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Modelling of magnetic vortex microdisc dynamics un-
der varying magnetic field in biological viscoelastic
environments†

Andrea Visonà,∗ab Robert Morel,b Hélène Joisten,b Bernard Dieny,b and Alice Nicolasa

Magnetically driven microparticles provide a versatile platform for probing and manipulating biological
systems, yet the physical framework governing their actuation in complex environments remains only
partially explored. Within the field of cellular magneto-mechanical stimulation, vortex microdiscs have
emerged as particularly promising candidates for developing novel therapeutic approaches. Here, we
introduce a simplified two-dimensional model describing the magneto-mechanical response of such
particles embedded in viscoelastic media under varying magnetic fields. Using a Maxwell description
of the medium combined with simplified elasticity assumptions, we derive analytical expressions
and support them with numerical simulations of particle motion under both oscillating and rotating
magnetic fields. Our results show that rotating fields typically induce oscillatory dynamics and
that the transition to asynchronous motion occurs at a critical frequency determined by viscosity
and stiffness. The amplitude and phase of this motion is governed by the competition between
magnetic and viscoelastic contributions, with particle motion being strongly impaired when the
latter dominate. Energy-based considerations further demonstrate that, within the frequency range
explored of few tens of Hertz, no heat is generated -distinguishing this approach from magnetic
hyperthermia- while the elastic energy transferred to the surrounding medium is, in principle, sufficient
to perturb major cellular processes. This work provides a simple framework to anticipate the first-
order influence of rheological properties on magnetically driven microdisc dynamics, thereby enabling
a better understanding of their impact in cells or extracellular materials and bridging the gap between
experimental observations and theoretical modelling.

1 Introduction

In recent years, actuation of magnetic micro- and nano-objects us-
ing magnetic fields has emerged as a powerful tool for probing the
mechanical properties of biological materials or for mechanically
stimulating or altering cellular functions. These developments
have been conducted both for improving our fundamental under-
standing of cell mechanobiology, in the form of magnetic tweez-
ers1 and other micro-rheometers2, and as proofs of concept for
innovative therapeutic roads relying on the magneto-mechanical
stimulation of cells3,4. In both cases, the magnetic particles in-
teract with a viscoelastic environment, the latter being either an
inert material - such as a network of extracellular matrix pro-
teins - or a responsive medium - such as cellular interior. Indeed,
mechanical stimulations trigger cellular responses based on the

a Univ. Grenoble Alpes, CNRS, CEA/LETI-Minatec, Grenoble INP, LTM, Grenoble F-
38000, France. E-mail: andrea.visona96@gmail.com
b Univ. Grenoble Alpes, CEA, CNRS, Spintec, Grenoble F-38000, France
† Electronic Supplementary Information (ESI) available: [details of any supplemen-
tary information available should be included here]. See DOI: 00.0000/00000000.

fact that cells generate internal forces and adapt their physical
properties in response to mechanical and biochemical stimuli to
maintain homeostasis5. As the field of mechanobiology continues
to reveal how profoundly mechanical forces regulate cellular and
molecular processes, exploiting the mechanical vulnerabilities of
diseases such as cancer is emerging as a promising adjunct strat-
egy, especially where conventional therapies reach their limits.
Nanomedicine offers powerful tools to pursue this vision. Par-
ticularly magnetic nanoparticles, which can be remotely driven
by external fields to deliver non-invasive, highly localised forces
at the subcellular scale3. Common features of magnetic parti-
cles used to mechanically stimulate cells or cellular environments
are: a large shape anisotropy, in order to allow the magnetic ac-
tuation to be effectively translated into mechanical motion; and
a large magnetic volume to exert forces up to the nanoNewton
range. Such forces may be effective in deforming architectures
of biological molecules, whose stiffness is often in the kiloPas-
cal range, denaturing proteins or breaking filamentous proteins6.
Typical examples are micron-sized rods and discs4. In particu-
lar, the disc-shaped particles have been extensively investigated
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to stimulate cells mechanically.
For instance, in a pioneering work, Kim et al.7 demonstrated

that magnetic actuation of micrometric disc-shaped particles at
low frequency may trigger apoptosis with a success rate up to
90% in a human glioblastoma model cell line. The particles were
60 nm thick, 1 µm diameter, Fe20Ni80 (permalloy) discs coated
with 5 nm thick gold layers. Such particles, now commonly re-
ferred to as vortex microdiscs, have been used to mechanically
stimulate cells, for instance to destroy cancer cells8, activate neu-
ronal signalling pathways9 or stimulate insulin secretion in pan-
creatic cells10. The success of such particles comes from their
magnetic properties. In absence of external magnetic field, the
magnetisation consists in an in-plane closed loop yielding zero
in-plane magnetisation and a very small out-of-plane magnetised
core of dimension ∼5 nm at the centre of the microdisc. (Fig.
1a)11. Under a magnetic field, the particle gets magnetically
polarised along the field yielding an in-plane shift of the vortex
core in a direction perpendicular to the applied field direction
(Fig. 1). As the field is increased, the magnetic polarisation in-
creases till vortex annihilation, leading to saturation at a field
amplitude of typically few hundred mT. Due to its large shape
anisotropy, the diameter of the disc being much larger than its
thickness, the magnetisation tends to remain in the plane of the
particle. This behaviour, characterised by zero magnetisation at
zero field and gradual polarization under magnetic field, is re-
ferred to as superparamagnetic-like. Vortex microdiscs are there-
fore very promising for biomedical applications since the move-
ment of the particles can be turned on and off effectively with
magnetic fields and no remanent magnetisation is left when the
field is turned off (Fig. 1b), thus avoiding agglomeration of par-
ticles due to magnetostatic interactions if they are dispersed in
solution11.

a) b)
M

M sat

B

a) b)

Fig. 1 a) Illustration of the vortex micromagnetic behaviour in a disc-
shaped particle: from vortex state (absence of external field) to satura-
tion. b) Schematic representation of superparamagnetic-like behaviour
of the vortex microdiscs. There is no remanent magnetisation in the ab-
sence of magnetic field. Particles made of permalloy with radius of the
order of 1 µm and thickness below 100 nm saturate with field amplitude
in the range 40-100 mT depending on their thickness 11.

In the frame of the aforementioned biological and biomedical
applications, these particles are manipulated by low frequency ro-
tating or oscillating fields. Such fields can be generated either by
the motion of permanent magnets, such as the orbital motion of
planar Halbach arrays12 or of cylindrical magnets (for oscillating
and rotating field respectively), or with coils and AC currents7.
The field magnitudes used are in the order of tens to hundreds of
mT, depending on the magnetic material and the geometry of the
particles. The frequencies employed range between 0.5 to 20 of

Hz4.
Despite the growing number of experimental demonstrations

supporting mechano-therapeutic strategies based on magnetic
nanoparticles, the physical interaction of the particles with both
the surrounding medium and the magnetic field, remain poorly
characterised. This gap leaves researchers without the quantita-
tive guidance needed to design experiments or predict the me-
chanical stimuli generated in biological environments. In partic-
ular, there is no theoretical framework for anticipating the added
value of applying an oscillating or rotating magnetic field, nor for
assisting in the choice of a field frequency or amplitude. These are
currently chosen on the basis of experimental trials. Indeed, only
two studies have proposed a physical description of the mechan-
ical stresses exerted by the magnetised vortex discs in specific,
static, configurations, and compare it with typical order of mag-
nitude of biomolecular stresses. For instance Kim et al.7 calcu-
lated the mechanical torque exerted by a disc attached to the cell
membrane. The problem was solved in the quasi-static regime,
corresponding to the situation where the disc movement is halted
by the elastic torque opposed by the membrane. In this study the
dependence of the magnetisation to the magnetic field was ne-
glected. In a second study, Leulmi et al11 proposed an in-depth
calculation of the magnetic torque exerted by the particles with
a more complete description of the magnetic problem. However,
the reaction of the outer medium was not modelled, as the parti-
cle was assumed to be immobilized on the substrate.

