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Strain control of the electronic structure in WS2
homobilayers with 0° and 60° stacking angles
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Two-dimensional transition metal dichalcogenides combine attractive semiconductor properties with

exceptionally strong light–matter interaction. Their mechanical robustness allows the modulation of their

optical and electronic functionalities via strain. Bilayers introduce the stacking angle as an additional para-

meter, whose role in the strain response is still elusive. Here, we combine differential reflectance spec-

troscopy and density functional theory calculations to explore the strain response of WS2 homobilayers

with 0° and 60° stacking angles. The change of the excitonic resonance energies and linewidths depends

on the stacking angle, highlighting the scope for the manipulation of the electronic structure of two-

dimensional semiconductors via the synergistic harnessing of the strain and angle control parameters.

Introduction

Two-dimensional transition metal dichalcogenides (TMDCs)
combine attractive semiconductor properties and mechanical
and chemical robustness with exceptionally strong light–
matter interaction. As evidence of this, TMDC monolayers with
sub-nanometer thickness have demonstrated a range of optical
phenomena, including photodetection,1 photovoltaics,2 satur-
able absorption,3 optical gain,4 photocatalysis,5 electrooptical
modulation,6 and optical parametric amplification.7

Strain can significantly modulate the band structure of
TMDCs,8–19 resulting in a red-shift of the excitonic resonances
by several tens of meV per % of uniaxial strain8–23 and, in
some cases, inducing a crossover between direct and indirect
semiconductor behavior.10,13,16 Moreover, strain also influ-
ences the strength of the electron–phonon coupling,24–28

resulting in a variation in the spectral linewidth of the exciton
features and charge carrier mobility.29–32

Experimental investigation of TMDCs’ optical properties
under strain has so far been largely limited to monolayer
material. In bilayer TMDCs, the second atomic layer commonly

adopts specific stacking orientations, such as 0° rotation or
60° rotation, due to their enhanced thermodynamic stability
compared to other possible configurations.33 The few existing
works on bilayer material have found direct-to-indirect
bandgap transitions,13,14,16,25,34 a change in the exciton-
phonon coupling35 and a modulation of the Stokes shift.36

None of the existing studies has yet assessed the role of the
interlayer stacking angle in the strain response.

Here, we study the strain tunable optical properties of WS2
homobilayers in 0° and 60° stacking configurations through
combination of differential reflectance contrast (DR) and
density functional theory (DFT) calculations. Experiments and
calculations yield consistent linear strain gauge factors (GFs)
that are slightly higher for the A exciton compared to the B
exciton. Additionally, the measured strain GFs are about 25%
higher for 60° stacking relative to 0° stacking. Our results are a
first step toward a synergistic use of strain and stacking in the
modulation of the electronic structures of two-dimensional
semiconductors.

Methods

The WS2 bilayer flakes were grown using a modified one-zone
chemical vapor deposition process, as shown in our previous
reports.33,37,38 First, the metal source WO3 powder (Alfa Aesar,
99.8%) was loaded into the boat with the SiO2/Si substrate
facing the source materials. The source boat was placed at the
center part of the growth furnace. Then, the sulfur powder was
loaded onto the edge of the furnace with a movable inner tube
and heated above 100 °C for more than 15 min to eliminate
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the water inside before growth. The furnace was then heated
up to 750–850 °C with a heating rate of 25–30 °C min−1 and
kept at the growth temperature for 3–10 min. After growth, the
furnace was cooled below 300 °C and then was opened for fast
cooling to below 100 °C and the substrate was removed.

The flakes are transferred onto a flexible polycarbonate (PC)
substrate with a thickness of 250 μm using a wet transfer
method. A polydimethylsiloxane (PDMS) carrier substrate is
first attached to the sample containing the WS2 flakes. This
assembly is then immersed in deionized water containing a
small amount of ammonia, which facilitates the detachment
of the PDMS layer along with the adhered flakes from the Si
substrate. After detaching, the PDMS carrying the flakes is ana-
lyzed under the microscope to identify the flakes most suitable
for transfer. The flakes are then mechanically transferred by
gently pressing the PDMS against the PC substrate to ensure
good contact, and by carefully peeling off the PDMS, leaving
the WS2 flakes securely attached to the PC substrate.39

To apply controlled uniaxial strain to the WS2 flakes, a
three-point bending setup adapted from ref. 40 and depicted
in Fig. 1, right, was used. It consists of two identical manual
linear micrometer Z stages, fixed onto a steel plate and sup-
plemented with two homebuilt steel parts to attach the three
cylinders that act as the pivots of the three-point-bending
setup. The sample is placed in the central pivot, while the
other pivots deflect the substrate from the sides, bending the
sample and thus generating the uniaxial strain. This design
ensures that the position of the sample remains nearly
unchanged during the strain loading/unloading cycles. This
eliminates the need for re-focusing and re-positioning the
sample upon changing the strain in the optical measurements.
We can achieve micrometric precision in controlling the
deflection of the substrate, i.e. the displacement along the
z-axis of the outer pivots. The applied strain ε is related to the
distance D between the pivotal points, the deflection L, and
the thickness t of the substrate by the following formula:

ε ¼ 6Lt
D2 ð1Þ

This formula has been validated experimentally in ref. 40.

