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The growing demand for energy-efficient computing in artificial intelligence requires novel memory

technologies capable of storing and processing information. Memristors stand out in thanks to their ability

to store information, mimic synaptic behavior and support in-memory computing architectures while

requiring minimal active areas and energy consumptions. Here is presented a scalable and cost-effective

approach to fabricate Ag/MoS2/Au memristors as resistive switching memory devices by combining roll-

to-roll mechanical exfoliation of two-dimensional materials with inkjet printing. These devices exhibit

reliable non-volatile switching behavior attributed to the formation and dissolution of metallic conductive

filaments within the MoS2 layer, with high resistance ratios and robust retention times. A fully-connected

neural networks is simulated using quantized weights mapped onto a virtual memristor crossbar array

demonstrating that classification tasks can be performed with high accuracy even with limited bit-width

precision, highlighting the potential of these devices for energy-efficient, high-throughput AI hardware.

1 Introduction

Random Access Memories (ReRAMs) are a well-established
class of non-volatile memory devices in which the basic
memory cell consists of a resistive switching element capable
of changing its conductance in response to an external electri-
cal stimulus. This effect is typically achieved through abrupt
conductance changes triggered by voltage pulses applied
across the device terminals. Since their initial study in the
1960s,1 memristive devices have gained significant attention
due to their simple structure, their potential for high inte-
gration density, and their use in non-Von Neumann architec-
tures.2 Over the years, several resistive switching mechanisms
have been discovered and investigated.3–6 Among these, phase-
change memristors rely on a reversible transition between dis-
tinct structural phases, such as crystalline to amorphous
lattice (as seen in doped GeSbTe).7 In these materials, ther-
mally activated crystallization induces a lattice rearrangement
from the amorphous phase to a crystalline phase, while a

return to the amorphous state is achieved by melting and
abruptly cooling the material.

Another class are conductive filament (CF)–based memris-
tors, which operate through the drift of metal ions under an
applied electric field. This can cause either the formation or
the rupture of conductive paths between the device
terminals.8–11 which eventually leads to a low resistive state
(LRS) or a high resistive state (HRS), respectively. The simplest
structure for CF memristors is characterized by two metal elec-
trodes separated by a switching layer (SL) material The two
electrodes are usually made of metals (e.g., copper or silver),
noble metals (platinum or gold) or carbon-based materials,
and they can either contribute to the switching phenomenon
or simply act as current conductors. The SL is the material
layer where the conductance switch takes place. The most
common materials for the SL are oxides (e.g. TiOX, AlOX),

12–14

perovskites or two-dimensional materials, such as Transition
Metal Dichalcogenides (TMDs).15–18 When the SL is only a few
atomic layers thick, Schottky emission and direct tunneling
effects become the dominant transport mechanisms. In these
cases, the HRS is primarily governed by thermionic current,
while the LRS is characterized by tunneling current. This tran-
sition can be identified through the temperature-dependent
current behavior, where the Schottky effect current equation
I / T2e�

α
T

� �
is the best fitting curve of experimental data,

whereas direct tunneling exhibits an inverse relationship with
temperature.19 An interesting application of two-dimensional
material-based memristors can be found in neuromorphic net-
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works and architectures, where they show promising character-
istics, such as gradual conductance changes, which mimic bio-
logical synapses and neural plasticity.20,21 For this purpose,
both volatile22 and non-volatile23–26 memristors have been
extensively employed. Volatile memristors are used for Spiking
Neural Networks (SNNs),27 which encode information in pulse
timing and rate. On the other hand, non-volatile memristors
are suitable for multi-time programmable Read-Only Memory
(ROM) applications, as they offer extended data retention,
ranging from hours to years (demonstrated in simulations).26

An intriguing feature of the latter devices is their ability to
support multiple stable resistance states,28,29 enabling multi-
bit storage within a single cell or even analog data representa-
tion. This property has generated considerable interest in the
research community, as it allows for the direct implementation
of analog dot-product operations through memristor crossbar
arrays.30 Such operations are fundamental for neural network
processing and could significantly reduce the area and energy
requirements associated with conventional digital multipliers.

In this work, a memristor with two stable resistance states
was fabricated using a low-cost, high-throughput approach.
The device consists of inkjet-printed silver and gold contacts
on the top and bottom sides, respectively, of a semiconducting
MoS2 layer, which is deposited via a roll-to-roll technique.31

Electrical characterization confirmed that the device can be
electrically switched between high- and low-resistance states. It
is supposed that when a positive voltage is applied to the silver
contact, silver ions migrate towards the gold electrode, leading
to the formation of a conductive filament within the exfoliated
MoS2, following the mechanism demonstrated by the work of
Yang et al.8,32 Conversely, applying a reverse voltage is pre-
sumed to dissolve the filament, restoring the high-resistance
state. Electrical measurements were performed to derive the
current–voltage characteristic of the devices and extract the key
parameters and their statistical distribution.

