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Thermal and barrier properties of poly(3-
hydroxybutyrate) hybrid nanocomposites: use of
experimental data for reliable prediction via
machine learning

Ana M. Dı́ez-Pascual *a and José A. Luceño-Sánchez b

Poly(3-hydroxybutyrate) (P3HB) is a fully biodegradable polyester used for applications such as drug

delivery, tissue engineering and food packaging. However, it presents some drawbacks including

brittleness, narrow processing window, high water vapour permeability and low thermal stability. The

addition of different nanofillers can improve its performance. In this research, P3HB/sepiolite (SEP)/

carbon nanotube (CNT)/tungsten disulfide (WS2) hybrid nanocomposites were prepared via a simple,

cheap, and ecological solvent casting method. FE-SEM images reveal a good dispersion of the three

nanofillers within a continuous matrix. FT-IR spectra corroborate the strong interactions among the

nanocomposite components via hydrogen bonding. A synergistic stabilization effect is observed in the

hybrids, showing an unprecedented increase in the temperature of maximum rate of weight loss of

125 1C. A very strong reduction in the water vapor permeability and oxygen permeability is also observed

for the nanocomposite with 1 wt% CNT, 2 wt% SEP and 2 wt% WS2. Further, two regression methods

and different machine learning approaches, namely support vector regression (SVR), support vector

machines (SVM), artificial neural networks (ANNs), decision tree (DT) and random forest (RF) have been

applied to predict their properties. The correlation coefficient, mean absolute error and mean square

error are used as statistical indicators to compare their performance. The best models to predict the

barrier properties are ANNs and SVR, while for thermal properties, SVM for classification and SVR for

regression showed the most reliable performance. This triple filler strategy is a novel approach to

develop hybrid nanocomposites for use in biomedicine or the food packing industry.

1. Introduction

Polyhydroxyalkanoates (PHAs), stored as bacterial reserve mate-
rials for carbon and energy, are a family of fully biodegradable
polyesters that represent a suitable alternative to fossil fuel
plastics. Many PHAs have been described, with a wide range of
properties, and have countless applications in the food packa-
ging industry, agriculture and the biomedical sector.1 PHAs
have reduced environmental impact than conventional plastics
such as poly(lactic acid) (PLA), high-density polyethylene
(HDPE) or polypropylene (PP). Thus, PLA polymerization of
biologically produced lactic acid occurs via chemical processes
(dimerization, ring opening polymerization), which requires
synthetic, expensive, and often hazardous catalysts.2 The most

explored PHA is poly(3-hydroxybutyrate) (P3HB), that has proper-
ties comparable to those of synthetic plastics. This biopolymer is
optically active, has fast biodegradation rate, high crystallinity and
stability to UV radiation, and can be processed by extrusion,
injection, blowing and thermoforming.3 Though, it is brittle, has
poor impact resistance, low thermal stability, narrow processing
window and elevated water vapor permeability.4 To face these
issues, it can be reinforced with nanomaterials such as carbon
nanotubes (CNTs) and inorganic nanoparticles or nanoclays.4,5

CNTs are a hollow cylindrical form of carbon allotrope with
outstanding mechanical, electrical and thermal properties that
make them suitable for a comprehensive range of uses.6–8 They
present very high thermal conductivity, up to 6000 W m�1 K�1

and can stand temperatures up to 700 1C in air and up to
2000 1C under inert atmosphere.6 Further, their high specific
surface area (e.g. 800–1100 m2 g�1) make them ideal candidates
to improve the barrier properties of polymeric materials. The
electrical conductivity of CNTs ranges from metallic to semi-
conducting based on the diameter and the rolling angle. Both
noncovalent and covalent functionalization of CNTs with
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surfactant molecules and polymers have been widely examined.9,10

These functionalization strategies enhance their dispersion state
within the matrix, making them appropriate for numerous appli-
cations. Some concerns have arisen regarding the potential for
CNTs to be hazardous to health if inhaled. This topic has been
extensively investigated, but no clear conclusion has been reached
yet. They cannot be classified as hazardous since insufficient data
is available. The carcinogenic potential of carbon nanotubes is
determined by numerous factors, including the length of the
individual tubes, diameter, type, synthesis method, aggregation
state, to mention but a few.11 On the other hand, CNTs can easily
be made biodegradable via functionalization (e.g. oxidation) fol-
lowed by an enzymatic oxidation process.12

Nanoclays (NC) are nanoparticles of layered mineral silicates
that hold exceptional mechanical properties. Their stability, swel-
ling capacity, interlayer spacing, and high chemical reactivity make
them ideal candidates for nanocomposite reinforcement. Amongst
the most used is sepiolite (Sep), a natural hydrated magnesium-
rich silicate with fibre-shaped crystalline morphology. The fibers
typically are 2–10 mm long and their diameter is in the range of 10–
12 nm.13 Sep shows a high adsorption ability, very high specific
surface area (close to 300 m2 g�1), is thermally stable up to 800 1C
under air atmosphere, is highly porous, has a viscosity in the range
of 2000–6000 mPa s and a Young’s modulus close to 50 GPa, hence
has been widely used as strengthening filler to enhance the
mechanical properties of polymeric nanocomposites.14 It has
very high density of silanol groups, which enables the formation
of hydrogen bonds and van der Waals interactions with other
molecules and polymers.

2D materials of tungsten disulfide (WS2) nanosheets, which
are considered the most prominent members of the transition
metal dichalcogenides family due to their outstanding optical
and electronic properties, have recently brought a lot of atten-
tion owing to unique features such as high stability, good
mechanical properties and lubricant characteristics.15 Further,
they have been reported to be low toxic and highly biocompa-
tible. They are rapidly excreted and biodegradable.16 They have
also been extensively applied in tailoring polymer multifunction
performances taking advantage of their semiconducting nature
and high modulus and https://www.sciencedirect.com/topics/
materials-science/mechanical-strength strength. In addition to
the usual layered structure, WS2 can also form fullerene and
nanotube like geometries. Even though WS2 shows enhanced
properties, very limited literature is available, which makes it
more promising towards the fabrication of superior polymer
composites.17

Hybridization of WS2 with other nanofillers such as CNTs
provides superior mechanical, electrical and photonic properties
for various applications. The combination of two or more fillers
as reinforcement in a polymer matrix usually results in better
properties than the sum of the individual components due to
synergic effects.18,19 Several studies dealing with the preparation
of sustainable and lighter hybrid nanocomposites have been
reported.20 For instance, Saha and Kumar21 developed epoxy/
wood/graphene nanoparticle (GNP) hybrids. The addition of
5 wt% wood and 0.75 wt% GNP led to 42% tensile strength

increment and 22.5% increase in impact strength. The same
research group developed hemp fiber/AgNP/epoxy bionanocom-
posites and found about 25% increase in tensile strength upon
addition of 7.5 wt% hemp and 40 wt% AgNP.22 Further, P3HB/
graphene/carbon nanofiber hybrids have already been developed
as sustainable materials with enhanced mechanical properties.4

Artificial intelligence (AI) is one of the branches of computer
science that deals with creating intelligent machines and
robots to imitate human cognitive abilities and can be used
to systematize a wide range of tasks, improve decision-making,
and enhance the overall performance of various operations.23

Machine learning (ML) is one of the types of AI that allows
machines to learn and progress automatically via experience
and data, and comprises three subtypes: (I) supervised learn-
ing, in which the algorithm learns from labelled examples,
where it is provided with a training data set with desired inputs
and outputs. Two frequent techniques are regression and
classification. (II) Unsupervised learning, in which the algo-
rithm learns from unlabeled data and looks for hidden patterns
or structures in it. Two important techniques are clustering and
reduction.24 (III) Reinforcement learning, which is a combi-
nation of both types described above.