Calculations of the ground-state electronic properties were
carried out by using the GPAW open-source code41 with a
plane-wave cutoff energy of 600 eV. We use the van der Waals
dispersion corrections vdW-DF42 and vdW-DF243 for the
exchange–correlation functional. The momentum grid for
ground-state self-consistent calculations was set to k = 24 × 24
× 1, and we used Fermi–Dirac smearing with 0.01 eV broaden-
ing. Original unstrained structures were relaxed both in lateral
and perpendicular directions, while for the strained slabs we
only perform the interlayer relaxation. With vdW-DF, this gives
a = 3.186 Å for both 0° and 60° stacking angles, and W–W
interlayer distances of d = 6.655 Å and d = 6.662 Å for 60° and
0° stackings, respectively. When the relaxation is done with
vdW-DF2, we get the same unit cell parameter a, while W–W
distances for 60° and 0° stackings are d = 6.578 Å and d =
6.583 Å. For both stackings we obtain an S–S distance within
the layer of 3.19 Å (3.23 Å) with vdW-DF (vdW-DF2). For a more
accurate description of the quasiparticle spectra, we use both
the HSE44 and many-body G0W0 corrections.45 In the latter
case we used k = 24 × 24 × 1 points and 80 bands in order to
converge the screened Coulomb propagator, and we used 80
eV energy cutoff for the G vectors. The quasiparticle G0W0 cor-
rection was applied only to the relevant top-most two valence
bands, and to the lowest two conduction bands.

The calculations of the electron–phonon interaction were per-
formed by means of density functional perturbation theory46

and the Wannier interpolation47 scheme as implemented in
QuantumEspresso48 and EPW49 codes. Here we tried to use the
same parameters as in GPAW calculations in order to match the
electronic properties as obtained with the two codes. For the
pseudopotentials we used the norm-conserving PBE functional
from the PseudoDojo library,50 and we also use vdW-DF dis-
persion correction. The lattice parameters were the same as in
GPAW inputs. For the phonon calculations we used k = 12 × 12 ×
1 and q = 6 × 6 × 1 grids. In EPW calculations we use 22 maxi-
mally localized Wannier functions with the initial projections of
d orbitals on the W sites and p orbitals on the S atom sites.
Calculations of the Fan-Migdal electron self-energy that accounts
for the electron–phonon coupling within the band structures51

are carried out on a q = 120 × 120 × 1 momentum grid.

Fig. 1 Optical micrograph of as-grown bilayer flakes grown on SiO2/Si before their transfer (left), and a scheme of the 3-point bending setup for
strain investigation under an optical microscope (right).
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Fig. 2 (a) DR spectra of a 0° stacked WS2 flake under strain from 0% to 0.52% and back to 0%. The curves are vertically shifted for clarity and drawn
bottom to top in order of data acquisition. Determination of the strain GFs for the A exciton resonance (b) and the B exciton resonance (c).

Fig. 3 (a) DR spectra of a 60° stacked WS2 flake under strain from 0% to 0.52% and back to 0%. The curves are vertically shifted for clarity and drawn
from bottom to top in order of data acquisition. Determination of the strain GFs for the A exciton resonance (b) and the B exciton resonance (c).
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Results and discussion

Bilayer flakes with 0° and 60° stacking angles were
synthesized using chemical vapor deposition.33,37,38

Representative optical micrographs of both stackings are
shown in Fig. 1, left. The flakes are either hexagonal or tri-
angular in shape, with the hexagonal ones typically having
three long and three short edges, resembling triangles with
truncated corners. Typical edge lengths of the (truncated) tri-
angles are tens of μm. For 0° stacking, both top and bottom
WS2 layers appear as flakes with their (truncated) triangles
oriented parallel to each other, while for 60° stacking they are
rotated by 60°.52–57