These parameters were then used to simulate a neural
network using a large-scale memristor-based crossbar array. In
the simulation, a deep neural network was trained, and its
parameters (i.e., weights and biases) were quantized from float-
ing-point to signed integer, so that they could be implemented

using our memory-cell devices. This quantization reduced the
bit-width required for storage and the corresponding proces-
sing complexity, enabling efficient deployment in the simu-
lated memristor array.

Simulation results showed that, for a simple dataset consist-
ing of schematic representations of digits 0 to 9, an accuracy of
100% was achieved using 3-bit parameters in a fully connected
neural network with three layers (i.e., parameter values ranging
from −4 to 3). When applied to the more complex Modified
National Institute of Standards and Technology (MNIST) dataset,
a 94% accuracy was obtained with 4-bit precision, requiring an
architecture with four layers and a higher number of neurons.

2 Experimental

The structure of the proposed vertical memristors is shown in
Fig. 1a and b. It consists of a stacked configuration, where the
bottom contacts (BC) is composed by a conductive line
oriented perpendicular to an overlapped top contacts (TC) sep-
arated by a SL in between. The CF is expected to form within
the SL under an electrical stimulus, as shown in Fig. 1c.

The SL in this work is obtained through the roll-to-roll
process, first demonstrated by some of the authors of the
present work31 and shown in Fig. 1d. In particular, a molyb-
denite crystal is first mechanically exfoliated onto a Nitto tape
and, after the roll-to-roll process, a high density distribution of
mechanically exfoliated MoS2 nanosheets on the tape is
obtained. These nanosheets are then transferred onto an accep-
tor substrate by placing the tape in contact with the surface
and heating it at 110 °C for 5 minutes. To enhance the transfer
of MoS2 flakes from the tape to the substrate, it is essential that
the target substrate is very clean. To ensure cleanliness, the
SiO2 substrate undergoes a sequential cleaning process: first, a
5 minute sonication in Acetone (ACE) removes the major con-
taminants, followed by a rinse with Isopropilic Alcohol (IPA) to
eliminate residues. Finally, the substrate is treated in a UV
cleaner for 10 minutes before the MoS2 transfer step.

When the substrate is clean, silver BCs are Inkjet printed in
a crossbar array. In order to keep each BC pad separated from

Fig. 1 (a) Strip of exfoliated MoS2 sandwiched between a silver bottom and a gold top contact, making an isolated “crossbar array” of memristors.
(b) Cross section of a device with Ag/MoS2/Au structure (c) working principle of a memristor. A positive bias voltage let a conductive filament grow
and short the two contacts, an opposite voltage let the filament retract and a higher resistance state is reached. (d) Photo of the two rollers used to
carry out the high throughput mechanical exfoliation.
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the MoS2 area, they are printed with a “U-shape” design. The
BCs horizontal lines measure 2 mm × 100 μm, while the verti-
cal are 50 μm × 100 μm. In each row, two mirrored contacts
with respect to the substrate axis are fabricated to double the
number of devices per batch, while maintaining the isolation
between adjacent structures (Fig. 2a). A lateral mask made
from Nitto tape is manually applied to define the active
channel area and protect the silver pads from being coated
with MoS2 during the exfoliation step (Fig. 2b and h). This
masking ensures that the electrodes remain exposed for later
contact. However, the thickness of the Nitto tape (∼80 μm) sets
a limit on the minimum size of the exposed window. In prac-

tice, the uncovered area must be at least 2 mm × 2 mm to guar-
antee conformal contact between the MoS2-coated tape and
the SiO2 substrate during the transfer process.

Two Nitto tape strips are mounted on the rollers in Fig. 2c.
The MoS2 flakes are first exfoliated with Scotch-tape method
and placed on one of the Nitto strips. The rollers are rotated
using an electric screwdriver to thin down and evenly distri-
bute the MoS2 flakes across the adhesive surface. This process
continues until the tape is uniformly covered, avoiding the
presence of bulk material (Fig. 2g). The exfoliated MoS2 is then
transferred onto the substrate (Fig. 2d and h) by applying a
gentle pressure with tweezers, followed by heating on a hot-

