DNA-based hydrogels: a promising material for future energy storage applications
Abstract
DNA hydrogels have emerged as promising natural biomaterials for next-generation energy storage systems, offering a unique combination of biocompatibility, programmability, tunability, and self-assembly capabilities. Traditionally developed using synthetic DNA strands or DNA origami, efforts are turning toward naturally derived genomic DNA, such as that obtained from salmon sperm, chicken blood, and other biowaste sources, offering a more sustainable and cost-effective route. These hydrogels possess inherent sequence diversity and tunable network structures, making them ideal candidates for enhancing ionic conductivity, mechanical stability, and electrochemical performance in devices like batteries and supercapacitors. This review explores the foundational principles, synthesis strategies, and recent advancements in using DNA hydrogels as components in batteries, supercapacitors, and fuel cells. Compared to traditional materials, DNA hydrogels provide sustainable advantages such as biodegradability, mechanical flexibility, and designable structures that respond to environmental stimuli. While challenges like limited conductivity, stability, and scaling issues remain, ongoing research is addressing these through chemical modifications, hybrid composites, and integration with nanomaterials. Looking ahead, the development of smart, multifunctional DNA hydrogels holds significant potential to transform energy storage technologies and contribute to global sustainability goals. This review highlights key opportunities and calls for interdisciplinary efforts to fully realize the capabilities of DNA hydrogels in future energy systems.
- This article is part of the themed collections: DNA Nanotechnology and Recent Review Articles

Please wait while we load your content...