In this study, we address the modelling of the vortex microdiscs
movement in a viscoelastic environment when exposed to oscil-
lating or rotating fields. We aim to couple the magnetic and
viscoelastic problem in a more comprehensive way as was done
before. For instance, our goal is to provide a dynamic analysis
of the movement of the vortex particle as a function of the vis-
coelastic properties of the outer medium. We propose here a first
order description of the magnetic problem and of the elastic re-
sistance of the material in which the particle is embedded. Our
aim is to provide a simple but predictive framework that links
the rheology of the disc’s environment to its rotational dynamics.
By developing for the first time a complete magneto-mechanical
microdisc motion description which quantifies how viscoelastic-
ity shapes the amplitude, phase lag, and forces generated under
oscillating or rotating magnetic fields, this model helps to antic-
ipate how magnetic vortex microdiscs will behave inside cells or
within extracellular matrices. Such insight is essential for de-
signing particles and selecting biological targets. For example, if
the threshold force required to activate specific mechanosensitive
pathways, such as membrane ion channels or cytoskeletal tension
signalling, is known, the model allows researchers to determine
whether a given disc can realistically reach these regimes. For
the sake of simplicity, we limit our analysis to a 2D description.
By doing so, we constrain the particle rotation around the axis
perpendicular to the rotation plane of the field. This amounts
to imposing anisotropic mechanical properties on the material in
which the microdisc is embedded, which prevents it from aligning
with the rotation plane of the field. Such anisotropy is present in
cells or other biomaterials, which account for many filamentous
protein assemblies such as cytoskeletal or collagen fibres. The
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anisotropy in stiffness of these organized structures at the micro-
metric scale is of several orders of magnitude. Thus a portion
of the microdiscs interacting with or loaded in cells experiences
anisotropic resistance to their movement. Our modelling focuses
on these particles, which are the ones responsible for applying
mechanical stresses. In this assumption framework, an important
result of this study is that the magnetic torque induces a mechan-
ical torque whose amplitude is given by the orientation of the
magnetisation relative to the plane of the particle. This leads us
to show that the elastic resistance of the outer medium can either
impair the rotation of the particle or favour it when its relaxation
also relaxes the magnetic problem. Finally we show that viscos-
ity, by imposing a lag in the movement of the particle relative to
the magnetic field, can in some conditions convert the influence
of a rotating field into an oscillating motion. Eventually, we com-
pare the orders of magnitude of the energies at play to common
biomolecular events to conclude on the ability of the movement
of the particles to mechanically influence biological processes.

2 Theory
We consider magnetic particles made of ferromagnetic material
with highly anisotropic geometric specifications, with radius R
and thickness h. In the absence of field, when R ≫ h, the mag-
netisation organizes as a vortex (Fig. 1a)13. Its magnitude in
every unit volume is the spontaneous magnetisation, also called
the saturation magnetisation Msat . When exposed to an external
field of sufficient amplitude, the magnetisation vectors align (Fig.
1a), and the particle experiences a magnetic moment whose am-
plitude is:

msat = MsatV (1)

where V is the volume of the disc.
Here we consider a particle that is embedded in a viscoelas-

tic material as depicted in Fig. 2. We assume that in its resting
position, the plane of the particle lies in the (x,y) plane of the ref-
erence frame. In the following, we focus on the effect of rotating
or oscillating magnetic fields. No field gradients are considered,
which would result in the translational movement of the particle.
The magnetic field, denoted B, is modelled as a constant ampli-
tude field which may rotate or oscillate at a certain frequency, f ,
in the (x,z) plane (Fig. 2b). We assume that the field is invariant
in y direction. Its analytical expression is:

B = B0

cosθ(t)
0

sinθ(t)

 (2)

where θ(t) is the angle between the field vector and the x axis. In
case of an oscillating field, the expression of θ(t) is θ(t) = θ0 sinωt
with ω = 2π f and θ0 the amplitude of the oscillation. For a rotat-
ing field instead, θ(t) = ωt. This simplified field model captures
the behaviour of most experimental devices (reviewed in Naud et
al4), where the magnetic field is essentially uniform along the y-
axis when measurements are taken sufficiently far from the edges,
where boundary effects are dominant. Out of these regions, the
field rotates or oscillates within a specific plane. Once an external

 E     η

B

x

z

x

z

y
θ(t )

a) b)

c)

h
R

y

Fig. 2 a) Microdisc embedded into a 3D viscoelastic material. b) 2D rep-
resentation of an external field, rotating or oscillating in the (x,z) plane.
The field orientation at time t is given by θ(t). The field is invariant in
the y direction. c) The particle is trapped into a material, either extracel-
lular or intracellular, approximated by a Maxwell viscoelastic material. Its
rheological properties are equivalent to a spring and a dashpot in series.

field is applied, the magnetised particle experiences a magnetic
torque which tends to align the plane of the particle to the di-
rection of the field. Such torque is counteracted by viscous and
elastic resistances coming from the external medium. In the fol-
lowing, we propose a physical description of the interaction of the
magnetic field with the microdisc, and of the viscoelastic reaction
of the surrounding medium. We then analyse the effect of these
viscoelastic properties on the motion of the microdisc driven by
oscillating or rotating magnetic fields.

2.1 Modelling vortex microdiscs response to an external
field

The magnetic configuration in absence of any external field is the
one of a closed vortex flux (Fig. 1a). Such magnetic texture
mainly arises from two competing effects, the self-magnetisation
of the material and the appearance of an internal, demagnetis-
ing field. The first effect, resulting in the so-called exchange en-
ergy Eex

14, arises from quantum mechanical interactions between
neighbouring electron spins (Coulomb repulsion of the electrons
and Pauli exclusion principle). In ferromagnetic materials, it
favours the parallel alignment of the spins and leads to sponta-
neous magnetisation. The second effect, giving rise to the de-
magnetisation energy Ed and also referred to as shape anisotropy,
tends to maintain the spins oriented in the plane of the particle.
Phenomenologically, the demagnetising field can be described as
the consequence of magnetic charges that appear at the surface
of the magnetic material when the spins are out-of-plane. This
energy term favours minimal demagnetising field, which corre-
sponds to having the magnetic charges as far as possible. In prin-
ciple, the crystalline structure of the magnetic material also influ-
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ences the magnetic configuration. Here we neglect the effect of
the magnetocrystalline anisotropy which tends to align the mag-
netisation with some specific orientation of the crystalline struc-
ture. For example, in the case of permalloy, a magnetic mate-
rial often employed in the design of vortex particles, its contribu-
tion vanishes due to the opposite contributions of iron and nickel
atoms.

When an external magnetic field is applied, the Zeeman en-
ergy, EZ , which accounts for the tendency of the magnetisation to
align with the magnetic field, has to be included. Thus the total
magnetic energy reads:

Etot = Eex +Ed +EZ (3)

Depending on the amplitude of the external field, the vortex
core is progressively displaced until it is completely ejected from
the disc, and the particle becomes fully magnetised (Fig. 1a).
For such particles, magnetic fields in the mT range are enough to
saturate the magnetisation7,8,15.

θ

δ

θ
π
2

M sat

M
a) b)B

Mδ '

Fig. 3 a) The Stoner-Wohlfarth model determines the orientation of
the magnetisation M relative to the plane of the particle (labelled by the
angles δ or δ ′ = π−δ) as a function of the orientation of the field B (angle
θ). b) In our model, the amplitude of the field is assumed constant while
its orientation varies in time. We approximate the magnetic hysteresis
curve to first order: the magnetisation of the disc flips from one saturated
state to the other when the field is perpendicular to the plane of the disc.