Fig. 2 Main fabrication process steps of the Vertical memristors. (a) Silver BCs are inkjet printed with a silver nanoparticle ink. The area where the
two contacts are ovrelapped is ∼60 μm × 60 μm. (b) The BC pads are covered by a hand-cut mask made of Nitto tape to avoid coverage by MoS2
flakes. (c) With the Scotch-tape exfoliation method, bulk flakes of MoS2 obtained by a molybdenite crystal are first positioned on the Nitto tape sur-
rounding the two rollers. By spinning the two cylinders together the bulk flakes spread over the tape, and a uniformly MoS2 covered area is obtained.
(d) A few strips are cut from this tape and transferred on the printed BC, following the thermal release transfer described in the text. This step is
repeated until the BC is fully covered. (e) The pad mask is removed and the batch is cleaned in acetone (heated at 40 °C); acetone residues are then
removed with a quick bath in IPA the batch is dried on a hot plate at 110 °C. (f ) Gold TCs, with additional lateral silver pads for external electrical
contact, are finally printed. (g) Optical photo of the exfoliated MoS2 on Nitto tape after the step in panel c. (h) Optical photo of the silver BC covered
with the Nitto Mask and the first transfer of the semiconductor. (i) Optical photo of the completed devices, with the gold TC crossing the vertical
part of the BC.
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plate for 5 minutes at 110 °C leading to a thermal release of
the exfoliated nanosheets onto the acceptor surface. This step
is repeated multiple times to ensure complete coverage of the
whole BCs, to avoid pinholes between the TC and the BC.
The MoS2 active layer is formed by 20 sequential transfers,
each contributing a dense network of nanosheets. From
related cross-sectional SEM investigations of sequentially
transferred MoS2 films (to be reported separately), we found
that each transfer typically adds 40–50 nm of thickness. Based
on this, we estimate that the present devices employ an
active layer in the 800–1000 nm range, as confirmed by a pro-
filometer scan of the device area reported in Fig. S1. While the
precise thickness is not critical for filamentary resistive switch-
ing, the reproducibility of the I–V characteristics across a large
batch of devices indicates that the sequential transfer process
ensures a continuous coverage of the active area of the devices,
enabling stable operation. The morphology of the exfoliated
MoS2 nanosheets obtained by the roll-to-roll process has been
characterized in detail by AFM in our previous work,31 where a
statistical analysis of nearly 200 flakes revealed a mean thick-
ness of 40 nm and lateral sizes of a few to tens of micrometers.
These dimensions are consistent with the 40–50 nm/transfer
thickness inferred from cross-sectional SEM and confirm the
suitability of the exfoliated flakes as building blocks for con-
tinuous active layers in memristive devices.

Once the middle area of the BCs is completely covered by the
SL, the side mask is removed and the batch is cleaned in hot
ACE (15 min at 40 °C), then rinsed in IPA and annealed on a hot
plate at 110 °C for 20 minutes to remove any Nitto tape residues.
Finally, the gold TC are printed on top of the stack (Fig. 2f and
i), by heating the printer platen at 55 °C to enhance the wettabil-
ity of the non-planar SL. Wider pads for the TC are printed
outside the rough region, directly on SiO2 with silver ink, to
improve the mechanical contact with the probe tip. At an early
stage of this work, both contacts were printed using silver ink.
The devices were observed to switch correctly into the LRS once
the applied voltage exceeded VSET; however, they did not revert to
the HRS even under large negative bias. This irreversible behav-
ior is consistent with a switching mechanism based on the for-
mation and break of metallic dendrites originating from the Ag
electrode. In a symmetric structure, such directional filament
dynamics are suppressed, preventing reliable RESET operations.

3 Results and discussion
3.1 Electrical characterization

In Fig. 3a, we show the I–V characteristics of the two-terminal
device, taken with a four step segment sweep: starting from
zero voltage and increasing to the maximum set voltage, then

