate optimization and tuning of reaction
conditions for new applications. Nanoparticle growth curves demonstrate continuous growth,
which allows for control of nanoparticle size. Comparison of different iron oleates demonstrated
limited effects on nanoparticle physical properties, but more strongly influenced magnetic
properties and phase composition. Crystal size estimates and quantification of Fe;O4:y-Fe,O;
ratios with XRD and Mossbauer spectroscopy, respectively, suggest that nanoparticles synthesized
using the Fe (III) oleate were the most crystalline and consisted of a mixture of maghemite and
magnetite, meanwhile Fe (II) and the 1:2 Mix oleate resulted in a mixture of wiistite, magnetite,
and maghemite. All samples exhibit decent performance as MPI tracers, with the nanoparticles
synthesized with the Fe (II) oleate having the best MPI performance in this study, comparable to
that of Vivotrax+. The synthesis of magnetic nanoparticles mediated by esterification reactions in
a biocompatible solvent shows tremendous potential for MPI, along with other biomedical
applications. The ability to track reaction progress via FTIR and the incorporation of oxygen in
the reaction mechanism makes this synthesis method attractive for further optimization of size and

composition with fine control of nanoparticle properties.
Materials and Methods
Materials

Iron(III) acetylacetonate (>98% pure) was purchased from TCI American (Portland, OR). Iron(II)
acetate (95%), oleic acid (90% technical grade), and diethyl ether (certified ACS) were purchased
from Sigma-Aldrich (St. Louis, MO). Oleyl alcohol (80-85% technical grade), hexane (>98.5%,
certified ACS), toluene (>99.5%, certified ACS), ethanol (200 proof), and tetrahydrofuran (THF,
99.8% for HPLC) were purchased from Thermo Fisher Scientific (Waltham, MA). Copper
transmission electron microscopy (TEM) grids (carbon film only, 200 mesh) were purchased from

TED PELLA, INC (Redding, CA).
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489  Synthesis of iron (II) oleate precursor

490  The iron (II) oleate was prepared by mixing 1.39 g of Iron(Il) acetate (8§ mmol) and 16 mL of oleic
491  acid (14.24 g, 45.6 mmol based on 90% purity) in a 100 mL three neck flask. The reactor was then
492  connected to a Schlenk line, placed in a heating mantle, and mixed using a borosilicate magnetic
493  stir bar with a stir plate. The mixture was vacuum purged three times, holding vacuum (~0.2-0.3
494  Torr) for 5 minutes each time and then purging with argon gas. Then, argon flow rate was set to
495 50 sccm and the reactor was wrapped with quartz wool insulation before ramping to 150 °C. After
496  reaching the reaction temperature, the reaction was soaked for 1 hour. Finally, the reactor was
497  removed from the heating mantle and allowed to cool before use for nanoparticle synthesis. A drop
498  of the iron oleate was scanned via FTIR to determine the percentage of free oleic acid and identify

499  the oleate structure.
500  Synthesis of iron (III) oleate precursor

501  The iron (III) oleate was prepared according to published work with some modifications. Iron (III)
502  acetylacetonate (22.38 g, 63.36 mmol) was combined with oleic acid (89.48 g, 316.80 mmol) in a
503  1:5 molar ratio inside a 500 mL 3-neck round-bottom flask. The flask was then introduced into a

504  molten metal bath set at 110 °C, with a condenser, thermocouple, and overhead stirrer in the 3

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

505  necks. The condenser was connected to a chiller set to 12 °C and attached to the right neck of the

506  reactor. The overhead stirrer, set up in the middle neck, was set to a rate of 350 rpm. The

Open Access Article. Published on 08 January 2026. Downloaded on 1/10/2026 9:58:11 AM.