For strain dependent DR spectroscopy, a total of twelve
flakes of 0° and thirteen flakes of 60° stacking angle were
transferred onto flexible PC substrates. The DR is measured by
illuminating the sample on a spot approximately 1.5 μm in
diameter with white light from a halogen lamp and collecting

the reflected light. Strain is applied by bending the substrate
in a loading (increasing strain) followed by an unloading
sequence.58 The DR spectra, shown in Fig. 2 and 3 for one
example of each stacking angle, are dominated by the absorp-
tion of WS2, showing the characteristic A and B exciton
resonances.59,60 To analyze the strain-dependent changes in
the electronic structure, we fitted these spectra with a second-
order polynomial to account for the scattering background
and two skewed Gaussians to represent the main peaks broad-
ened by electron–phonon coupling.61,62 For the unstrained
samples, we obtained the A and B resonances at 1.979 ± 0.002
eV and 2.357 ± 0.002 eV for 0° stacking and 1.986 ± 0.003 eV
and 2.371 ± 0.006 eV for 60° stacking. In both cases, the A and
B resonances shift linearly to the red with increasing strain
and reproducibly return almost to their original spectral posi-
tions upon strain release with only minor hysteresis. The
slopes of the linear fits in Fig. 2b, c and 3b,c yield the experi-
mental strain GFs.

Fig. 4 (a) Statistical analysis of the strain GFs for excitons A and B in 0° and 60° stacking bilayers of WS2 on various flakes. (b) The energy bands of
bilayer WS2 for 0° and 60° stacking angles calculated using density functional theory.
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The statistical analysis of the 12 0°-stacked and the 13 60°-
stacked flakes shown in Fig. 4a and Table 1 yields strain GFs
whose absolute values are about 10% higher for the A than the
B resonance, and 25% higher for 60° than for 0° stacking. The
calculated band structures in Fig. 4b show that at the K point,
where the electronic transitions associated with the A and B
resonances take place, the conduction bands shift to lower
energy upon strain application, while the valence bands
remain almost unaffected, resulting in red-shifted optical tran-
sitions with GFs in good agreement with the experimental
values (see Table 1). According to our theoretical analysis, a
small difference between the strain GFs of the A and B excitons
could arise from the modification of spin–orbit coupling with
strain. For instance, in the case of 0° stacking the spin–orbit-
coupling splitting between the valence bands is 422 meV,
which is then modified to 428 meV upon 1% strain. A similar
effect is observed for 60° stacking, where the splitting
increases from 425 meV to 430 meV with 1% strain. The
increase of the spin–orbit splitting counteracts the strain-

induced decrease of the band gap and therefore results in a
lower absolute strain GF for the B exciton compared to the A
exciton.

The theoretical results presented in Table 1 are obtained
with G0W0 as well as with the inclusion of electron–phonon
renormalization to the electron energies, when the structure
is relaxed with vdW-DF2 functional. In that case, the GF of A
exciton for 60° is around 4% higher than for 0° stacking.
With only G0W0 one obtains GFs of −80 meV per % and
−81.3 meV per % for 0° and 60° stackings, respectively. Very
similar results are obtained with HSE functional [GF(0°) =
−81.3 meV per % and GF(60°) = −82.7 meV per %], as well as
with the HSE functional when the structure is relaxed with
vdW-DF2 [GF(0°) = −79.5 meV per % and GF(60°) =
−80.4 meV per %]. Besides that we note that the results
obtained without HSE or G0W0 provide the trend that
opposes the experimentally observed GFs. Namely, in that
case we obtain GF(0°) = −76.8 meV per % and GF(60°) =
−67 meV per % for structures relaxed with both vdW-DF and
vdW-DF2. With this one concludes that theory provides very
similar results for GFs, but with slightly higher value for the
60° stacking, in agreement with the experimental obser-
vation, especially when both the non-local electron–electron
(beyond semi-local PBE and vdW corrections) and electron–
phonon corrections are included. This highlights the need to
include non-local electron–electron and electron–phonon
interaction to accurately model the stacking dependence of
the strain GFs.

Table 1 Experimental and calculated strain GFs for A and B excitons in
WS2 for 0° and 60° stacking angle

A0 A60 B0 B60

Exp. mean (meV per %) −50 ± 2 −64 ± 3 −46 ± 2 −57 ± 4
Exp. median (meV per %) −51 −66 −47 −59
Calculated (meV per %) −73 −76 −61 −66

Fig. 5 FWHM variation in the reflectance contrast spectra of 2L-WS2 at different applied strains for one flake each in 0° (a) and 60° (b) stacking
angle. On the left side, the spectra of the A peak, normalized with respect to its intensity and centered at the A peak center are presented, highlight-
ing the variation in FWHM as a function of strain. On the right side, the spectra of the B exciton peak, normalized and centered, are shown. Inset
graphs show the strain-dependent FWHMs as a function of the applied strain.
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We additionally note that the Q valley (shown later) is only
slightly affected by the strain, so that the energy difference
between the valence K valley and conduction Q valley is almost
unchanged.