In the field of polymeric composites, ML algorithms can be
applied at various stages, from the composite design to the
final property characterization.25 The use of ML to predict the
properties of polymer nanocomposites based on their composi-
tion and structure is an encouraging strategy in materials
science. ML models can use different methods, such as regres-
sion, classification, or deep learning, based on the nature and
difficulty of the data.26 For example, Paltakari and his group27

applied artificial neural network (ANN), random forest (RF) and
multiple linear regression (MLR) algorithms to predict the
mechanical properties of nanocomposite films consisting of
polyvinyl alcohol (PVA) crosslinked cellulose nanofibers and
either ammonium zirconium carbonate (AZC) or glyoxal (Gx).
Overall, MLR performed with least accuracy, whereas ANN pre-
diction displayed the lowest error followed by RF. Additionally, the
physically or/and chemically crosslinked hybrid films with opti-
mized amount of crosslinkers resulted in structures with a
strength to rupture that was significantly higher than that of the
pure nanocellulose films. Similarly, Mahakur et al.28 applied ML
algorithms such as ANN, K nearest neighbors (KNN) and support
vector machine (SVM) to anticipate the tribological behaviour of
sustainable silane-modified jute particles/epoxy bionanocompo-
sites with particle loading in the range of 0–12.5 wt%. The SVM
model showed the best performance with a maximal coefficient of
determination R2 value of 0.9334, and minimum squared errors
(MSE), and mean absolute errors (MAE) of 0.0006 and 0.019,
respectively. The other models also anticipated well the coefficient
of friction of the nanocomposites.

The mechanical properties of high-density polyethylene
(HDPE) nanocomposites reinforced with nanodiamond were
accurately predicted by an ANN model,29 with a correlation
coefficient higher than 0.99, and those of epoxy-based nano-
composites reinforced with graphene showed absolute errors
lower than 1%.30 Further, average relative errors of 0.07 were
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attained for the estimation of the mechanical properties of
polymeric nanocomposites reinforced with halloysite.31 The
former studies indicate that ML methods, such as ANN, can
be effective in modeling the mechanical properties of nano-
composites. Though, studies on this matter are still scarce, and
much research needs to be done to fully apply the potential of
these methods in the field of materials science.

In the current work, a P3HB matrix has been reinforced with
different amounts of two inorganic nanofillers, Sep and WS2, as
well as a carbon-based nanofiller, CNTs, via a simple, inexpen-
sive, and environmentally friendly solution casting method. The
main aim is to assess whether the simultaneous incorporation of
three nanofillers is effective in enhancing the matrix performance
via synergistic effects. To the best of our knowledge, no previous
paper based on this triple filler strategy has been reported to
improve the thermal and barrier properties of biopolymers. By
adjusting the percentages of the three nanofillers, the properties
could be precisely tunned to be used in targeted applications
such as bioplastic food containers. Another goal of this study is to
find out whether ML algorithms are suitable to accurately
anticipate the properties of these hybrid polymer nanocompo-
sites. No earlier work on the modeling of the barrier performance
of multiscale hybrid polymeric nanocomposites has been pub-
lished earlier.

2. Methodology

Multiple linear regression (MLR), polynomial regression, and
five types of ML regression models, namely decision tree (DT),
random forest (RF), artificial neural network (ANN), support
vector machine (SVM) and support vector regression (SVR) have
been applied to predict the properties of the hybrid nanocom-
posites. These algorithms are widely used in material science
due to their high predictive accuracy and flexibility.26 They were
selected according to their capacity to handle non-linear data,
generalization ability and enhanced accuracy. Their most
important characteristics are briefly summarized below.

For the calculations, the chemical composition of the poly-
mer nanocomposites was used as input data, and the specific
thermal or barrier properties as output. Each system comprises
three input variables related to the chemical composition of the
nanocomposites (Sep, CNT, and WS2), and one output variable
representing a property, such as water vapor permeability,
oxygen permeability, etc. The goal is to predict the properties
as a function of the chemical composition. Given the limited
size of the experimental dataset (35 samples), model evaluation
and hyperparameter optimization were performed using
resampling-based validation techniques rather than fixed data
splits. In particular, k-fold cross-validation (k = 5) combined
with grid search was employed throughout this work. This
approach allows all available samples to be efficiently reused
for both training and validation, while providing a statistically
robust estimate of model performance and generalization in
small-data scenarios. In this case, cross-validation fulfils the
role of a validation procedure, while the grid search performed

within each cross-validation loop acts as an internal validation
step for hyperparameter selection (nested cross-validation).
This strategy is widely adopted in materials and chemical
sciences when experimental data are scarce, as it avoids the
instability and loss of information associated with splitting
small datasets into independent training, validation, and test
subsets.32 The implementation of the models has been carried
out in Python v.3.12.3 using the Scikit-learn 1.7.0, Keras v.3.10.0
and TensorFlow v.2.18.1 libraries.

MLR is a statistical technique that uses several explanatory
variables to predict the outcome of a response variable. It
assumes there is a linear relationship between the dependent
and independent variables, that the independent variables are
not highly correlated, and that the variance of the residuals is
constant. The coefficient of determination (R-squared) is a
statistical metric used to measure how much of the variation
in outcome can be explained by the variation in independent
variables. R2 increases as more predictors are added to the MLR
model, even though the predictors may not be related to the
outcome variable. R2 varies between 0 and 1, where 0 indicates
that the outcome cannot be predicted by any of the indepen-
dent variables and 1 indicates that the outcome can be pre-
dicted without error.

A DT is a supervised learning algorithm used for classification
and regression modeling, to either classify data or predict what will
come next.33 It appears as a flowchart, starting at the root node
with a certain question of data, that leads to branches that hold
potential answers. The branches then lead to decision (internal)
nodes, which ask more questions that lead to more outcomes. This
goes on until the data reaches a terminal (or ‘‘leaf’’) node and ends
(Fig. S1).

In regression DTs, data are divided according to specific
values to predict a target-continuous variable.34 The regression
DT follows the same structure as a conventional decision tree,
where each internal node represents a feature, and each branch
represents a possible choice or value of that feature.

Hyperparameters are adjustable settings that rule the beha-
viour of the tree during the training process. The key hypara-
meters for classifier optimization are: (I) criterion, function
that measures the quality of a split in the tree nodes. The most
common is the mean squared error (MSE), which assesses the
average of the squared differences between predicted values
and actual target values. (II) Max_depth, which controls the
maximum depth or levels that the tree can grow during the
training process. It determines the number of decision nodes
or splits allowed in the tree before it stops dividing the data
further. (III) Min_samples_split, the minimum number of
samples to split an internal node. Adding min_samples_split
regularizes the tree and prevents overfitting by ensuring that a
minimum number of samples are present when the split
occurs. (IV) Min_samples_leaf, the minimum number of sam-
ples required for internal node subdivision. Adjusting this
hyperparameter can affect the generalization ability of the tree.
(V) Max_leaf nodes, the maximum number of possible leaf
nodes. (VII) Max_features, which represents the number of
features to consider when looking for the best split at each
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node in the DT. Hyperparameters are fixed before the training
process and affect the structure and behavior of the tree.35

Artificial neural network (ANN) is a computational model
inspired by the human brain’s neural structure is designed to
mimic the way biological neural networks in the human brain
function. It is composed of multiple layers of neurons (Fig. S2):
the input layer, hidden layers, and the output layer.36 Each
neuron in a layer is connected to neurons in the subsequent
layer through weighted connections. The weights of these
connections are adjusted during the training process to mini-
mize errors in the network’s predictions or classifications.37

The input layer receives raw data, which is then passed
through the network, with each neuron applying an activation
function to its input to produce an output. These outputs are
then transmitted to the next layer, where further processing
occurs. The hidden layers, which can consist of multiple layers,
are where the network learns to recognize patterns and relation-
ships in the data. The final layer, the output layer, produces the
network’s prediction or decision.