507  thermocouple and gas flow needle were held by a septum in the left neck with the argon gas flow

508 set to 100 sccm. Once the equipment was set up, the molten metal bath was ramped up in

(cc)

509  temperature to a set point of 325 °C at a rate of 6.2 °C/min. After the reaction crossed 300 °C,
510  close monitoring required taking aliquots with a syringe and stainless-steel needle through the
511  septum in the left neck. FTIR was used to scan aliquots in real time and determine the reaction end
512 point, controlling the percentage of free oleic acid left in the oleate. Once the free oleic acid present
513 inthe precursor mixture was estimated to be close to 35%, the reactor was removed from the heater
514  and allowed to cool to room temperature before leaving it under vacuum overnight, prior to iron

515  oxide nanoparticle synthesis the next day.
516  Synthesis of iron oxide nanoparticles

517  The setup for the synthesis of iron oxide nanoparticles through esterification reactions is shown in

518  Scheme S1. First, 13 mL of oleyl alcohol (34.98 mmol based on 85% purity) were added to a 100
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mL three-neck flask, placed in a heating mantle, and mixed using a borosilicate glass coated
magnetic stir bar with a stir plate. The reactor’s left neck was connected to the Schlenk line, and
the middle neck had a rubber septum with a thermocouple. A glass stopper was added to the right
neck of the reactor before starting a vacuum treatment for 1 hour while heating to 140 °C. After
the vacuum treatment, the reactor was purged with Argon. The flow rate of Argon through the
reactor was set to 100 sccm using a mass flow controller, and the glass stopper in the right neck of
the reactor was removed. Then, the reactor was wrapped with quartz wool insulation before heating
to the desired reaction temperature (290-350 °C tested in these studies). After reaching the reaction
temperature in the reactor, the iron oleate was dripped from the middle neck of the reactor at a
controlled flow rate using a syringe pump. The range of 0.05-5 mL/min (0.025-2.5 mmol/min) was
tested in these studies. For the shorter experiments adding 1 mmolg, no aliquots were taken, but

for longer reactions aliquots were taken every 20 minutes for FTIR and TEM characterization.
Nanoparticle purification

Nanoparticles were purified using hexane and ethanol solvent-antisolvent washes with circular
magnetic Halbach arrays to remove reaction byproducts and any remaining reagents. Synthesized
nanoparticles were well homogenized after storage, and 1 mL of reaction mixture was added to a
15 mL centrifuge tube. This was followed by the addition of 0.3 mL of hexane, vortexing, and
addition of 1 mL of ethanol. This solution was lightly mixed before inserting into a circular
Halbach array for 10 minutes. The supernatant was discarded by decanting while keeping the tube
in the Halbach array, and nanoparticles were resuspended in 0.75 mL of hexane. After mixing and
adding 1 puL of oleic acid to ensure none of the surface oleic acid groups are displaced, cup horn
sonication was used for 1 minute at 80% amplitude. Again, 1 mL of ethanol was added to the
nanoparticle solution, lightly mixed, and inserted into the Halbach array for 10 minutes. The
supernatant was discarded, and the last step repeated two more times. After the final supernatant
was discarded, nanoparticles were resuspended in 1 mL toluene. Aliquots were taken to perform

iron quantification prior to the ligand exchange process.
Iron quantification UV-Vis absorbance assay

To quantify iron in both the nanoparticle toluene and water purified solutions, a 1-10-
phenanthroline colorimetric assay was employed. First, 10 pL of the nanoparticle solution (based

on this assay, [Fe] ~ 3-5 and 1-2 mgg./mL for toluene and water solutions, respectively) was
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549  digested in 1 mL of 70 % HNOs, prepared in triplicate, and placed in a heating block at 101 °C
550  overnight. An aliquot (10-20 pL) of each digested sample was dried in a separate vial, leaving
551  behind a crust. Then, 46 uL of deionized water and 30 pL of hydroxylamine hydrochloride (8 M)
552 were added and mixed by pipetting into each sample before allowing the reaction to reduce iron
553  for 1 h. To complex with Fe?*, 49 uL of sodium acetate (1.2 M) and 75 pL of 1,10-phenenthraline
554  monohydrate (13 mM) were mixed before aliquoting 100 pL of each final sample solution into a
555  96-well polystyrene plate for absorbance measurements at 508 nm in a SpectraMax M5 microplate
556  reader. Concentrations for each sample were determined by relating the absorbance to a calibration