Fig. 3 (a) Multiple Current–Voltage sweeps applied to a single devices, in red the first one and in blue the last. Different instrument current com-
pliances (CCs) have been tested (b) RESET voltage measured for different devices, the statistical distribution was best fitted with a lognormal func-
tion with an average value (μ) of −0.025 and a standard deviation (σ) of 0.810 (c) SET voltages measured for different devices, the lognormal distri-
bution in this case has μ: 0.202 and σ: 0.776 (d) 2D plot showing the resistance values for the two states for different devices. Three areas are high-
lighted depending on the resistance ratio between the two states, the majority of the devices has its states separated by at least 103. (e) A read/write
voltage waveform is applied to the device. 2 V/−2 V × 20 ms voltage pulses are the Write (SET/RESET) pulses and 100 mV × 20 ms are the Read
pulses. (f ) Read current after a SET voltage sweep. Consecutive sweeps have been applied at increasing instrument CC.
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decreasing back to zero, followed by a sweep to the minimum
reset voltage, and finally returning to zero. During the first two
segments, a fixed CC was applied to limit the growth of the CF
and extend the device lifespan;33 several CCs have been tested,
from 10 μA to 1 mA. In the third segment, the CC was
removed, allowing the applied voltage to break the CF, thus,
switching the device from the LRS to the HRS. Analysis of the
voltage–current characteristics in linear scale provides insight
into the switching mechanism (SI, Fig. S2). In the LRS, the
current increases linearly with voltage, consistent with Ohm’s
law and indicative of metallic conduction through a conductive
silver filament. By contrast, fitting the HRS curve yields a
quadratic dependence (I ∝ V2), characteristic of Space Charge
Limited Conduction (SCLC),34 in agreement with numerous
reports in the literature.26,32,35–39

Four key device parameters were extracted from measure-
ments: set voltage, reset voltage, resistance in the LRS and re-
sistance in the HRS. The set and reset voltages (VSET and VRST,
respectively) correspond to the voltages at which the current
changes abruptly, during the forwards and backwards sweeps,
respectively. These values were obtained by calculating the
derivative dI

dV and reading the voltages at which the minimum
and maximum occurs (Fig. S3). The evolution of these para-
meters after consecutive sweeps is unpredictable as it can be
seen in Fig. S4. However, since the digital logic only requires a
clear distinction between the high- and low-resistive states, the
precise control of the switching voltage and conductance is
not needed and applying ±5 V would results in the correct
SET/RESET of the device. Another important parameter is the
endurance, that represent the maximum number of program-
ming cycles before the failure of the device. The performed
measurements reports that the maximum endurance for our
devices is 20, after that the memristor switches permanently to
the LRS (Fig. S5).

The histogram in Fig. 3b and c shows the distribution of
VSET and VRST for the 47 functioning devices (with an average
yield of 40% per batch). These values are significantly influ-
enced by the SL thickness and the pre-form sweep. Following
the statistical analysis, a global SET voltage of 5 V and a reset
voltage of −5 V have been chosen to ensure a reliable execution
of the writing operation. The high- and low-resistance states
were determined by dividing the voltage of the first sample in
the third sweep segment by the corresponding current, produ-
cing the scatter plot in Fig. 3d. Three main regions are high-
lighted, based on the ratio between the x-axis (LRS values) and
the y-axis (HRS values), with each data point representing the
two resistance values for different devices. The majority of
memristors have a current ratio larger that 103, with some
even reaching 104. The HRS values show larger dispersion,
ranging from 10 kΩ to 100 MΩ. These two resistance states are
further confirmed in the pulsed voltage test (Fig. 3e), where
consecutive voltage pulses were applied until the current
measured during a read pulse exceeded a predefined threshold
value. The same procedure applies to the reset pulses. The
applied pulses were 20 ms long and had an amplitude of 2/−2
V for the set/reset operation and 100 mV during the read.

From these measures the switching speed can also be evalu-
ated and it is estimated to span from 100 ms to lesser than
20 ms, depending on the amplitude and the CC of the instru-
ment (Fig. S6).

Additionally, a series of consecutive SET sweeps were per-
formed with progressively increasing CC followed by a read
pulse to measure the current state, as shown in Fig. 3f. For
very low compliances (i.e. 1 μA to 10 μA) the memristor exhibits
a volatile data retention that turns into non-volatile when the
CC is increased. In the first case, during the set sweep, it could
be seen that the current abruptly switch from the HRS to the
LRS, but the consecutive reading results in a low current,
implying the loss of the write operation. The CC value to
achieve the non-volatile state has a wide dispersion and some-
times it is not uniquely defined (Fig. S7), but it has been seen
that for CC larger than 100 μA, the non volatile state was
always achieved with data retention time longer than 103

seconds (Fig. S8). However, increasing CC to the milliampere
range led to a reduction in device lifespan, likely due to exces-
sive CF growth, which prevented the device from reverting to
the HRS.

In Table S1 (SI), we present a comparison of performance
parameters across different memristive devices reported in the
literature. The key contribution of this work lies in demonstrat-
ing a novel and fast fabrication method to realize ReRAM
devices with competitive characteristics.

3.2 ReRAM simulation

From the previous measurements, the statistical distribution
of the four key memristor parameters was evaluated to simu-
late their application as a ReRAM for storing the weights and
biases of a fully connected neural network. The network’s
objective was to classify 5 × 4 pixel images representing sche-
matic versions of the digits 0 to 9.