The process of training an ANN involves feeding it with a
large dataset and using an algorithm such as backpropagation to
adjust the weights of the connections based on the errors between
the predicted outputs and the actual labels in the training data.
This iterative process allows the network to learn from the data
and improve its accuracy over time. There are several different
architectures for ANNs, each with their own strengths and
weaknesses.37 The most frequent architectures are: feedforward
neural networks (FNN), in which the information flows in one
direction from input to output.38 The layers are fully connected,
meaning each neuron in a layer is connected to all the neurons in
the next layer. Recurrent neural networks (RNNs), which have a
‘‘memory’’ component, where information can flow in cycles
through the network.39 This allows the network to process
sequences of data, such as time series or speech. Convolutional
neural networks (CNNs), which are designed to process data with a
grid-like topology, such as images.40 The layers consist of convolu-
tional layers, which learn to detect specific features in the data,
and pooling layers, which reduce the spatial dimensions of the
data. Generative adversarial networks (GANs), which are used for
generative modeling. They consist of two parts: a generator that
learns to generate new data samples, and a discriminator that
learns to distinguish between real and generated data.

In this study, the neural network consists of an input layer
with three neurons, which represent the three input variables,
hidden layers whose number can vary depending on the
problem being addressed, and finally an output layer with a
single neuron for the output variable. The hidden layers use the
ReLU activation function, a common choice in feedforward
artificial neural networks41 due to its non-linearity and compu-
tational efficiency. The training is performed using the Adam
optimizer with a default learning rate, and the number of
epochs is set to 50. These parameters can be adjusted depend-
ing on the complexity of the problem and the network archi-
tecture. To avoid overfitting and improve generalization,
dropout and L2 regularization are applied during training.
The number of layers and neurons per layer is tuned via a grid

search, reflecting a trial-and-error approach adapted to the
specific task.

A support vector machine (SVM) classifies data by finding the
optimal hyperplane that maximizes the margin between the
closest data points of opposite classes (Fig. S3). The number of
features in the input data determine if the hyperplane is a line
in a 2D space or a plane in an N-dimensional space.42 Since
multiple hyperplanes can be found to differentiate classes,
maximizing the margin between points enables the algorithm
to find the best decision boundary between classes. This, in
turn, enables it to generalize well to new data and make accurate
classification predictions. The lines that are adjacent to the
optimal hyperplane are known as support vectors as these
vectors run through the data points that determine the maximal
margin. The final SVM model is only related to support vectors.

The SVM can handle both linear and nonlinear classification
tasks.43 However, when the data is not linearly separable, kernel
functions are used to transform the data higher-dimensional
space to enable linear separation. This application of kernel
functions can be known as the ‘‘kernel trick’’, and the choice of
kernel function, such as linear kernels, polynomial kernels, radial
basis function (RBF) kernels, or sigmoid kernels, depends on data
characteristics and the specific use case. The principal hyperpara-
meters to be modified are:44 the Kernel parameter, which decides
the function used to convert the input data into a higher dimen-
sional space. This study applied RBF, a non-linear function com-
monly used in regression problems in which the data have a non-
linear structure. The regularization parameter C, which governs the
trade-off between model complexity and the model’s ability to fit
the training data. Gamma, which determines the shape of the
kernel function and has a noteworthy impact on the accuracy and
performance of the model. Epsilon, the error tolerance parameter
that controls the margin around the regression hyperplane.

SVR is a type of SVM but is used for regression tasks. It aims
to find a function that approximates the relationship between
input features and continuous output values, though SVM
produces discrete class labels (e.g., 0 or 1 for binary classifica-
tion). While SVM maximizes the margin between the support
vectors of different classes, SVR tries to fit as many data points
as possible within a specified margin of tolerance (epsilon) and
simultaneously minimizing the model complexity.45 SVM uses
hinge loss for classification, which penalizes misclassified
points, and SVR uses epsilon-insensitive loss, which ignores
errors that fall within a certain distance (epsilon) from the true
values. Both SVM and SVR can utilize the kernel trick to handle
non-linear relationships, allowing them to operate in high-
dimensional spaces.

3. Experimental
3.1 Materials

Poly(3-hydroxybutyrate) (P3HB), with an average molecular
weight of 80 000 g moL�1, glass transition temperature Tg B
20 1C, melting temperature of 174 1C and d251C = 1.26 g cm�3

was supplied by Biomer Ltd (Germany). Carbon nanotubes
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(CNTs), with an outer average diameter of 20–40 nm, length
ranging from 0.5 to 1 mm and purity of 97% were supplied by
Nanothinx (Greece). Tungsten disulfide (WS2) nanosheets pre-
pared by the surfactant exfoliation method, with thicknesses in
the range of 1–5 nm and d251C = 7.50 g cm�3 were obtained from
XFNANO Materials Tech Co., Ltd (China). Sepiolite (Sep) nano-
clay, with a purity of 95%, d251C = 1.26 g cm�3 and specific
surface area in the range of 220–270 m2 g�1, was provided by
Sigma-Aldrich (Spain). All the reagents were of analytical grade
and used as received.

3.2 Nanocomposite preparation

The hybrid nanocomposites were manufactured through solution
casting, as shown in Fig. 1. Firstly, the CNTs were dispersed in
chloroform via sonication for 20 min. Independently, Sep was
dispersed in water by sonication for 10 min and then mixed with
the CNT dispersion, which was sonicated for another 60 min.
Then, the WS2 nanosheets were added and sonicated once again
for 30 min. Subsequently, PHB was mixed with the former disper-
sion, which was sonicated for another 60 min. The resulting
mixture was then cast onto a glass Petri dish and dried for 48 h
to attain homogeneous films. The loading of each nanofiller was
varied between 0 and 5 wt%, so that the total nanofiller loading
was r5 for all the samples. This concentration range was selected
based on preliminary studies that indicated a high degree of
agglomeration for higher loadings. The sample containing
1 wt% of SEP, CNT and WS2 was prepared three times to check
for reproducibility. A small batch-to-batch variability was found.

3.3 Characterization techniques

The surface morphology of cryofractured surfaces of the nano-
composites was studied by field-emission scanning electron
microscopy (FE-SEM) using a Sigma 360-VP microscope (Zeiss,
Germany) coupled with an EDAX (energy-dispersive X-ray
spectroscopy) detector to corroborate the sample composition.
The nanocomposites were sputtered with a 10 nm-thick gold
layer to avoid charging during electron irradiation. Experi-
ments were performed under high vacuum to avoid interfer-
ences from secondary and backscattered electrons, at an
acceleration voltage of 25 kV, probe current of 35 pA and titling
angle of 0 1C, at magnifications from �200 to �10 000. Images
were analyzed by Fiji/ImageJ2 (version 2.3.0) open-source soft-
ware to determine mean sizes and related standard deviations.

Infrared spectroscopy (FT-IR) experiments were performed with
a Spectrum Two Spectrometer (PerkinElmer, USA) equipped with a
diamond crystal in attenuated total reflectance (ATR) mode.
Measurements were carried out in the range of 4000–400 cm�1

at room temperature, with a spectral resolution of 4 cm�1 and 64
scans for each spectrum.