For the scope of this paper, we are not interested in the dynam-
ics of the vortex core, and we treat the magnetic problem as if
the particle is always saturated (Fig. 3). In doing so we use the
macrospin model which is often employed to describe the mag-
netisation dynamics of single-domain magnetic particles14 in the
framework of the Stoner-Wohlfarth model (Fig. 3a). The mag-
netisation field is then reduced to a single, uniform vector M.
This approximation is governed by the Landau–Lifshitz–Gilbert
equation. Since the frequency of the external field is much lower
than the Larmor frequency (the order of magnitude of the gy-
romagnetic ratio is GHz/T−1 in ferromagnetic materials such as
permalloy16), we neglect the dynamics of the magnetisation. We
calculate its orientation as a result of the equilibrium between
Zeeman and shape anisotropy energy terms, the contribution of
the exchange energy being negligible17:

Etot = Ed(δ )+EZ(δ ) (4)

Eq. 4 depends on a single angle, δ , the angle between the plane of
the particle and the magnetisation vector (Fig. 3a). In this model,
the magnetisation of the microdisc is assumed to be saturated at
all times. The variation of the magnetisation vector relative to

the orientation of the applied field is therefore approximated as
a step function, as reported in Fig. 3b. This implies that the
magnetisation flips in orientation once the angle θ becomes larger
than π/2.

An analytical expression of the demagnetising energy can be
derived by approximating the thin disc to an oblate ellipsoid
whose principal axis in the (x,y) plane are of identical length,
approximated to be the radius R of the microdisc, and the out-of-
plane axis is approximated to be of length h, the thickness of the
disc (see Supplementary information):

Ed =
1
2

µ0
m2

sat
V

(
NR cos2

δ +Nh sin2
δ

)
(5)

In this equation, NR and Nh are the two demagnetising coeffi-
cients that depend on the aspect ratio R/h. For a true oblate ge-
ometry, they are related by the condition NR = 1−Nh

2 . In our case,
since the geometry departs from an oblate, this relation does not
hold. However, we could show using a micromagnetic simulation
that Eq. 5 is suitable to describe the demagnetizing energy but
without the aforementioned relationship between NR and Nh (ar-
ticle in preparation). The numerical values obtained for permal-
loy microdiscs are gathered in Table 1.

In the presence of a magnetic field, the magnetisation M is
attracted toward the field. The Zeeman energy, that describes
this attraction, writes:

EZ =−m ·B =−msatB0 cos(θ −δ ) (6)

with m the magnetic moment associated to M: m = MV .

2.2 Model for the mechanical response of the medium to the
particle motion

We assume that the particle is embedded in a Maxwell-like mate-
rial (Fig. 2c). This modelling is the most simple approach often
used to describe the rheological properties of either extracellu-
lar matrices or the cell bodies18. In this study, we limit our de-
scription to a 2D framework so to be able to propose analytical
analysis. Since the particle is not invariant in a specific direction,
this assumption amounts to constraining its rotation to the y-axis,
which is the axis of rotation of the magnetic field. Under this
assumption, the material has highly anisotropic mechanical prop-
erties, but stress relaxation remains characterised by one single
relaxation time:

τ =
η

E
(7)

where η is the viscosity and E the elastic modulus of the material
along the deformable direction. The equivalent circuit associated
to the Maxwell model is a spring in series with a dashpot, submit-
ted to a unidirectional force F (Fig. 1c). The displacement x of
the particle is then described by Eq. 8:

dx
dt

=
1
k

dF
dt

+
F
ξ

(8)

where k and ξ are the spring elastic constant and the dashpot
viscous constant, respectively. These are proportional respectively
to the elastic modulus E and to the viscosity η of the material
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by a geometrical factor depending on the shape of the particle
and the direction of the force relative to the orientation of the
particle. This equation can be transposed to a rotating geometry
when the particle is submitted to a torque, Γ19. In this case, the
Maxwell model describes the angular velocity dα

dt of the particle
in the Maxwell-like material (Fig. 4).

dα

dt
=

1
γ

dΓ

dt
+

Γ

ν
(9)

where γ and ν are the torsional and viscous constants.

2.2.1 Modelling the viscous resistance of the medium to the
particle motion

As a consequence of the magnetic actuation, the microdisc may
rotate from its resting position around the y-axis. This introduces
the angle α which measures the rotation of the particle. The
dynamics of α is linked to the viscous and elastic resistance of
the external material (Fig. 4).

θ

α

δ

z

x

B

M

y

Fig. 4 Geometrical parameters of the model when the particle can rotate.

We first calculate the viscous torque that opposes to the field-
induced rotation. Since the particle is rotating around one of its
symmetry axis that is parallel to its plane, in the regime of laminar
flow, the viscous torque scales with the radius of the particle and
not with its thickness. Following Ref.20 and dropping the shape-
dependent numerical factors, its expression is:

Γ = να̇ ≃−ηR3
α̇ ŷ (10)

where α̇ = dα

dt is the angular velocity of the particle, and ŷ the unit
vector along the y-axis, which is the axis of rotation (Fig. 4). A
similar relation between ν and η has been derived for a cylinder
in21 and used in19. The viscous energy loss then writes:

Evis ≃ ηR3
∫

α̇dα (11)

2.2.2 Elastic resistance of the medium to a small angle de-
formation

We now model the elastic resistance the material opposes to the
rotation of the particle. In principle, the relation between the lo-
cal force, coming from the magnetic actuation and the deforma-

tion of the elastic material can be calculated by solving the equi-
librium equation of elasticity22. A mathematical framework was
proposed by Chadwick et al.23 to calculate the deformation field
resulting from torsional oscillations of rigid particles of arbitrary
shape embedded into an infinite elastic solid. So in principle, the
exact energy cost induced by the rotation of the microdiscs can be
calculated. But no analytical solution is available as soon as the
shape of the particle departs from a sphere24. For our analysis,
we made the choice to approximate the elastic resistance of the
material to its very first order, so that we could keep an analytical
expression for it. Nevertheless in the following, we expose the
limitations of our approximations so that it is possible to envision
their limits.

Our first approximation is to consider that the rotation of the
particle is limited to small angles. This approximation will be
challenged in the next sections. If the particle is rotated around
one of its diameter, at small angle, the main resistance comes
from the compression (and dilatation) of the material perpendic-
ular to the flat planes of the particle. Shear stresses are thus ne-
glected. This approximation is justified by the shape anisotropy of
the microdiscs: the thickness of the particle is small compared to
its diameter so that when the rotation is limited to small angles,
the force component is mainly normal. Our second approxima-
tion is to neglect the contribution of the long range propagation
of the elastic deformation. The long range propagation of the de-
formation indeed results in elastic energy being stored at distance
of the moving particle, and potentially released toward the par-
ticle when the stress in the vicinity of the particle decreases24.
This leads us to model the elastic response of the material with a
Hook’s law:

fn ≃ kun (12)

with fn the force per unit surface exerted by the microdisc nor-
mal to its plane, un the normal displacement of the material in
the vicinity of the particle and k the elastic constant of the ma-
terial, a function of the elastic modulus E, the Poisson ratio of
the material and the radius R of the particle (the thickness cannot
contribute in this crude approach as no shear stress are consid-
ered). Dimensional analysis suggests that k ∼ E/R.

In the framework we propose, the rotation of the particle in-
duces a small normal displacement of the material, un = rα, with
r the distance to the axis of rotation. From Eq. 12, we therefore
conclude that the elastic energy generated by the motion of the
particle has the following scaling with the rotation angle:

Eel ≃
∫

S
dS

∫
fnrdα ≃ 1

2
γα

2 (13)

where γ = πR4

4 k is the approximate torsional constant.

2.3 Equation governing the motion of a saturated vortex
disc in a viscoelastic medium

Coupling the magnetic (Eqs 5 and 6) and mechanical problems
(Eqs 11 and 13 ), the total energy of the system writes:
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Etot = Ekin(α)+Emag(δ ,θ −α)+Emech(α) (14)

=
1
2

Iα̇
2 +

1
2

µ0
m2

sat
V

(
NR cos2

δ +Nh sin2
δ

)
(15)

− msatBcos(θ −α −δ )+
1
2

γα
2 +ν

∫
α̇dα

where I ≃ mπR2

4 is the moment of inertia. Since the mass of a
magnetic microparticle is of the order of 10−15 kg, the kinetic
energy term (Ekin) is negligible compared to the other energetic
terms (see Table 1).