These simulations has been performed with the Tensorflow
python package, building a sequential model with increasing
number of neurons and weights to minimize the required bit-
width for parameter storage.40 Since this package performs the
backpropagation algorithm only with float32 datatype and
does not allow to work with custom integer sizes, the approach
proposed in this article consisted in a standard network train-
ing performed by the instruction model.fit() followed by a
datatype conversion. Once the accuracy of the network reaches
a value near 100% and the total loss is small, each layer vari-
ables were normalized to assume values ranging from −1 to 1,
then multiplied the maximum value of the binary word (in C2
representation).

Simulation results have shown that a two-layer network
with 10 neurons per layer could successfully classify all images
in the dataset, even after weights and biases were quantized to
integer formats ranging from 32-bit down to 8-bit. However, at
4-bit precision, accuracy degradation became evident, requir-
ing the addition of new layers. A three-layer fully connected
network (Fig. 4d) achieved 100% accuracy, with input and
hidden layers consisting of 20 neurons each, and an output
layer containing 10 neurons (Fig. 4b).
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The trained parameters were then mapped onto a simulated
memristor array, where each cell was implemented as a Python
class containing four key parameters selected randomly from
their measured distribution. Each virtual memristor had
unique resistance states and set/reset voltages and represented
a single-bit weight. As a result, the memristor array size was
three times larger than the original neural network parameter
array. Writing or resetting each cell was simulated by applying
an appropriate voltage, chosen after the analysis of the evol-
ution of VSET and VRST to its terminals. To evaluate robustness,
noise was introduced during inference by flipping a random
pixel in each digit of the dataset. Due to the small size of the
dataset (10 images), the noise has reduced the classification
accuracy (Fig. S9) but it heavily depends on the flipped pixel,
resulting in 100% accurate prediction down to 70%. The

impact strongly depended on which pixel was corrupted, as a
single flip could effectively transform a digit into something
visually close to another, justifying the resulting
misclassifications.

Then, the network has been extended to classify the more
complex MNIST dataset with the same approach illustrated
previously (Fig. 4e). The network has been first trained with all
parameters in the float32 format, and then the weights have
been quantized into a representation with decreasing number
of bits. It has been observed that a network with four fully con-
nected layers, i.e., an input, two hidden and an output layer
with 10 neurons, provides an accuracy near 97% when its vari-
ables are converted from floating point to 4 bit signed integer.
Increasing the number of neurons or layers does not enable
the network to achieve similar classification accuracy with

Fig. 4 (a) Schematic of the performed simulation to train a neural network with post-train quantized weights and biases. (b) Schematic of the struc-
ture of the neural network implemented to recognize a simple dataset containing the digits from 0 to 9. (c) Memristors crossbar array, with an
enable-transistor in series to access a single cell without sneak current paths. Using the crossbar array as a ReRAM, it is possible to store and load
values for the parameters of the network in a two’s complement. (d) Layout of the fully connected network used to recognize the simple dataset
coded in 3 bits integers parameters with the corresponding confusion matrix obtained during inference. (e) Layout of the fully connected neural
network used to recognize the MNIST dataset.
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fewer bits per weight. Nonetheless, a simple memristor cross-
bar array provides a feasible means to store weights and
biases.

Conclusions

In this work, Ag/MoS2/Au memristors were fabricated using a
high-throughput, low-cost approach, combining mechanical
exfoliation and inkjet printing to define the switching layer
(SL) and metal electrodes, respectively. Electrical characteriz-
ation have shown abrupt resistance switching in the fabricated
devices, likely governed by the formation and dissolution of
silver conductive filaments across MoS2 layer. The devices
exhibited a resistance ratio ranging from 102 to 104 and reten-
tion times exceeding 103 seconds, confirming their suitability
for non-volatile memory applications.

To explore their potential for neuromorphic computing,
the fabricated devices were modeled in a ReRAM-based
crossbar array to store neural network parameters. A simple
digit recognition task was implemented, demonstrating that
three-bit integer quantization of network weights and biases
did not degrade accuracy. However, to achieve over 90%
accuracy on a larger neural network for MNIST dataset
classification, at least four-bit parameter quantization is
required.

These findings suggest that 2D-material-based memris-
tors are viable candidates for non-volatile memory and neu-
romorphic computing applications. Future work will focus
on the physical integration of access transistors to enable
large-scale crossbar arrays and the exploration of multi-
level resistance states by tuning compliance currents
during the SET process. If these memristors can reliably
achieve multiple resistance levels, they could be leveraged
to enable a direct in-memory implementation of vector-
matrix multiplication, accelerating neuromorphic and AI-
driven computations.
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