The thermal stability was assessed using a Q 500 thermo-
gravimetric analyzer (TA Instruments, USA), according to ASTM
E1868-10. Five samples for each nanocomposite were evaluated
with a 10 1C per minute ramp, ranging from 20 1C to 800 1C
under a nitrogen atmosphere, with a gas flow of 60 mL min�1.
Initial sample weights varied from 10 mg to 15 mg. The initial
degradation temperature (Tonset) was determined at 2% mass
loss, and the temperature of maximum rate of degradation
(Tmax) was calculated as the maximum of the first derivative.

Water vapor permeability (WVP) was determined using the
gravimetric method following the ASTM E96-95 standard. Samples
were placed in Payne permeability cups (Elcometer SPRL, Bel-
gium). Distilled water was placed inside the cups to expose the film
to 100% RH on one side. The cups were weighed periodically
(�0.0001 g) and equilibrated at 25 1C and 54% RH. WVP was
calculated using the equation: WVP = (Dml)/(AtDP), in which Dm is
the weight loss of each cup, l the film thickness, t the time, A the
contact area and DP the partial pressure difference between inside
and outside of the cup. Experiments were performed in quad-
ruplicate and average values are reported.

Oxygen permeability (OP) was calculated via measuring the
oxygen transference rate (OTR) with a C130H gas permeability
tester (Labthink GmbH, Germany), following the ASTM D3985-
05 standard. Experiments were carried out at 25 1C and 54%
RH. The samples were previously purged with nitrogen in the
humidity equilibrated samples, before exposure to an oxygen
flow of 10 mL min�1. OP was calculated following the expres-
sion: OP = (OTR l)/DP, where l is the average film thickness and
DP the difference between oxygen partial pressure across the
film. Experiments were performed in triplicate and average
values are reported.

4. Results and discussion
4.1 Fractography analysis

To get more information about the surface morphology of the
nanocomposites, cryofractured specimens were observed via

Fig. 1 Representation of the synthesis of PHB/Sep/CNT/WS2 hybrid nanocomposites via sonication followed by solution casting.
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SEM, and representative images of nanocomposites with 2 : 1 : 2
and 1 : 1 : 1 (Sep/CNT/WS2) loading at different magnifications
are shown in Fig. 2. Analogous micrographs were observed for
the other hybrid composites. Both nanocomposites show a good
dispersion of the three nanofillers, which are found to be
homogenously and randomly dispersed within a continuous
matrix with low degree of porosity (Fig. 2a and b). This improved
dispersion supports the improvements in thermal stability and
barrier performance compared to the P3HB matrix, as will be
discussed in the following sections. Further, the homogenous
filler distribution minimizes the stress concentration nuclei,
which will be a leading cause of premature failure, in agreement
with previous works on hybrid nanocomposites.46,47 In the
images at higher magnification (Fig. 2c), a dense and entangled
network of sepiolite nanofibers in between the CNTs can be
observed. The nanoclay acts as a stabilizer, reducing the van der
Waals interactions between the CNTs, thus preventing their
aggregation.

A close examination of the images reveals some differences
in the fracture behaviour of the two composites. Thus, in the
one with 2 : 1 : 2 (Sep/CNT/WS2) loading, significant crack pro-
pagation can be observed (Fig. 2a). This can be explained
considering that the higher the total nanofiller loading, the
stronger the interactions among them, as evidenced in the
higher magnification image (Fig. 2c), and these would weak the
interfacial adhesion with the matrix. Further, the formation of

a dense nanofiller network confines the ductile flow of the
polymer, and this is reflected in earlier failure, hence will lead
to poor impact resistance. Similar behaviour has been reported
for PEEK nanocomposites filled with graphene and Ti
nanoparticles,48 in which the nanofillers decrease the flowabil-
ity of PEEK matrix, resulting in a reduction of impact strength.
In contrast, in the sample with 1 : 1 : 1 (Sep/CNT/WS2) loading,
different toughening mechanisms can be observed: crack
deflection, CNTs bridging and CNTs pull-out. Thus, the CNTs
can act as effective barriers for pinning and bifurcation of the
advancing cracks. Further, the CNTs pull out prevents localiza-
tion of the stresses, and this typically results in a better impact
resistance.

4.2 Thermal stability of PHB-based nanocomposites

The thermal stability was assessed via TGA, and the thermo-
grams of the ternary composites are shown in Fig. 3. For
comparison, the data of the neat components are also included.
TGA data for all the samples developed in this work are
collected in Table S1. Neat PHB shows a single decomposition
stage that initiates (Tonset) at B178 1C and shows the maximum
rate of weight loss (Tmax) at around 220 1C. The degradation
takes place via chain scission mechanism, by a random cis-
elimination reaction at a six-membered ring ester intermediate,
producing unsaturated carboxyl acid and ester products.3 The
CNTs and WS2 nanosheets display very high thermal stability,

Fig. 2 SEM images from fractured specimens of P3HB/Sep (2.0 wt%)/CNT (1.0 wt%)/WS2 (2.0 wt%) (a) and (c) and P3HB/Sep (1.0 wt%)/CNT (1.0 wt%)/
WS2 (1.0 wt%) (b) and (d) nanocomposite at different magnifications.
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and hardly decompose in the temperature range studied, while
sepiolite losses about 40% weight in the range 150–500 1C, in
agreement with results reported earlier.49

A one-step decomposition process is also found for the
nanocomposites, although it is in general shifted to higher
temperatures, indicating the outstanding thermal stability
improvement caused by the presence of the three fillers.
Regarding the binary composites, the largest temperature
improvements (up to 60 1C in T10) are found for the sample
with 5 wt% CNTs, while those with the same amount of SEP or
WS2 led to increments of about 30 and 50 1C, respectively.

Indeed, a synergistic stabilization effect is observed in the
hybrids, particularly those with higher loading of CNTs and WS2,
with a maximum increase in Tmax of about 125 1C for the sample
with 1% Sep, 2% CNT and 2% WS2. Similarly, the sample with
2% Sep, 2% CNT and 1% WS2 shows a Tmax about 100 1C higher
than that of the neat polymer, and the sample with 2% Sep, 1%
CNT and 2% WS2 shows about 80 1C increment. Regarding the
Tonset, the increments are also very significant, the highest being
close to 120 1C. These extraordinary increments, considerably
higher than those reported for PHBV filled with CNTs or inor-
ganic nanoparticles,4,5 can be ascribed to the combination of
several factors:50,51 (I) the decrease in the free volume between
polymer chains that are occupied by nanofillers; therefore, chains
are much more squeezed and density increases, which would
lead to an increase in the degradation activation energy. In fact,
the good dispersion of the nanofillers within the matrix would
promote the fillers to be overlapped and arranged more closely,
resulting in a synergistic effect and a very high increase in the
thermal conductivity of the hybrid nanocomposites. (II) The
nanofillers can act as barriers, restraining the release of volatile
products from the bulk of the matrix to the gas phase, which
would be reflected in higher thermal stability. (III) CNTs could

form a conductive network facilitating the phonon transfer,
leading to high thermal conductivity, which can lighten the local
overheating and improve the thermal stability of the nanocompo-
sites. (IV) Formation of hydrogen bonds between the matrix and
the nanofillers, especially with sepiolite nanoclay, since this hin-
ders the homolytic chain scission. A strong synergistic effect in
enhancing thermal conductivity has also been reported for other
polymers reinforced with CNTs and WS2.15 Synergistic effects have
also been reported for thermosplastics reinforced with sepiolite
and CNTs, suggesting that the CNTs acted as a sealing agent to
create a network with the clay fibers, forming a much tighter char
than the nanoclay alone.52 Thus, more char limits the amount of
volatile gases escaping from the degrading polymer and impedes
the oxygen ingress. The differences found within the hybrids seem
to be directly related to the thermal conductivity of the individual
components (about 2600,51 14053 and 3.4 W m�1 K�1 (ref. 54) for
multi-walled CNTs, WS2 and sepiolite, respectively). Thus, for the
same total nanofiller loading, the hybrids with higher sepiolite
content show lower degradation temperatures. Overall, the onset
degradation temperature of all the hybrids meets the requirements
for their use in biomedicine or in the food packing industry.