Eq. 14 has two independent variables, δ and α. The values
they assume when the magnetic field is oriented with an angle θ

relative to the lab frame are found by minimising the total energy
respective to these two quantities:

Kd sin2δ = msatB0 sin(θ −α −δ ) (16)

γα +να̇ = msatB0 sin(θ −α −δ ) (17)

with Kd = µ0
2

m2
sat

V (Nh −NR) characterizing the energetic cost of the
magnetic anisotropy.

3 Results

3.1 Tuning the numerical parameters of the model
Eqs. 16–17 were solved for a range of parameters relevant for
applications involving biological cells or tissues, in which such
anisotropic microparticles have been used. The list of all the pa-
rameters used in the model and their respective numerical values
are reported in Table 1.

Table 1 Summary of the parameters used in the model, their symbol and
numerical values

Parameter Symbol Numerical value
Disc radius R 0.65 µm
Disc thickness h 60 nm
Disc magnetic moment msat 6.37×10−14A.m2

Demagnetising factors NR,Nh 0.0517 and 0.7076
Magnetic field amplitude B0 100 mT
Field frequency f [1-100] Hz
Anisotropy constant Kd 2.1×10−14 J
Young’s modulus E [0.05 - 10] kPa
Viscosity η [10-1000] Pa.s

The sizes of the microdiscs were inspired by Refs.7,8,10,15 that
employ such particles to mechanically stimulate cells, as well as
the range of frequency. The amplitude of the field was chosen so
that the magnetisation is saturated. Furthermore, it was shown
that ferromagnetic particles capable of vorticity, such as those
made of permalloy, reach saturation with magnetic fields below
100 mT11. The orders of magnitude of the mechanical properties
of the viscoelastic medium were chosen based on the rheological
studies of intracellular compartments or of common biomateri-
als such as Matrigel, Collagen or Hyaluronic scaffolds. For in-
stance, common values of the Young’s modulus of Matrigel span
between few tens of Pa to 2 kPa25, while its viscosity is around

50 Pa.s26. Collagen and Hyaluronic scaffolds also have stiffness
that ranges between hundreds of Pa to several kPa, depending on
their crosslinking and concentration27.

As far as cell rheology is concerned, we assume that the par-
ticle is trapped in the cellular cytoskeleton or immersed in the
cytoplasm. Given that the literature provides spread values with
very different orders of magnitude of elastic modulus and viscos-
ity for actin cortex5,28,29, we decided to set a range of elastic
modulus that spans between 1 kPa to 10 kPa to account for differ-
ent crosslinking states, interplay with intermediate filaments and
microtubules30–32. Concerning the cytoplasm, we chose lower
values for the elastic modulus, between 0.05 kPa and 0.5 kPa2.
The same approach was used to set a range of possible values
of viscosity, between 10 and 1000 Pa·s. This range aims at tak-
ing into consideration different polymerisation states of the cy-
toskeleton. For instance, we associated higher viscosity to well
organised networks33.

The final ranges of Young’s moduli and viscosities are reported
in Table 1.

3.2 Shape anisotropy term imposes the angle between the
easy plane and the magnetisation, δ , to be small

A first limit case of an immobilised particle is modelled to get
information on the magnitude of the angle δ between the mag-
netisation M and the easy plane of the particle (Fig. 3a). In this
case, the solution of the problem is provided by Eq. 16 where α

is set to 0:

Kd sin2δ −msatB0 sin(θ −δ ) = 0 (18)

The equation is solved for θ between 0 and π. When θ exceeds
π/2, the magnetisation flips in the symmetric direction relative to
the (y,z) plane. Nonetheless, the equation is not altered by this
flip as demonstrated in the following. For values of θ ∈ [0,π/2],
the equation describing the equilibrium state is Eq. 18. When
θ ∈ [π/2,π], the magnetisation at equilibrium is obtained with a
newly defined angle δ ′ = δ − π (mind the negative sign of δ ′)
(Figs 3a and 5). δ ′ is the angle that governs the physics of the
system once the magnetisation has flipped. Eq. 18 then becomes:

−Kd sin(2δ
′)−msatB0 sin(π −θ +δ

′) =

−Kd sin2δ +msatB0 sin(θ −δ ) = 0 (19)

Expressed in terms of δ , Eq. 19 therefore remains identical to
Eq. 18.

Eq. 18 was solved numerically with an in-house python code
for the numerical values reported in Table 1. The values of δ are
shown in Fig. 5. We therefore conclude that for an immobilized
particle, either δ or δ ′ remains small while θ is varied. An im-
mobilised particle corresponds to the limit case where M deviates
the most from the particle plane. Therefore we assume that the
conditions |δ | ≪ 1 or |δ ′| ≪ 1 are met also when the particle is
free to rotate.
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Fig. 5 Evolution of the angle δ between the anisotropy plane and the
field as function of the field angle, θ , for an immobilised particle (Stoner-
Wohlfarth’s model).

3.3 Adimensional parameters governing the movement
Having demonstrated that the magnetisation only slightly devi-
ates from the easy plane of the particle, Eqs. 16 and 17 can be
simplified by expanding them to first order in δ ≪ 1:

δ ≃ sin(θ −α)

b+ cos(θ −α)

nα̇ +gα −bδ ≃ 0 (20)

where we have introduced reduced variables which compare the
contributions of mechanical and shape anisotropy torques that all
limit the reorientation of the magnetisation, to the Zeeman torque
that tends to align the magnetisation to the magnetic field.

n =
ν

msatB0
, g =

γ

msatB0
and b =

2Kd

msatB0
(21)

The numerical values of these parameters are reported in Table
2.

Table 2 Summary of the reduced parameters used in the model, their
symbol and numerical values

Parameter Symbol Numerical value
Reduced magnetic coefficient b 6.5
Reduced elastic coefficient g [2×10−4 −2]
Reduced viscosity coefficient n [4×10−5 −0.4] s

3.4 Microdisc motion subjected to an oscillating magnetic
field

We first focus on the motion of a microdisc submitted to an oscil-
lating magnetic field:

θ(t) = θ0 sin(ωt) (22)

We limit the study of the motion of the particle to values of θ0 <

π/2. Magnetisation flipping events will be addressed later on, in
the rotating field section. In the limit where θ −α ≪ 1, which is
expected either when the field oscillates at small angles (θ0 ≪ 1)

or when the torques that oppose to the Zeeman torque are small
enough, Eq. 20 can be solved analytically. Considering the initial
condition α(0) = 0, we find:

α(t) = θ0
Cω

A2 +ω2

(
e−At +

A
ω

sin(ωt)− cos(ωt)
)

(23)

with

A =
g
n
+

b
n(b+1)

(24)

C =
b

n(b+1)
(25)

Note that the first term in A is the inverse of the Maxwell time (Eq.
7). Before drawing any conclusion, the reliability of the analytical
solution Eq. 23 is tested against the numerical solution of Eq. 20.
The numerical problem is solved with an in-house python code
making use of solve_ivp function of SciPy module34.

numerical
analytical

0.004

0.002

0.000

0.002

0.004

0.006

0.008

0.010

/
0

0 =0.05
0 =0.1
0 =0.2
0 =0.5
0 =1.0

/
0

-1

0

0.5

1

- 0.5

0
t

2ppp/2 3p/2 0
t

2ppp/2 3p/2

b)a)

Fig. 6 The analytical approach provides an accurate solution beyond the
approximation θ0 ≪ 1. a) Comparison of analytical (◦) and numerical
(•) solutions for θ0 = 1 rad, calculated for intermediate values of g and
n (g = 2× 10−2, n = 4× 10−2s). θ is shown to assess the assumption
θ −α ≪ 1. b) Error between the numerical and analytical solution for
different values of θ0. ∆α is calculated as the difference between the
numerical solution and the analytical one provided by Eq. 23.