We will now examine how strain affects the A and B peak
widths, which are determined by the electron–phonon coup-
ling. Examples for the strain-dependent full width at half
maximum (FWHM) values are given in Fig. 5 for the A and B
peaks in both stacking angles. For the unstrained samples, the
FWHMs statistically averaged over all flakes are 106 ± 1 meV
and 144 ± 1 meV for A and B in 0° stacking and 122 ± 4 meV
and 146 ± 3 meV for 60° stacking. Upon strain application, the
A and B peaks in both stackings become progressively higher
and narrower, without a significant change of their area.
Hence, strain reduces the widths of the excitonic resonances
without appreciably changing their oscillator strength. Again,
the effect is stronger for 60° stacking, though to a lesser extent
than for the resonance energies.

In Fig. 6 we show the results for the calculations of the elec-
tron–phonon scattering and its impact on the electron and

hole state broadening when uniaxial strain is applied on 2L
WS2 with 60° stacking angle. Panel (a) shows the modification
of the electron–phonon-induced scattering rate of valence and
conduction band states when the system is strained by 1%.
The biggest change in broadening occurs for the conduction
band valley around the K point, where the scattering rate is
reduced by ∼20 meV. The broadening of the valence band
states at the K point is increased by less than that; hence the
net effect is that the broadening of the electron–hole exci-
tations is decreased for the excitation energies close to the
band gap. In the simplest approach, the combined broadening
of electron and hole pairs is a solid approximation for the scat-
tering rate of electron–hole bound states, i.e., excitons,63 so the
presented results serve as a qualitative explanation for the be-
havior of the exciton FWHM as a function of strain as obtained
in Fig. 5. In fact, we show that the strain-induced decrease of
the FWHM of A and B excitons in 2L WS2 could be explained
through the reduced electron–phonon scattering rate of con-
duction electrons in the K valley, which in turn comes from
the strain-induced modified scattering phase space between Q

Fig. 6 The impact of strain on electron–phonon-related broadening of electron–hole excitations in 2L WS2 with 60° stacking angle. (a) Band struc-
ture of valence and conduction states where the color depicts the change of the electron state broadening due to applied uniaxial strain of 1%. The
conduction (valence) states around the K valley show decrease (increase) of the electron–phonon-related broadening. (b) The total change of the
electron–hole scattering rate due to strain as a function of electron–hole excitation energy. The blue dots show the results for the 60° stacking
angle, while the orange dots are for the same stacking configuration but when the S–S distance is altered so that the energy of the Q valley is lifted
above the K valley. The results show that the broadening of the electron–hole excitations (such as excitons) would decrease with applied strain if the
energy of the K valley were above the Q valley.
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and K valleys. In particular, the applied strain shifts the Q
valley to higher energies,64 which reduces the scattering phase
space for the K valley. This effect is reversed when the original
unstrained structure of 2L WS2 is adjusted in such a way that
the energy of the Q valley is above the K valley (orange dots).
Therefore, the negative trend of FWHMs in 2L WS2 indicates
that these materials are indirect gap semiconductors, or at the
very edge of direct-to-indirect band-gap transition.34,35

Both the 0° and 60° stacking angles have rather similar
small interlayer distances (0.662 and 0.655 nm, respectively),
and consequently similar strong interlayer coupling. For stack-
ing angles between 0 and 60°, larger interlayer distances and
consequently weaker coupling is found.65 An increase in inter-
layer spacing raises the energy of indirect (Λ → Γ and K → Γ)
electronic transitions, while the direct K → K transition energy
remains nearly unchanged.66 This trend leads to an indirect-
to-direct gap crossover at large interlayer spacing. For 0° and
60° stacking, the bilayers have an indirect band gap, as seen in
Fig. 6a. Despite the calculated high sensitivity of the valence
band maximum at the Γ point, for the applied strain values up
to 0.52%, no direct-to-indirect band gap crossover is expected.
Such crossovers usually appear as kinks in either the strain-
dependent peak positions or widths.13,25 The absence of such
kinks in our experimental data confirms that the band gap
remains indirect over the observed strain range.

Conclusion

Our joint experimental and computational investigation high-
lights the stacking dependent linear strain GFs of the excitonic
resonance energies and the electron–phonon coupling
strength of bilayer WS2. Both examined stacking angles have
low interlayer distance and strong interlayer coupling. Even
stronger effects can be expected if intermediate stacking
angles are included, where a much larger variation of the inter-
layer coupling leads to a quasi-direct bandgap behavior and
the appearance of an interlayer exciton. Our work is a first step
towards synergistic harnessing of both strain and twist angles
as control parameters for the functionality of two-dimensional
semiconductors. For example, the twist angle could be used to
calibrate the sensitivity of a strain sensor or to adjust the
signal weight in neuromorphic straintronic devices.67
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