4.3 Infrared spectroscopy

To investigate the interactions between the functional groups of the
nanofillers and the matrix, an FTIR study was performed (Fig. 4).
The typical bands of the polymer located at 2980–2850 cm�1 (alkyl–
CH3 group), 1725 cm�1 (CQO group), 1150–1300 cm�1 (–C–O–C–
stretching of the ester bonds), 1020 cm�1 (–O–C–C– stretching
vibration) and 950 cm�1 (–C–OH bending) are in good agree-
ment with former studies.3 They can also be observed in the
nanocomposites, albeit some of them are shifted to lower
wavenumbers. In particular, the CQO stretching is significantly
shifted, by up to 50 cm�1 for the sample with 1% Sep, 2% CNT

Fig. 3 TGA curves of PHB/Sep/CNT/WS2 hybrid nanocomposites under a nitrogen atmosphere, with a gas flow of 60 mL min�1.
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and 2% WS2. This strong shift is ascribed to the formation of
hydrogen bonds with the OH groups of sepiolite. Thus, it has
been reported that the interactions between nanofillers and
polyesters lead to a broadening of the CQO stretching band and
cause a downshift.55 Further, the change in the position of this
band could also be related to the change in crystallinity upon
addition of the nanofillers, since its shape and position depend on
the fraction of amorphous and crystalline regions.56 It is worthy to
note that the nanocomposite with the largest shift in the CQO
stretching is the one with highest thermal stability, indicative that
this property is conditioned by the nanofiller–matrix interactions.
Moreover, the band related to the C–H stretching shifts towards
lower wavenumber and shows increased intensity, which could be
indicative of the existence of CH–p interactions between the CH2

groups on P3HB chains and the sp2 aromatic structures of the
CNTs, in agreement with results reported earlier for polyester
based-nanocomposites.57 Other additional bands appear in the
spectra of the nanocomposites that corroborate the strong nano-
filler–matrix interactions. A new band appears in the range of
3600–3200 cm�1, related to the O–H stretching of the hydroxyl
groups of sepiolite. This band is also shifted to lower wavenum-
bers compared to that of neat sepiolite,58 and the shift is stronger
for the nacocomposites with higher sepiolite content. Further, it is
more pronounced in the nanocomposite with 2% Sep, 2% CNT
and 1% WS2, which may be related to the presence of defects, that
is, a small amount of OH and COOH groups in the surface of the
CNTs, that hence could also be prone to interact via H-bonding.
This is in agreement with the higher thermal stability of this
composite compared to 2% Sep, 1% CNT and 2% WS2, thus
corroborating that the formation of H-bonds results in improved
thermal stability.

Other bands related to sepiolite can also be observed in the
spectra. The bands at about 1000 cm�1 correspond to sym-
metric stretching vibrations of Si–O–Si bonds58 and those
between 600 and 850 cm�1 are related to Mg–O–Mg. Further,
smalls band appear at about 1580 cm�1 related to the aromatic
rings of the CNTs. Overall, the IR spectra corroborate the strong
interactions between the functional groups of the nanocompo-
site components.

4.4 Barrier properties

One of the principal aims when adding nanofillers to polymers is
to enhance their barrier properties to gases, vapors and organic
compounds to be used in food packaging.3 The two main
permeants examined for packaging applications are moisture
and oxygen, which are the major causes of food spoilage, and can
reduce product quality and shelf life.59 For example, the improv-
ing of the oxygen barrier performances of a film is of great
importance because oxygen promotes a lot of degradation
mechanisms of a food, such as corrosive phenomena, oxidations,
and great modification of organoleptic properties.60 Thus, the
water vapor permeability (WVP) and the oxygen permeability,
amount of water vapor and oxygen that permeate per unit of area
and time, respectively, were tested, and the results for binary and
some ternary hybrids are plotted in Fig. 5. Results for all the
samples are collected in Table S2. As can be observed, both
parameters drop gradually with nanofiller concentration, show-
ing a minimum value at the highest nanofiller tested. Regarding
binary composites, the largest drops (about 77 and 82% for OP
and WVP, respectively) are found for the nanocomposite with
5 wt% WS2, while the same amount of CNTs just lead to 41 and
56% fall, respectively, and the same concentration of SEP resulted

Fig. 4 Representative ATR-FTIR spectra of P3HB/Sep/CNT/WS2 nanocomposites at room temperature, with a spectral resolution of 4 cm�1 and 64
scans for each spectrum.
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in 51 and 61% drop. The permeation of gas through a polymer
can be described by a diffusion model, using Henry and Fick’s
laws.60 The WS2 with a layered 2D structure increases the
tortuosity of the transport path, and will lead to a higher barrier
effect than 1D CNTs or Sep, thus resulting in lower permeability.
This is in agreement with the effect found upon addition of WS2

to other thermoplastic matrices.61 The improvements found
herein are larger than those reported for P3HB reinforced with
nanoclay62 or graphene.63 This improved barrier performance
should be related to the very homogeneous nanofiller dispersion,
its strong interfacial adhesion with the polyester matrix as
revealed by the IR spectra that causes chain immobilization
combined with the compactation and decrease in free volume
in the nanocomposites.

Regarding ternary composites, the largest drop in OP and
WVP is found upon combination of sepiolite and WS2, up to
92% and 90%, respectively, for 4 WS2 loading. This decrease is
significantly higher than the found upon combination of CNTs
and the same amount of WS2. The improved barrier perfor-
mance of sepiolite compared to CNTs has been ascribed to the
exfoliation of sepiolite in the nanocomposites, creating a

labyrinth effect or tortuous path.64 Further, it has been proved
that sepiolite reduces the oxygen permeability of polymer
nanocomposites not only by creating a tortuous path but also
via gas adsorption onto its surface, due to the large number of
silanol groups and large cavities in its structure.65 With regard
to the quaternary hybrids (Table S2), the largest drops (95 and
93% in OP and WVP) are found for the nanocomposite with 2%
Sep, 1% CNT and 2% WS2, in agreement with the discussion
above. A 93% drop in OP is also observed for that with 1% Sep,
2% CNT and 2% WS2, indicative also of a noticeable synergic
effect. Results demonstrate that the incorporation of different
nanofillers to PHB matrix has a very positive effect on the gas
barrier properties, leading to ideal materials for packaging
oxygen- and/or moisture-sensitive products.

4.5 Modelling of the thermal and barrier properties

The modelling of thermal and barrier properties was carried out
using the methods mentioned in previous sections. Due to the
limited size of the available dataset, model performance was
evaluated using 5-fold cross-validation combined with systema-
tic hyperparameter exploration via grid search. This procedure

Fig. 5 Oxygen permeability (OP) and water vapor permeability (WVP) for binary P3HB/Sep, P3HB/CNT and P3HB/WS2 nanocomposites (top) and ternary
P3HB/Sep (1 wt%)/CNT, P3HB/Sep (1 wt%)/WS2, P3HB/CNT (1 wt%)/WS2 and P3HB/WS2 (1 wt%)/Sep nanocomposites (down) as a function of the
indicated nanofiller loading.
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provides an estimate of model generalization while minimizing
bias and variance associated with small experimental datasets.
No independent hold-out validation dataset was defined, as
fixed train/validation/test splits are known to yield highly
unstable and sample-dependent results when the number of
available samples is small. Instead, all reported performance
metrics correspond to cross-validated averages, ensuring that
each experimental sample is used both for training and valida-
tion across different folds.