557  curve prepared from an iron standard solution.
558  nD-PEG particle coating

559  First, 22 mg of nD-PEG (nitroDOPA-Polyethylene Glycol) was dissolved in 4.276 mL of toluene
560 at 101 °C. The solution was homogenized and 0.724 mL of nanoparticles suspended in toluene
561  were added (4 mg/mL concentration). Calculations were performed for a monolayer of PEG in
562  accordance with previous work, using 5 times excess of nD-PEG.%-%¢ The solution was
563  ultrasonicated for 90 seconds to minimize aggregates and then left in a heating block at 101 °C for
564 24 hours for the ligand exchange. Then, nanoparticles were separated by anti-solvent enhanced

565  magnetic separation using diethyl ether at a 1:3 ratio and placing the vial in a circular Halbach

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

566  array for 10 minutes. The supernatant was discarded, and the nanoparticles were resuspended in

Open Access Article. Published on 08 January 2026. Downloaded on 1/10/2026 9:58:11 AM.

567  THF. Diethyl ether was added again at a 1:1.5 ratio before placing in the circular Halbach array

568  for 10 minutes. This wash was repeated 4 times to remove excess nD-PEG. After the final wash,

(cc)

569  nanoparticles were resuspended in deionized water, passed through a 0.22 pum filter to remove
570  aggregates, and filtered using a Miltenyi Biotech LS magnetic column to further purify and
571  concentrate the nanoparticles. Dynamic Light Scattering (DLS) measurements were used to

572  confirm nanoparticle coating and stability in deionized water.

573  Nanoparticle characterization

574  Transmission electron microscopy

575  Transmission electron microscopy (TEM) was used to acquire information about the size
576  distribution of iron oxide nanoparticles. Oleic acid-stabilized particles suspended in hexane were
577  loaded onto 200-mesh copper grids with carbon film and imaged using a FEI Talos F2001 S/TEM.
578  Images were analyzed using a custom TEM Image Analysis Graphical User Interface (GUI)
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program in MATLAB, which was developed to perform physical analysis of particles in TEM
images based on the area segmented. We included at least 1,000 particles in the analysis to report
physical diameters (D,), and size distribution statistics. The number median physical diameter
(Dpg) and geometric deviation (In o) of the particle size distribution were obtained by fitting the

size distribution histograms to the log-normal distribution (nx(Dp)):

1 ( In?D, /ngv)

ny(D,) = — ex
N( p) V2rnDylno, P Zan(;g

(1)

Magnetometry and magnetic diameter fitting

Magnetic properties were evaluated using a magnetic property measurement system (MPMS-3)
superconducting quantum interference device (SQUID) magnetometer from Quantum Design, Inc.
(Santa Clara, CA, USA). nD-PEG-coated nanoparticles were loaded in PTFE sample holders,
while suspended in 100 pL of deionized water at concentrations from 1-2 mgg./mL. Magnetization
versus magnetic field (MH) curves were acquired at 300 K to confirm superparamagnetic behavior
(Figure S7) and fit the data to the Langevin function for superparamagnetism (equations 2-4),

weighted using a log-normal size distribution (ny(Dy,) (eq) as suggested by Chantrell et al.%

M(a) = Msj Ny (Dm)L(a)dDyy, 2)
0
1 MyD3 H
L(a)=cotha—a;a=7wo6# 3)
D) 1 l an(Dm/Dmv)l
n = €e&XpP |- 5., -
T 2Dy Inoy, P 2[n?a @

where a is the Langevin parameter, M;is the saturation magnetization, D, is the volume-weighted
median magnetic diameter, In o, is the geometric deviation of the magnetic diameter distribution,
W is the permeability of free space, kg is Boltzmann’s constant, My is the domain magnetization,
and T is the absolute temperature. The fitting of the magnetization curves to these equations using
a nonlinear regression model in MATLAB provided an estimate of the average magnetic

diameters, under the assumption that the magnetic domains are spherical. The saturation
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599  magnetization (M;) was obtained from the maximum of the MH curve, normalized by mass of

600 iron.