Fig. 6 shows that the analytical solution remains valid with a
good accuracy beyond the approximation θ0 ≪ 1. The effective-
ness of Eq. 23 in describing particle motion for oscillations of
significant amplitude justifies the use of the analytical approach
to deduce asymptotic motion behaviours as a function of solic-
itation frequency or rheological parameters of the particle’s en-
vironment. Reported trends should be accurate to within a few
percent, even for the largest oscillations (Fig. 6b).

3.4.1 Influence of the rheological parameters and of fre-
quency on the movement

Eq. 23 shows that α(t) reaches a stationary regime after a char-
acteristic time 1/A. This characteristic time comprises two con-
tributions, that act in parallel: the relaxation of the elastic stress
in the viscoelastic material following particle’s movement, and
the friction of the surrounding material that slows down the par-
ticle rotation induced by the magnetic torques (Eq. 24). Once
the steady state is reached, the oscillation of the microdisc forced
by the magnetic field is a phase-shifted oscillation at the forcing
frequency, whose amplitude decreases when the frequency is in-
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creased (Eqs 26–28):

α(t) = α0 sin(ωt −Φ) (26)

with:

α0 = θ0
C√

A2 +ω2
= θ0

b
(b+1)√

(g+ b
(b+1) )

2 +n2ω2
(27)

tan(Φ) =
ω

A
=

nω

g+ b
b+1

(28)

Eq. 27 reveals that the coupled magnetic and mechanical con-
straints act as a low-band filter, with a cut-off frequency ωc:

ωc =
g+ b

b+1
n

(29)

Considering the values provided in Table 1, ωc ranges between
2 and 7 · 104 s−1, which, in terms of frequencies, spans the inter-
val [13 Hz – 450 kHz]. The amplitude of the oscillations is thus
modulated by the interplay of the elastic and magnetic contri-
butions to movement, g and b

b+1 = 2KD
2KD+msat B0

, and the relative
friction torque, nω. On the other hand, the phase shift Φ in-
creases with frequency (Eq. 28). Its magnitude is limited by the
restoring elastic and magnetic torques that limit the amplitude of
the oscillation. In brief, when the friction is dominant (very vis-
cous media or large frequency), the oscillation is damped and in
phase quadrature: α0 ≃ θ0

b
nω(b+1) → 0 and Φ → π/2. In the oppo-

site situation, when resistive conservative torques are dominant
(predominant elastic material, large magnetic shape anisotropy
or low frequency), the amplitude of the oscillation is given by
the balance of the magnetic actuation and the elastic and shape
anisotropy resistances, and the oscillation remains in phase with
the magnetic field. Similarly, when g ≫ 1, the oscillation is lim-
ited by the elastic resistance of the material: α0 ∼ θ0b/g(b+ 1)
which tends to zero as g increases while Φ tends to zero. While
when g ≪ 1, the oscillation of the particle is limited by the viscous
resistance: α0 ∼ θ0/(1+

nω(b+1)
b ) and the Φ ∼ nω(b+1)/b.

The transition from close to in-phase to close to quadra-
ture oscillating movement is controlled by the cut-off frequency,
ωc/(2π). ωc depends on the viscoelastic parameters, n and g.
Consistently, increased viscosity or reduced elasticity decreases
the value of ωc (Eq. 29). This leads to conclude that parti-
cles stimulated in materials with large viscosity or low elastic-
ity compared to the strength of the magnetic anisotropy expe-
rience phase-shifted, damped oscillations at lower forcing fre-
quency than those embedded in stiffer or less viscous materials.

3.4.2 Influence of the magnetic parameters

As mentioned previously, the numerical values chosen for Kd and
the field amplitude were guided by literature reports, and a de-
tailed exploration of the parameter b was therefore not the pri-
mary focus of this study. Nonetheless, we briefly examine its be-
haviour in a few limiting cases. In the regime where the vortex
configuration is expected to form13, b decreases when the shape
anisotropy is reduced or becomes negligible compared to the Zee-

man energy. This occurs when either the geometrical parameters
or the material are changed (Eq. 5) or when the driving magnetic
field is increased. In the limit b≪ 1, the steady-state amplitude α0

tends to 0 (Eq. 27), meaning that excessively strong field or insuf-
ficient anisotropy suppresses the magneto-mechanical coupling.
Although this may seem counterintuitive at first, the magnetisa-
tion in this regime simply follows the external field without pro-
ducing significant mechanical motion. In the limiting case b ≫ 1,
α0 → θ0/

√
(g+1)2 +n2ω2, meaning that the amplitude tends to

the field oscillation angle θ0 modulated by the viscoelastic proper-
ties of the medium. Increasing b, by adjusting field strength to the
anisotropy constant, improves the magneto-mechanical motion of
the particle. From a practical standpoint, small variations in Kd

may result from fabrication-related differences in geometrical di-
mensions. For microdiscs produced through cleanroom lithogra-
phy (e.g. as described in Leulmi et al.11), the dominant source
of uncertainty is the lithographic resolution, typically at submi-
cron. A deviation of 0.05 µm in the disc diameter corresponds
to roughly a 7% change in Kd(Eq. 5), which is not expected to
substantially affect the conclusions of this study.

3.5 Microdisc motion subjected to a rotating magnetic field
We now focus on the scenario where the field rotates continuously
in time: θ(t) = ωt. In this case, the flipping of the magnetisation
may become a frequent event depending on the strength of the
torques that resist the movement. Magnetisation flip occurs when
the angle between the field and the easy plane of the microdisc
exceeds π/2. For a rotating particle, this angle is θ −α (Fig. 4).
When the latter exceeds π/2 (modulo π), the magnetisation flips
to its symmetric orientation in the particle plane (Fig. 7). A sim-
ilar argument as that given in the previous section shows that
the equilibration of the magnetic torques remains governed by
the same equation once the magnetisation has flipped (Eq. 19).
When addressing particle motion, the angle θ in Eq. 19 has nev-
ertheless to be changed to θ −α. Just after the flip, the Zeeman
torque changes sign, so that it induces an opposite motion that
tends to decrease the angle α. When the field goes on rotating,
the angle between the field and the magnetisation changes sign
again which again tends to increase α. The magnetisation may
thus exhibit four different orientations relative to the field, as il-
lustrated in Fig. 7.

In the following, we analyse three different rheological
regimes: a purely viscous fluid (limit case where elasticity is neg-
ligible), large values of elastic resistance (limit case where the
viscosity is negligible) and an intermediate case where both elas-
ticity and viscosity have to be accounted. The latter is approached
qualitatively, as explained below.

3.5.1 Motion of the microdisc in a viscous environment

Eqs 16–17 are solved numerically in the case where g = 0 (Fig.
8). As no assumption on α was required to determine the viscous
torque, we release the constraint α ≪ 1 imposed by the calcula-
tion of the elastic torque. This allows the entire viscosity range to
be spanned without restriction.