To apply the linear regression model, Lasso regression was
used because it is a type of multivariate linear regression that
helps reduce overfitting and improve performance. The alpha
parameter was explored within the interval (0, 100), and a grid
search with cross-validation (5 folds) was performed to obtain
the average R2 value. The results of the fitting process are
presented in Tables 1 and 2, meanwhile extended results are
included in Table S3.

The equations presented in Table 1 capture the qualitative
effects of nanofiller addition observed in Fig. 5 for the barrier
properties. On one hand, oxygen permeability (OP) exhibits
negative coefficients, since the incorporation of any filler
reduces its value, similarly to water vapor permeability (WVP).
On the other hand, the equations related to Tonset, T10, and Tmax

show a positive trend, since the use of nanofillers enhances the
thermal properties, as illustrated in Fig. 3. The higher alpha
value found for OP suggests that this variable requires stronger
regularization compared to the other properties. Although the
model fits the barrier properties well during training, their
average test performance is poorer. In contrast, the models for
thermal properties are better balanced between training and
test stages.

To study the combined effect of two or more nanofillers, a
polynomial regression was applied, covering degrees from 2 to

4. Similarly, a grid search with cross-validation was performed
to determine the average R2 value, which results are collected in
Table S4. The results collected in Table 3 reveal two clear
trends: (1) the best-performing model is the polynomial of
degree 2, regardless of the property under study; and (2) the
prediction of barrier properties improves considerably com-
pared to Lasso regression, whereas the fit for thermal proper-
ties is significantly worse.

The effect of different polynomial degrees is presented in
Fig. 6 for variables WVP and Tonset, meanwhile Fig. S4–S6 shows
the predictions for T10, Tmax and OP.

Fig. 6 illustrates that increasing the polynomial degree can
locally improve fitness, but it also introduces a higher risk of
overfitting. At elevated degrees, the models exhibit pronounced
and unrealistic deviations, including over and underestima-
tion. This behavior is evident in the degree 4 model for WVP,
which produces extreme predicted values (above 6 and below
�1), as well as in the degree 3 and degree 4 models for Tonset,
where similar instabilities are observed. Analogous results were
obtained for Tmax, T10, and OP, in terms of overfitting and
deviations at higher degrees.

Table 4 shows the fitted equations obtained for each prop-
erty. Notably, while the barrier properties exhibit a greater
influence from degree 1 terms (up to one order of magnitude
larger than second-degree terms), the thermal properties show
more balanced coefficients across the three equations. This is
likely because the three temperature-related variables are inter-
related, reflecting the degradation stages observed in TGA
experiments (see Fig. 3).

SVM method was applied to classify the data into two classes.
To this end, both the linear and radial basis function (RBF) kernels
were used, allowing the model to address both linear and non-
linear classification tasks. The values of the regularization para-
meter C were explored within the interval (0, 10). The best
solutions obtained are presented in Table 5, meanwhile the
extended results are shown in Table S5, and the classification

Table 1 Lasso regression equations

Variable Equation

OP 1.736 � 104 � 8.219 � 103�[SEP]
�4.958 � 103�[MWCNT] � 9.413 � 103�[WS2]

WVP 2.059 � 1.003�[SEP]
�0.657�[MWCNT] � 1.115�[WS2]

Tonset 2.086 � 102 + 4.680�[SEP]
+1.513 � 101�[MWCNT] + 1.287 � 101�[WS2]

T10 2.477 � 102 + 3.934�[SEP]
+1.700 � 101�[MWCNT] + 1.305 � 101�[WS2]

Tmax 2.540 � 101 + 4.858�[SEP]
+1.738 � 101�[MWCNT] + 1.470 � 101�[WS2]

Table 2 Statistical metrics of Lasso regression model

Variable MSE (train) MSE (test) MAE (train) MAE (test) R2 (train) R2 (test) Best alpha

OP 1.193 � 107 3.587 � 107 2.848 � 103 4.398 � 103 8.876 � 10�1 2.697 � 10�1 100.0
WVP 1.659 � 10�1 5.494 � 10�1 3.468 � 10�1 6.096 � 10�1 8.975 � 10�1 2.041 � 10�1 0.010
Tonset 1.968 � 102 9.242 � 101 7.827 6.898 5.548 � 10�1 4.683 � 10�1 0.028
T10 2.055 � 102 1.003 � 102 8.676 7.788 5.987 � 10�1 5.508 � 10�1 0.215
Tmax 3.388 � 102 7.377 � 101 1.170 � 101 5.748 5.746 � 10�1 7.402 � 10�1 0.600

Table 3 Statistical metrics of the best polynomial regression models

Variable Degree MSE (CV) MAE (CV) R2 (CV)

OP 2 6.167 � 106 2.087 � 103 7.860 � 10�1

WVP 2 3.070 � 10�2 1.280 � 10�1 9.132 � 10�1

Tonset 2 3.320 � 102 1.374 � 101 �4.791 � 10�1

T10 2 3.986 � 102 1.565 � 101 �1.818 � 10�1

Tmax 2 8.199 � 102 2.183 � 101 �1.440
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results for OP, WVP, Tonset, and Tmax are shown in Fig. 7 and
Fig. S7.

The results show a notably high performance for the thermal
variables, while the barrier properties were classified with
slightly lower accuracy. For the barrier properties, both are
better represented using the linear kernel, although OP
required a higher penalization value (C = 10 4 1), to reduce
prediction errors.

The F1-score asymmetry observed for WVP suggests that
class 1 is easier to predict, and that classification could poten-
tially be improved by incorporating additional parameters.

In contrast, the symmetry of the F1-scores for OP indicates
that a linear decision boundary is sufficient to reasonably
separate both classes.

In the case of the thermal properties, which exhibit more
complex non-linear relationships, the RBF kernel provided a

Fig. 6 Comparative representation of polynomial regression models of three degrees for water vapor permeability (WVP, left) and initial degradation
temperature (Tonset, right). The first, second, and third rows correspond to polynomial degrees 2, 3, and 4, respectively.
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better fit. Unlike the barrier properties, the F1-scores for the
thermal variables are balanced and robust in all cases. While
Tonset and T10 required stronger regularization to separate the
classes compared to Tmax, all three thermal variables were
classified successfully.

To apply the SVR method to the experimental data, the
values of the regularization parameter C = (0.1, 1, 10, 100)

and the tolerance margin e = (0.01, 0.1, 0.5, 1) were considered.
The best solutions obtained are displayed in Table 6, and the
full set of mean solutions is included in Table S6.

The prediction of barrier properties shares both the same C
and e values for WVP and OP, aiming to minimize the error by
using the maximum C and minimum e. In this case, WVP can
be predicted with a very accurate and stable model (high R2,
very low MSE and MAE), while OP displays extremely high error
values. This may be due to the model treating the OP data
primarily as outliers, or due to overfitting, caused by the
aggressive parameter setting (high C, low e).

For the thermal properties, increasing e allowed for a
reduction in the value of C, resulting in more generalized
models for both Tonset and T10. However, Tmax required a higher
penalization of errors, which led to clear overfitting in the test
set compared to the training set.