601  X-ray diffraction

602 A Rigaku MiniFlex600 X-ray diffractometer (40 kV, 15 mA) equipped with a D/teX Ultra2
603  detector was used to characterize the crystal structure of iron oxide nanoparticles. For sample
604  preparation, 300 pL of purified nanoparticles in hexane were drop casted into a zero-background
605  holder and scanned from 10 to 70 ° at a step width of 0.005 ° and scan speed of 0.10 °/min. The
606  SmartLab Studio II software was used for analysis, starting with peak evaluation, fitting them to
607  the split pseudo-Voigt function, and performing background refinement using the B-spline type.
608  Estimates of crystal size used the Scherrer equation and peak broadening of the main peaks were

609  averaged (30, 35, 53, and 56 °).

610  MPI performance

611  MPI performance of nD-PEG coated nanoparticles in deionized water was first characterized by
612  acquiring MPI RELAX™ scans (45 kHz, 16 mT in x-axis) of 5-15 pL (1-2 mg/mL) in 200 pL
613  microcentrifuge tubes using the MOMENTUM™ scanner (Magnetic Insight, CA, USA). Each
614  sample was placed in custom 3D-printed sample holder, centered in the MPI field of view (FOV),

This articleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

615 and scanned for 3-5 min. The signal of the x-space point spread function (PSF) obtained was

616  normalized by iron mass for comparison. The MPI signal corresponds to the peak specific intensity

Open Access Article. Published on 08 January 2026. Downloaded on 1/10/2026 9:58:11 AM.

617  reported in unit of mgg.~!, and the resolution corresponds to the FWHM system-reported value in

(cc)

618  units of mT.

619 A dilution series of each of the nanoparticles synthesized using the Fe (II), Fe (III), and 1:2 Mix
620  oleates were prepared for iron masses from 1000 ngg. to 25 ngg. for a 5 pL sample volume.
621  Triplicates were included for each sample by placing 3 capillary tubes (0.8 mm ID) with 5 uL each
622  perpendicular to the FOV. MPI scans were acquired with the MOMENTUM™ scanner (Magnetic
623  Insight, CA, USA) using standard multichannel mode (45 kHz for x/z axes, 5.7 T/m). The images
624  obtained through an x-space direct reconstruction, which applies an equalization filter,% ¢ were
625  analyzed using MATLAB (Mathworks, MA, USA) in-house algorithms in which the region of
626 interest (ROI) was selected to obtain the maximum signal of each sample. The limit of detection

627  is based on comparison to the signal obtained for a water sample, indicating the background signal
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of nonmagnetic material, to make sure that the signal obtained from dilute samples is from the

nanoparticles and not background signal fluctuations.

To evaluate imaging resolution of each sample, 2 capillary tubes (0.8 mm ID) with 5 puL (5-10 pg)
each were placed parallel to the FOV separated by varying distances from the center of the samples
(3.5-5 mm) and scanned with the MOMENTUM™ scanner (Magnetic Insight, CA, USA) in 2D
standard mode with an x-space direct reconstruction (45 kHz for x/z axes, 5.7 T/m). The separation
between the samples was decreased until the signal could not be separated, using the criteria that
signals are separated when it is less than half the maximum signal in between the two capillaries.
Finally, line scan profiles were obtained for the section with the maximum signal for the image,

and these were normalized by the maximum signal to facilitate comparisons.

Mossbauer Spectroscopy

Mossbauer Spectroscopy measurements were performed with a >’Co source, a Janis SHI-850-5
cryogen-free cryostat, and Lakeshore 325 Temperature Controller. Hyperfine interaction
parameters were analyzed using a least-squared fitting model with Mdssbauer GenFit Software (R.
S. Preston and D. E. Brown). Powdered samples were stored in an Argon atmosphere glovebox
and were loaded and sealed into Mossbauer cups for characterization at 293K and 6K. Additional

analysis details are provided in the Supporting Information.
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