Two regimes of motion are observed, either synchronous or
asynchronous with the magnetic field (Fig. 8a). In the syn-
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Fig. 7 Configurations of the orientation of the magnetisation M in rela-
tion to the field orientation. Flipping events have occurred between (a)
and (b), and (c) and (d).

chronous regime, the particle follows the rotating magnetic field
with a progressive phase lag that reaches a steady value after a
transient regime. This regime is observed at low viscosity. There
is no flipping events in this regime. The asynchronous regime
arises for larger viscosity. In this regime, the rotational mo-
tion of the particle unhinges from the magnetic field, leading to
an oscillatory motion. The reason are the flipping events. Be-
cause of the friction, α increases less rapidly than θ . At some
point, θ −α reaches π/2, triggering a flip of the magnetisation.
Once the magnetisation has flipped, the torque associated to the
Zeeman energy (which has now flipped sign and direction, see
Fig.7b) progressively reduces as the field further rotates and the
angle between magnetisation and field decreases. Consequently,
the energy cost associated to the magnetic shape anisotropy de-
creases, as the magnetisation falls back to the particle plane, and
the mechanical torque coming from the equilibration of the mag-
netic torques decreases as well. As a result, α decreases until
the magnetisation realigns with the field. Once alignment is re-
established, the field resumes driving the motion, and α increases
again (Fig.7c). The dynamics of the rotation of the particle and
of the magnetisation is shown in Supplementary Movie 1.

We can obtain a crude estimation of the threshold viscosity that
leads to flipping events. To this end, we solve analytically Eq. 20
by setting g = 0:

α̇(t) =
1
n

bsin(ωt −α)

b+ cos(ωt −α)
(30)

When the magnetisation is close to flip, the angle θ −α is close
to π/2. We thus expanded Eq. 30 for θ −α ≃ π/2 to first order
and solved the resulting differential equation. Considering only
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Fig. 8 Particles embedded into a predominantly viscous material exhibit
an oscillatory motion associated to the flipping of the magnetisation as
soon as the rotating frequency of the field exceeds 1/(2πn). a) Particle
rotation α(t) compared to the rotation of the magnetic field θ(t) as
function of the reduced viscosity n. Frequency = 1 Hz. For values of
n < 0.01, α(t) cannot be distinguished from θ(t) (data not shown). b)
First flipping time as a function of 1/nω. The points do not gather in a
master curve, implying that n and ω contribute as independent variable to
the flipping time. c) Average frequency of the oscillation fvis as function
of nω. d) Amplitude of oscillation as function of 1/nω.

the steady state regime, we find:

θ −α ≃ π

2
− (1−nω)b (31)

Eq. 31 shows that the magnetisation flips as soon as nω ≥ 1.
Considering relevant orders of magnitude for n, we therefore
conclude that the rotation of the microdisc may be transformed
into an oscillatory movement when the frequency is in the range
[0.4−4000] Hz, the lower frequency being attained when the par-
ticle is within more viscous media. Since the analytical approach
can only be used limitedly, we solved Eq. 30 numerically for dif-
ferent parameters as reported in table 1 (Fig. 8).

Consistently, Fig. 8a shows that the particle movement tran-
sitions from a uniform to an oscillatory motion once either the
forcing frequency or the viscosity exceed a threshold value. In
the context of the numerical values used in Fig. 8, the analytical
approach suggests that the oscillatory mode should arise as soon
as n ≥ 0.16. Oscillations however appear after a transient time,
associated to the first flip of the magnetisation. The dependency
of this first flipping time is shown in Fig. 8b as a function of 1/nω.
The data do not follow a master curve, meaning that n and ω con-
tribute as independent variables to this dynamics. Nonetheless as
a general result, larger viscosity or larger frequency reduce the
time required for the first flipping event to happen. This result
is expected as when the viscous torque is dominant, the oscilla-
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tions are fully dampened (α(t) ≃ 0) and the magnetisation flips
as soon as θ(t) = π/2 (modulo π). The first flip then occurs at
t = 1/(4 f ). This is indeed what is observed in Fig. 8b when nω is
larger than 5. We then calculated the mean frequency ( fvis) and
the amplitude of the oscillations of α(t) by numerically extracting
local maxima and minima and averaging over the evaluation time
window (5 sec). The values are plotted in Fig. 8c,d respectively.
As nω increases, the particle oscillates at an increasing frequency,
that reaches twice that of the forcing field for highly viscous me-
dia or at large forcing frequency, as expected. Finally, Fig. 8d
shows that the microdisc oscillates with an amplitude governed
by the parameter 1/nω in the range of forcing frequencies stud-
ied.

3.5.2 Motion of a microdisc trapped in a predominantly
elastic material

We now analyse the movement of the particle embedded into
a predominantly elastic material, exhibiting linear elastic be-
haviour. n is set to 4×10−4 s in Eqs 16–17 so that the ratio g/nω is
[50 to 50000]. In this regime, the elastic contribution is the main
resistance to the rotation of the particle. For large enough elas-
tic resistance, θ −α may reach π/2, leading to a flipping event.
Once the magnetisation has flipped, the magnetic torque favours
a backward motion as explained above. As a consequence, at the
moment of the flip, a sudden backward jump of the particle oc-
curs due to the instantaneous nature of the elastic stress (Fig. 9
and Supplementary Movie 2).

The backward motion goes in the same direction as the mag-
netic torque. The subsequent increase in α takes place when
the balance between magnetic and elastic torques once again al-
lows the field to drive the particle in the same direction as the
field. When the coupling parameter g is low, the particle oscil-
lates around a mechanically stressed configuration (Fig. 9a, blue
or yellow curves). Conversely, for large values of g, the particle
oscillates around its resting position (Fig. 9a, red curve). This
latter case arises because the particle moves only slightly away
from its equilibrium before the magnetisation flips, and the elas-
tic stress fully relaxes. The flipped magnetisation then experi-
ences an opposite torque that leads to negative values of α, until
the field realigns with the particle plane and resumes driving the
motion (see Supplementary Movie 2). Note that the blue curve
of Fig. 9a (α(t) for g = 0.2) is way beyond the approximation
α ≪ 1 and should be taken more as a qualitative description, al-
though Figure 6 shows that this approximation is not very restric-
tive. Indeed, we expect our model to overestimate the particle
movement in regimes where α ≫ 1 since we have not accounted
for long distance contributions of elasticity. Stresses stored at
large distance make the material appear stiffer than in its relaxed
state, which subsequently reduces the amplitude of motion over
time23,24. Nonetheless, while this may affect the numerical val-
ues, the overall trend and flipping dynamics remain consistent.

The oscillatory motion of the particle can be approached ana-
lytically when the angle between the magnetisation and the easy
plane of the particle is small. Before the first flip of the magneti-
sation, δ ≪ 1, and the motion is governed by Eq. 20 with n ≃ 0.
Just before the magnetisation flips, the angle between the field
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c) d)
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Fig. 9 Particles embedded into a predominantly elastic material exhibit
an oscillatory motion in presence of a rotating field, whose frequency is
the double of the forcing frequency. a) Particle rotation α(t) compared
to the rotation of the magnetic field θ(t) in relation to the reduced
elasticity g. Frequency = 1 Hz, n = 4× 10−4 s. b) First flipping time
as a function of 1/g (◦) and analytical expression of the flip time t1 at
different frequencies (Eq. 32). c) Average frequency of the oscillation
fel as function of g. All points overlap at 2 f . d) Amplitude of oscillation
as function of 1/g.

and the magnetisation is close to π/2. As in the viscous case, we
solve Eq. 20 for θ −α ≃ π/2. We obtain that the first magnetisa-
tion flip occurs at time t1:

t1 ≃
1

gω
+

π

2ω
(32)

Figure 9b shows the evolution of the first flipping time with
the stiffness of the surrounding material, obtained from the nu-
merical resolution of Eq. 20. Consistent with the analytical solu-
tion Eq. 32, we find that the first flipping time is inversely pro-
portional to g. The dashed lines in Fig. 9b represent the Eq.
32 for different ω. The second flip of the magnetisation occurs
when θ −α ≃ 3π/2. The motion is governed by Eqs 16–17 in this
regime, except that the small angle is no more δ but δ ′ = δ −π

(Fig. 7c). Expanding Eq. 16–17 to first order in δ ′ ≪ 1, we find
the second flipping time:

t2 ≃
1

gω
+

3π

2ω

This calculation can be made general for any flip of the mag-
netisation. We therefore conclude that the magnetisation flips at
a frequency fel:

fel = 2 f (33)

that is independent of the stiffness of the material. The ratio
fel/ f obtained from the numerical calculation of α is shown in
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Fig. 9c. Consistently we observe that all data stack at 2, whatever
the stiffness of the outer material. The elastic coefficient of the
material only enters the expression of the transient duration be-
fore the magnetisation starts flipping. Expectedly, it flips sooner
in stiffer materials than in softer ones as particle rotation is more
impeded. Lastly we observe that the amplitude of the oscillation
decreases as the material becomes stiffer (Fig. 9d). A small de-
pendence on the forcing frequency is visible. The cause is the
small contribution of n that gains importance at low values of g.
As previously discussed, the amplitude of oscillations are attenu-
ated by the viscous torque in a frequency dependent manner.