For the formulation of the ANNs, various numbers of hidden
layers were considered and optimized, layers = (1, 2, 3, 4, 5, 6),
along with a range of possible neurons per layer, neurons = (10,
20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120). The values for the
number of epochs and batch size were kept constant across all
cases. The results are presented in Table 7. In general, it can be
stated that the barrier properties exhibit better predictive
performance than the thermal properties when using the same
ANN configurations.

The modelling applied to OP is able to explain most of the
variance in both the training and testets, although it required a
deep architecture (6 layers with 100 neurons each) to achieve
such results. In contrast, WVP shows a more balanced fit
between training and test, as well as a much lower MAE, and
it achieved this with the simplest architecture among all the
properties studied. Fig. 8 illustrates how the different para-
meter combinations (folds) explored for the ANN minimize the
MSE to a nearly convergent value starting from a 2-layer
architecture (with fold counts between 60 and 120).

On the other hand, the thermal properties did not achieve
acceptable performance under any of the evaluation metrics.
Moreover, they were predominantly associated with complex
network architectures that failed to either generalize or learn
effectively.

DT method was applied using the following hyperpara-
meters: maximum depths were considered as Max_depth =
(none, 3, 5, 10); the minimum number of samples required to
split a node was set as Min_samples_split (2, 5, 10); the
minimum number of samples per leaf as Min_samples_leaf =
(1, 5, 10); and the number of features considered for each split
as Max_features = (none, sqrt, log2). The results of the best
performing configurations are presented in Table 8.

Most of the models showed very poor performance in both
training and validation, with negative R2 values, indicating that
they were unable to outperform a simple mean prediction. The
high MSE and MAE values confirm that the predictions were
highly inaccurate, even when tree depths were set to 5 or 10.
Only the variable WVP achieved a marginally acceptable per-
formance, with a test R2 of 0.07, suggesting that the model was
able to extract a small amount of useful information.

Table 4 Polynomial regression equations for each variable

Variable Equation

OP 1:387� 104 � 9:075� 103 � SEP½ � � 7:411� 103 � MWCNT½ �

� 1:204� 104 � WS2½ � þ 7:926� 102 � SEP½ �2

� 5:333� 102 � SEP½ � � MWCNT½ �

� 7:391� 102 � SEP½ � � WS2½ � þ 8:041 � 102 � MWCNT½ �2

� 1:017� 103 � MWCNT½ � � WS2½ � þ 1:234� 103 � WS2½ �2

WVP 1:509� 1:133 � SEP½ � � 0:892 � MWCNT½ � � 1:298 � WS2½ �

þ 0:264 � SEP½ �2þ0:164 � SEP½ � � MWCNT½ �

þ 0:201 � SEP½ � � WS2½ � þ 0:208 � MWCNT½ �2

þ 0:221 � MWCNT½ � � WS2½ � þ 0:248 � WS2½ �2

Tonset 2:085� 102 þ 1:622 � SEP½ � þ 2:185� 101 � MWCNT½ �

þ 1:359� 101 � WS2½ � þ 0:562 � SEP½ �2

þ 1:551 � SEP½ � � MWCNT½ � � 7:193 � ½SEP� � WS2½ �

þ 0:562 � MWCNT½ �2þ9:352 � MWCNT½ � � WS2½ �

þ 1:168 � WS2½ �2

T10 2:485� 102 þ 2:780 � SEP½ � þ 2:677� 101 � MWCNT½ �

þ 1:609� 101 � WS2½ � þ 8:090� 10�2 � SEP½ �2

þ 2:263 � SEP½ � � MWCNT½ � � 3:403 � SEP½ � � WS2½ �

þ 0:811 � MWCNT½ �2þ1:463� 101 � MWCNT½ � � WS2½ �

þ 3:285 � WS2½ �2

Tmax 2:588� 102 þ 9:413 � SEP½ � þ 3:702� 101 � MWCNT½ �

þ 2:879� 101 � WS2½ � þ 1:262� 10�1 � SEP½ �2

þ 5:080 � SEP½ � � MWCNT½ � þ 4:822 � SEP½ � � WS2½ �

þ 1:560 � MWCNT½ �2þ2:688� 101 � MWCNT½ � � WS2½ �

þ 5:307 � WS2½ �2

Table 5 Best solutions obtained for SVM method

Variable Best parameters Accuracy
F1-score
(class 0)

F1-score
(class 1)

OP {‘C’: 10, ‘kernel’: ‘linear’} 0.847 0.847 0.847
WVP {‘C’: 1, ‘kernel’: ‘linear’} 0.714 0.667 0.750
Tonset {‘C’: 10, ‘kernel’: ‘rbf’} 0.847 0.847 0.847
T10 {‘C’: 10, ‘kernel’: ‘rbf’} 1 1 1
Tmax {‘C’: 1, ‘kernel’: ‘rbf’} 1 1 1
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Finally, for the RF method, the hyperparameters studied
were ‘max_depth’ = (none, 10, 20, 30), ‘min_samples_leaf’ = (1,
2, 3, 4), ‘min_samples_split’ = (2, 5, 10), and ‘n_estimators’ =
(50, 100, 200). The results of the RF method are shown in
Table 9.

Comparing the results of RF with DT, a significant improve-
ment in the prediction of the variables is observed, favored by

the inclusion of the number of trees in the forest, ‘n_estima-
tors’. Regarding the barrier properties, OP shows moderate
overfitting given the difference between the training and
validation R2 values, although the MSA value is similar to
other methods studied. WVP achieves better overall results than
OP, both in accuracy and R2. The dispersion of the predicted
data is not large, as can be seen (see Fig. 9), so it could be an

Fig. 7 Confusion matrices for support vector machine method results: (A) oxygen permeability; (B) water vapour permeability; (C) initial degradation
temperature; (D) maximum decomposition temperature.

Table 6 SVR results

Variable Best C Best e MSE (train) R2 (train) MSE (test) R2 (test)

OP 100 0.01 1.037 � 108 2.327 � 10�2 4.734 � 107 3.612 � 10�2

WVP 100 0.01 9.931 � 10�5 9.999 � 10�1 1.068 � 10�1 8.452 � 10�1

Tonset 10 1 2.091 � 102 5.270 � 10�1 5.556 � 101 6.804 � 10�1

T10 10 1 2.568 � 102 4.987 � 10�1 6.447 � 101 7.114 � 10�1

Tmax 100 1 1.307 � 102 8.359 � 10�1 2.801 � 102 1.375 � 10�2

Table 7 ANNs results

Variable R2 test R2 train MSE test MAE test Num layers Num neurons Epochs Batch size

OP 9.302 � 10�1 7.530 � 10�1 4.000 � 106 1.633 � 103 6 100 50 16
WVP 9.968 � 10�1 9.705 � 10�1 5.432 � 10�3 5.433 � 10�2 2 110 50 16
Tonset �5.083 �5.500 2.681 � 103 4.163 � 101 6 100 50 16
T10 �4.963 �2.300 � 101 5.690 � 103 6.414 � 101 4 50 50 16
Tmax �3.734 �9.155 7.491 � 103 6.605 � 101 5 120 50 16
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acceptable prediction model. The other variables are shown in
Fig. S.8–S11.

On the other hand, although the prediction of the thermal
properties showed better performance in training, the valida-
tion results did not improve accordingly. The fits for Tonset and

T10 present excellent results in training, but in the validation
scenario they show negative performance due to poor model
generalization, which may be due to overfitting. In the case of
Tmax, better performance is observed compared to T10 and
Tonset, but with modest applicability.

Fig. 8 Comparison of mean squared error (MSE�10�3) results for ANNs model applied to water vapour permeability values.

Table 8 Results obtained upon application of the deep tree model to the different properties

Variable Best hyperparameters R2 (train) R2 (test) MSE (test) MAE (test)

OP {‘max_depth’: 5, ‘max_features’: none, ‘min_samples_leaf’: 1,
‘min_samples_split’: 5}

�2.914 � 10�2 �8.613 � 10�1 9.142 � 107 9.019 � 103

WVP {‘max_depth’: 10, ‘max_features’: none, ‘min_samples_leaf’: 1,
‘min_samples_split’: 2}

1.734 � 10�1 7.106 � 10�2 6.413 � 10�1 7.714 � 10�1

Tonset {‘max_depth’: 10, ‘max_features’: none, ‘min_samples_leaf’: 1,
‘min_samples_split’: 2}

�2.843 � 10�1 �2.606 6.269 � 102 1.571 � 101

T10 {‘max_depth’: 10, ‘max_features’: ‘sqrt’, ‘min_samples_leaf’: 1,
‘min_samples_split’: 2}

�3.871 � 10�2 �2.831 8.559 � 102 2.271 � 101

Tmax {‘max_depth’: 3, ‘max_features’: ‘sqrt’, ‘min_samples_leaf’: 1,
‘min_samples_split’: 2}

�3.623 � 10�1 �2.308 9.394 � 102 2.174 � 101

Table 9 Results obtained upon application of the RF model to the different properties

Variable Best hyperparameters MSE (test) R2 (train) R2 (test) MSA (test)

OP {‘max_depth’: none, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2,
‘n_estimators’: 50}

3.323 � 107 9.494 � 10�1 3.234 � 10�1 5.055 � 103

WVP {‘max_depth’: none, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2,
‘n_estimators’: 200}

4.418 � 10�1 9.585 � 10�1 3.600 � 10�1 5.894 � 10�1

Tonset {‘max_depth’: none, ‘min_samples_leaf’: 1, ‘min_samples_split’: 2,
‘n_estimators’: 200}

2.796 � 102 9.293 � 10�1 �6.084 � 10�1 1.119 � 101

T10 {‘max_depth’: none, ‘min_samples_leaf’: 2, ‘min_samples_split’: 5,
‘n_estimators’: 100}

3.186 � 102 7.509 � 10�1 �4.264 � 10�1 1.497 � 101

Tmax {‘max_depth’: none, ‘min_samples_leaf’: 2, ‘min_samples_split’: 2,
‘n_estimators’: 200}

2.503 � 102 7.466 � 10�1 1.185 � 10�1 1.370 � 101

Paper NJC

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
Ja

nu
ar

y 
20

26
. D

ow
nl

oa
de

d 
on

 1
/2

5/
20

26
 1

2:
32

:2
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5nj03812j


This journal is © The Royal Society of Chemistry and the Centre National de la Recherche Scientifique 2026 New J. Chem.

5. Conclusions

Hybrid bionanocomposites based on P3HB reinforced with
sepiolite, CNTs and WS2 have been successfully prepared by
an easy, inexpensive and sustainable solution casting. SEM images
revealed a very homogeneous nanofiller dispersion within the
polyester matrix. FT-IR spectra suggest strong interactions among
the nanofillers and with the matrix via hydrogen bonding. Ther-
mogravimetric analysis revealed a very strong improvement in
thermal stability upon nanofiller addition, particularly for the
hybrids with high loading of CNTs and WS2, with a maximum
increase in Tmax of about 125 1C, ascribed to a synergistic
stabilization effect. Unprecedented drops in oxygen permeability
and water vapour permeability have also been observed, the largest
being 95 and 93%, respectively, for the nanocomposite with 2%
Sep, 1% CNT and 2% WS2. The accuracy of several machine
learning models, including Lasso regression, polynomial regres-
sion, SVM, SVR, ANN, DT, and RF, on the prediction of thermal
and barrier properties was assessed. The most effective models for
barrier properties were ANNs and SVR, demonstrating high R2

values and low MSE/MAE. For thermal properties, SVMs and SVR
offered relatively better results, though with limited generalization.
Given the limited size of the experimental dataset, the results
should be interpreted with appropriate caution. The applied cross-
validation-based methodology allows reliable comparison between
models and identification of meaningful trends, rather than the
development of universally generalizable predictive models. The
good correlation between experimental and predicted values for
barrier properties indicates that the models are reliable and
consistent in this context, whereas thermal property predictions
remain more challenging and model dependent.

Overall, the triple filler strategy applied herein is an original
approach to develop hybrid nanocomposites with appropriate

properties to be used in the food packing industry (i.e. as
containers or disposable cutlery).
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Fig. 9 Predicted values using random forest model vs. experimental values for water vapour permeability.
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35 R. G. Mantovani, T. Horváth, A. L. D. Rossi, R. Cerri,
S. Barbon Junior, J. Vanschoren and A. C. P. L. de Carvalho,
Better Tress: An empirical study on hyperparameter tuning
of decision trees, Data Min. Knowl. Dis., 2024, 38, 1364–1416.

36 P. J. Drew and J. R. T. Monson, Artificial neural networks,
Surgery, 2000, 127, 3–11.

37 J. Zou, Y. Han and S. So, Overview of Artificial Neural
Networks, Methods Mol. Biol., 2008, 458, 14–22.

38 F. Rosenblatt, Basis definitions and concepts, Principles of
neurodynamics; perceptrons and the theory of brain mechan-
isms, Spartan Books, Washington (State), 1962, pp. 79–92.

39 A. K. Jain, M. Jianchang and K. M. Mohiuddin, Artificial
neural networks: a tutorial, Computer, 1996, 29, 31–44.

40 S. B. Lo, H. Chan, J. Lin, H. Li, M. T. Freedman and S. K.
Mun, Artificial convolution neural network for medical image
pattern recognition, Neural Networks, 1995, 8, 1201–1214.

41 T. Hristeva, Application of graphic processing units in deep
learning algorithms, AIP Conf. Proc. 2449 (2022) 1.

42 C. Cortes and V. Vapnik, Support-vector networks, Mach.
Learn., 1995, 20, 273–297.

43 N. Cristianini and J. Shawe-Taylor, Suppoert Vector
Machines, An Introduction to Support Vector Machines and
Other Kernel-Based Learning Methods, Cambridge University
Press, Cambridge, 2000, pp. 93–122.

44 N. S. Raghavendra and P. C. Deka, Support vector machine
applications in the field of hydrology: A review, Appl. Soft
Comput., 2014, 19, 372–386.

45 C.-W. Hsu and C.-J. Lin, A comparison of methods for
multiclass support vector machines, IEEE Trans. Neural
Networks, 2002, 13, 415–425.

46 H. Qian, E. S. Greenhalgh, M. S. P. Shaffer and A. Bismarck,
Carbon Nanotube-Based Hierarchical Composites: A
Review, J. Mater. Chem., 2010, 20, 4751–4762.

47 A. Kumar, A. Saha and S. Kumar, Structural analysis of sol-
gel derived TiO2 nanoparticles: a critical impact of TiO2
nanoparticles on thermo-mechanical mechanism of glass
fiber polymer composites, J. Polym. Res., 2021, 28, 441.

48 M. Zakaulla, Y. Pasha and S. K. Siddalingappa, Prediction of
mechanical properties for polyetheretherketone composite
reinforced with graphene and titanium powder using artificial
neural network, Mater. Today: Proc., 2022, 49, 1268–1274.
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