3.5.3 Motion of a microdisc in a viscoelastic material, the
viscous friction being comparable to the elastic resis-
tance

Finally we propose a qualitative description in the case where the
elastic resistance is comparable to the viscous one. Indeed, in
this scenario, α ≪ 1 is no longer valid and our estimation of the
elastic torque in principle fails. Indeed, we already inaccurately
explored regimes of large α in the previous section (see Fig. 9a).
Large deformations are expected to distribute the elastic energy
afar from the moving particle. The energy is restored non locally,
therefore making the material appears stiffer than it is23,24. As
a consequence, the oscillations are expected to be more damped
than predicted by our first-order modelling. By computing Eq.
16–17, our goal here is to get an intuition of how the oscillat-
ing movement of the particle is modified when both viscosity and
elasticity impair the movement.

Our first observation is that the oscillatory motion is now a
complex combination of what we reported in the cases of predom-
inantly viscous and predominantly elastic material (Fig. 10a and
Supplementary Movie 3). The particle oscillates up to a plateau
amplitude, that originates from the elastic resistance. Keep in
mind that this maximal deformation is expected to be overes-
timated. When the magnetisation flips, the elastic stress is re-
laxed within a time that depends on the viscosity. This time is
not solely the Maxwell relaxation time but involves the magnetic
shape anisotropy as it was the case in a predominantly viscous
medium. Fig. 10b shows the computed first flipping time, com-
pared to the one expected in a predominantly elastic environment
(Eq. 32). The discrepancy between the analytical approach and
the numerical solution highlights that viscosity and elasticity con-
tribute in an indissociable manner to the dynamics of the flipping
events.

Fig. 10c illustrates the complexity brought by the combined
viscous and elastic resistances to the magnetic actuation. The
frequency of the oscillations of the particle now varies non mono-
tonically with the forcing frequency. Indeed, at low forcing fre-
quency, the dominant resistance to the particle motion comes
from the elastic properties of the material. Therefore the parti-
cle oscillates at a frequency very close to the double frequency,
as expected from Eq. 33. At large frequency, both the viscous
and the elastic resistance of the material force the oscillation to
take place at the double frequency. But at intermediate frequency,
when the viscous torque is intermediate but comparable to the
elastic torque, the frequency of oscillation is reduced, as it was
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Fig. 10 When incorporated into viscoelastic materials, the rotating field
causes the particles to oscillate, with greater amplitude as the frequency
decreases. a) Particle rotation α(t) for different field rotating frequencies
f . The dashed line indicates the limit of the validity of α ≪ 1. n = 0.1
s, g = 0.2. b) First flipping time as a function of ω. The expression of
the analytically-derived t1 that only accounts for the elastic resistance
(Eq. 32) is plotted as a dashed black line. c) Average frequency of the
oscillation fvis as function of ω. d) Amplitude of oscillation as function
of ω. The grey rectangle indicates the region in which the approximation
α ≪ 1 is valid.

observed in a viscous medium (Fig. 8c). Finally, Fig. 10d high-
lights the impact of the forcing frequency on the amplitude of the
motion in a viscoelastic environment, supporting the hypothesis
made in the previous section on the origin of the dispersion of
data obtained in Fig. 9d).

4 Discussion
In this study, we modelled the magnetically induced motion of a
micrometric particle embedded in a biological viscoelastic mate-
rial, actuated by either oscillating or rotating magnetic fields. This
configuration has been widely employed in experimental stud-
ies, both to probe the rheological properties of biological mate-
rials and as a proof of concept for innovative therapeutic strate-
gies3,4. Despite the growing body of experimental work in this
domain, the underlying physical framework is only partially ex-
plored. This gap between theory and experiment leads to the
absence of clear guidelines when selecting parameters for mag-
netic particle actuation. Predictive tools capable of guiding both
particle design and biological target selection are crucial if mag-
netically driven mechano-stimulation therapies are to evolve from
promising proof-of-concept demonstrations into reliable, repro-
ducible, and clinically relevant strategies that can effectively com-
plement traditional chemotherapy. The objective of this work was
to provide a deeper understanding of the physical interactions un-
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derlying magneto-mechanical stimulation, focusing on how key
parameters such as field frequency, viscosity, and stiffness influ-
ence particle dynamics. Ultimately, the proposed model offers
a simplified yet predictive framework to anticipate first-order ef-
fects.

The principal finding of this study is that the use of a rotat-
ing magnetic field typically leads to oscillatory particle behaviour
across most of the scenarios explored. In particular, we found
that in a predominantly viscous material, as soon as the condi-
tion n = 1/ω is met, the particle motion transitions into an asyn-
chronous regime. This critical frequency threshold has also been
reported by Berret et al.2, where it was used to infer the vis-
coelastic properties of the cell interior. Experimentally observed
values for the critical frequency ωc are on the order of 0.1 rad·s−1

(∼0.2 Hz), corresponding to materials with viscosities in the tens
of Pa·s and stiffnesses around 10 Pa—parameters that fall at the
lower end of the range explored in our study. As a result, the
synchronous regime is only observed under conditions of low vis-
cosity, low stiffness, and low actuation frequency. From a practi-
cal standpoint, this result offers useful flexibility to experimental-
ists: when operating in conditions that favour the asynchronous
regime, rotating and oscillating magnetic fields can be used inter-
changeably. Notably, oscillating fields offer the additional advan-
tage of enabling direct control over the asymptotic amplitude via
the parameter θ0 (Eq. 27).

Focusing on the oscillatory motion, regardless of the origin
field, we estimated that the amplitude of oscillation, ∆α, is be-
tween 0.2-0.5 rad (for intermediate viscoelastic parameters). This
quantity can be converted with a simple calculation into a dis-
placement U = ∆α ×R, with R the radius of the particle. In our
case this leads to displacements of the order 0.1-0.3 µm at the
very edge of the particle. Typical length of collagen 1 and actin
fibres are in the µm range. Therefore the particle motion can lead
to important deformation of networks composed of such proteins.
The amplitude of the oscillation was shown to be sensitive to two
adimensional parameters, g and nω, which represent the compe-
tition of elasticity and viscosity to the magnetic field respectively
(Eq. 21). As both are increased, our model predicts that the am-
plitude of oscillation is attenuated. Theoretical and experimental
evidence of similar trends have been reported either in theoret-
ical approaches or experimental studies. For instance, Wilhem
et al.35 modelled the actuation of magnetic chains composed of
paramagnetic beads with oscillating fields in a Maxwellian fluid
and showed that the amplitude of oscillation of rod-like parti-
cle would decreases as the forcing frequency increases. From an
experimental point of view, Kim et al.7 used micrometric mag-
netic discs to stretch the membrane of glioma cells and activate
mechano-responsive pathways. Their data show that the effi-
ciency of the stimulation decreases as the field frequency goes
beyond 20 Hz. In line with these observations, our recent ex-
perimental results on the effect of vortex microdisc actuation in
cancer cells showed that cell traction forces are only altered when
the forcing frequency is below 10 Hz36. Moreover, we obtained
that softening cell body, by growing them on a soft substrate37–39,
led microdiscs oscillation to have in a larger impact on cell fate,
in consistence with the predictions of the present model.

It is to be kept in mind that the modelling we propose is a
2D description. This simplified view was proposed to enable a
more accessible analysis, supported by the analytical description
of limit cases. It has nevertheless a critical impact as it makes
the model “forget” that the microdisc can rotate and align its easy
magnetic plane with the plane of rotation of the field. And in
that case, the magnetic torque does not induce any mechanical
movement since the magnetisation rotates in the easy-plane of
the particle40. This limitation is inherent to using a 2D frame-
work to describe vortex particles. For instance it was not present
in the work of Berret et al.2, where rod-shaped particles were
studied. Then our description is expected to fail when both the
elastic and the viscous torques are so low compared to the Zee-
man torque that the realignment of the microdisc plane with the
plane in which the field rotates occurs in a time that is short
compared to the duration of the experiment. So far, the actua-
tion of vortex microdiscs in biological environments has always
shown significant effects on cells, probably because the particles
are not dispersed into fluid-like compartments but are indeed in-
tegrated into macromolecules networks or interacting with mem-
branes that offer a significant viscoelastic resistance. Statistically,
it is expected that some of the discs interacting with compart-
ments with low viscoelasticity will orient themselves in the direc-
tion of the field, thereby eliminating the movement induced by
the magnetic field. Others, trapped in more rigid and viscous en-
vironments, give rise to the scenario described. Our model aims at
representing the latter situation. A 3D numerical analysis would
however be necessary to describe entirely this mechano-magnetic
coupling. This study goes beyond our objective, which was to ob-
tain initial insights into the impact of viscoelastic environments
on the movement of magnetically actuated vortex microdiscs, rel-
evant for biological applications. It will however be of interest to
address it in a near future.

The linear rheological description we used is also to be chal-
lenged. Maxwell’s model is commonly used as a first-step ap-
proach for probing the behaviour of complex viscoelastic systems
such as cell cytoplasm2 or micellar solutions35. This choice inher-
ently assumes first, a continuum material description, and second,
small deformations of the elastic components. The validity of this
assumption is assessed by comparing the size of the microparticles
with the typical mesh size of the biological networks considered.
As discussed in the theoretical section, the porosity and mesh size
of such biomaterials depend on factors such as concentration and
polymerisation conditions. For example Matrigel exhibits a pore
size between 100-200 nm41 while the pore size in gels made of
collagen 1 varies between 1 to 10 micrometre, values that are
thus comparable to the dimensions of the particles used in this
study42. When addressing cell interior, the microdisc may either
be trapped in the cytoskeleton of the cell or embedded in the cy-
toplasm. The mesh size of the actin cortex is about 50 nm43, far
less than the size of the particles. For similar size-related reason,
the cytoplasm can be modelled as a viscoelastic material in which
the particles feel the elasticity coming from the presence of var-
ious organelles inside it and the intermediate filaments44. The
choice of using a Maxwell model and not to limit to a fluid de-
scription comes from the assumption that, since the frequencies
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assayed are in the Hz range, we expect that vibrating particles
remain trapped into the mesh of proteins and do not repel these
viscoelastic structures far from them. Nevertheless, in the rotating
regime, deformations can exceed the linear regime and a reorgan-
isation of the biological compounds could take place, leading to
plastic behaviour.

In the presence study, we limit our description of the elastic
resistance to first order. However, the key dependencies of the
elastic coupling assumed in our model are consistent with find-
ings from previous studies. For instance, a similar formulation of
the torsional constant was employed by Wilhelm et al.35, where
the torque damping coefficient is given by γ = κeV G, with κe be-
ing a dimensionless geometric factor, V the particle volume (scal-
ing with the cube of a characteristic dimension), and G the shear
modulus, itself proportional to the Young’s modulus E. Similarly,
Berret et al.2 modelled the elastic resistance of a microrod as a
product of a shape-dependent factor, the shear modulus G, and
the cube of the rod length (L3). These examples illustrate that by
appropriately tuning the geometric prefactor in the expression for
γ, our modelling framework can be adapted to different particle
geometries.

Actuation of superparamagnetic iron oxide nanoparticles (SPI-
ONs) have been used for long to induce thermal effects in bio-
logical samples or tissues45. The heat source is either magnetic
or mechanical, the latter referred to as Brownian dissipation. For
small particles like SPIONs the Brownian dissipation is often neg-
ligible and the thermal effect originates from magnetic losses fol-
lowing high frequency actuation46. However for large anisotropic
particles, the mechanical contribution could become important.
Indeed, thermal energy is released in vicinity of the moving mi-
crodisc, coming from the viscous friction of the particle with the
outer medium. To evaluate thermal losses associated to viscous
friction, we considered microdiscs embedded into a purely vis-
cous medium and use a scaling law approach to calculate the en-
ergy loss following their actuation:

Pvis =
dEvis

dt
= να̈ ≃ ηR3

∆α f 2 (34)

This energy increases with frequency while it is accompanied
by a decreased displacement. For intermediate values of η and
using values for ∆α coming from our numerical calculation, we
obtain that the dissipated power is of the order of few fW (2 fW
for a frequency of 10 Hz). This quantity is to be compared to the
thousands W/g that are at play in magnetic heat generation for
hyperthermia47. Using the weight of a standard permalloy mi-
crodisc (∼ 1× 10−12 g), we obtain that viscous friction generate
energy transfer of the order of 0.002 W/g, which is several order
of magnitude smaller than the targeted values for causing cellular
dysfunctions. The significant difference in the orders of magni-
tude clearly separates mechano-stimulation from hyperthermia.

The trend is different when the dominant term is elasticity.
Such energy is stored in the surrounding environment and it can
be estimated as follows in the proximity of the particle edge:

Eel ≃ γ∆α
2 = ER3

∆α
2 (35)

By limiting our analysis to the particle edge, we avoid the lim-

itation of our elastic description that does not take into account
stress propagation far from the particle. This stored energy in-
creases with the stiffness of the outer material, while the am-
plitude decreases and is independent of the frequency. For in-
termediate values for E, using values from our numerical cal-
culation, we obtain that the mechanical energy is of the order
of 0.1 fJ. Converted in kBT units, this amounts to about 2× 105

kBT at 37 °C. Cells spend 30.5 kJ/mol to phosphorylate ATP into
ADP, which corresponds to about 10 kBT per molecule at 37 °C.
Thus the motion of a particle could ideally transfer an energy that
corresponds to two thousands ATP molecules. To get a clearer
idea of how large this value is, one can compare to a common
energy-consuming cellular process such as actin treadmilling48.
For treadmilling to take place, a critical concentration of actin-
ATP of 0.16 µM is required49. By taking the volume of one single
vortex particle as reference, this value corresponds to about 6
molecules of ATP per particle, which expressed in energy terms,
is 60 kBT. This suggests that the mechanical actuation of one sin-
gle particle transmits much more energy to the cell than what is
involved in the polymerisation of the cytoskeleton. Our calcula-
tion therefore leads to conclude that cellular alterations following
magnetic stimulation with such particles are to be attributed to
mechanical origin and not to thermal dissipation, in consistence
with the conclusion reached experimentally in Kim et al.7.

5 Conclusions
In conclusion, this study introduced a 2D model of magnetic vor-
tex microdisc dynamics in viscoelastic environments under oscil-
lating and rotating magnetic fields. It showed how rheological
properties and field frequency control particle motion, including
the transition between synchronous and asynchronous regimes.
The energy associated with magnetically induced motion was
found to generate negligible heat while producing mechanical
stresses that can, in principle, compete with biomolecular forces.
While the simplified approach captures key physical behaviours,
extending it to 3D will be essential to fully describe disc reori-
entation over time, particularly under low viscoelastic resistance.
Despite these limitations, the model provides a practical tool to
anticipate the influence of viscosity, stiffness, and frequency on
vortex microdisc actuation, offering valuable guidance for the de-
sign of magneto-mechanical stimulation experiments and their
biomedical applications.
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