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ntial and increased photocatalytic
efficiency of gallic acid-capped ZnO and NiO NPs
for azo dye degradation: effect of heterojunction
coupling and machine learning-assisted modeling

Aqeela Sikandar,a Abu Bakar Siddique, *a Azhar Abbas,ab Abdul Majid,c

Bilal Sikandar,d Muhammad Ashraf Shaheen,e Umar Nishan f

and Khaled Fahmi Fawyg

This study presents the synthesis of gallic acid-capped zinc oxide nanoparticles (g-ZnO NPs), nickel oxide

nanoparticles (g-NiO NPs), and their Z-scheme heterojunction nanocomposites (g-ZnO-NiO NCs) using

a green approach with gallic acid as the reducing agent. Structural, morphological, and elemental

analyses confirmed nanoscale crystallinity and uniform distribution, with effective ZnO–NiO coupling in

the composite. XRD analysis revealed the minimum crystallite size of g-ZnO-NiO NCs (11.82 nm) in

comparison to g-ZnO NPs (28.24 nm) and g-NiO NPs (17.93 nm). Photocatalytic performance was

assessed for the degradation of crystal violet (CV) and Congo red (CR) dyes under solar light. Kinetic

studies showed that g-ZnO-NiO NCs exhibited the highest degradation efficiencies (95% for CV and 92%

for CR), with rate constant values (2.84 × 10−2 min−1 for CV and 2.56 × 10−2 min−1 for CR) significantly

higher than those of individual g-ZnO and g-NiO NPs. The enhanced activity was attributed to efficient

charge separation through a Z-scheme mechanism, facilitating the generation of cO2
− and cOH radicals.

Parameters such as pH, catalyst dose, dye concentration, and radical scavengers were optimized,

confirming the role of reactive oxygen species in degradation process. Total organic carbon (TOC)

analysis indicated significant mineralization (84% and 80% of CV and CR, respectively), and reusability

tests showed high stability with a meager decrease of activity (∼6%) over five cycles. Machine learning

models, including Decision Tree, Random Forest, and ANN, accurately predicted the photocatalytic

degradation process. The antioxidant assay results depicted the higher efficiency of g-ZnO-NiO NCs

than pristine NPs and gallic acid, assessed by DPPH, TPC, and FRAP assays. Conclusively, it was

emphasized that the g-ZnO-NiO heterojunction is a promising, sustainable photocatalyst for organic

pollutant removal under solar irradiation and has better antioxidant potential than g-ZnO NPs, g-NiO

NPs, and gallic acid.
1. Introduction

Directmixing of untreated effluents of textile and pharmaceutical
industries with freshwater reservoirs is a major cause of water
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pollution. Synthetic azo dyes, including crystal violet (CV) and
Congo red (CR), are widely used in these industries as coloring
agents and poses serious environmental risks due to their
toxicity, carcinogenic properties, and resistance to
biodegradation.1–5 Among numerous remediation options, pho-
tocatalytic processes, like advanced oxidation processes (AOPs),
are gaining signicant attention. AOPs utilize the synergistic
effect of semiconductors and light interaction to degrade azo
dyes by the generation of reactive oxygen species (ROS).6,7 Among
semiconductor materials, zinc oxide (ZnO) and nickel oxide (NiO)
nanoparticles (NPs) are extensively researched for their superior
optical and electrical characteristics, elevated surface area, and
chemical durability. However, there are a number of limitations
that make it hard to use these materials widely, such as their
stability in water, the rate at which charge carriers recombine,
and particle size variability.8–11
© 2026 The Author(s). Published by the Royal Society of Chemistry
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A major challenge with photocatalysis is that photogene-
rated electron–hole (e−/h+) pairs recombine very quickly, which
reduces quantum efficiency and the formation of reactive
species at a drastic rate.12 Several studies have investigated
methods to alleviate this issue, such as metal or nonmetal
doping to create charge traps, oxygen vacancies, noble metal
deposition, Type-II heterojunctions for spatial charge separa-
tion, and integration with carbon-based materials like g-C3N4 or
graphene to enhance electron transport efficiency.13,14 However,
these oen impact redox potential. The Z-scheme hetero-
junction overcomes this problem by imitating natural photo-
synthesis. It allows low-energy carriers to selectively recombine
while keeping apart the highly oxidative holes and strongly
reductive electrons. This improves charge separation, keeps
redox activity constant, and boosts photocatalytic and
biomedical performance. Therefore, the fabrication of hetero-
junctions between various semiconductors has garnered
interest for its potential to enhance charge separation (e/h
pairs) and augment photocatalytic performance.15–18 The fabri-
cation of Z-scheme heterojunctions can be carried out using
various metal oxide NPs, like ZnO NPs and NiO NPs. In these
NCs, the Z-scheme mechanism effectively maintains the robust
redox potentials of both components while promoting efficient
charge carrier separation, hence enhancing photocatalytic
activity dramatically.19,20

In addition to photocatalysis, metal-based nanomaterials
have also been reported for use in various elds, such as sensing
biomolecules,21 drug delivery,22 hydrogen energy production,23

iodine capture,24 and biomedical applications.25 The physico-
chemical properties and stability of nanomaterials for various
applications are mainly determined by the nature of the nano-
materials and their surface functionalities. Generally, NPs and
NCs synthesized via green methods are reported to be more
stable and selective in their functions. Hence, several biomol-
ecules have been used to synthesize NPs and improve their
properties. In this regard, green synthesis employing plant-
derived biomolecules such as gallic acid (GA) offers a sustain-
able alternative to conventional chemical methods.26 Gallic
acid, a naturally occurring polyphenol, is used in various bio-
logical applications as a bioactive agent or to improve the
properties of biological agents by synergistic effects. For
example, GA has been reported to enhance the antifungal
properties of econazole in the form of a salt (econazolium–

gallate–econazole)27 and functions as both a reducing and
a capping agent, contributing to increased surface stability, less
agglomeration, and enhanced antioxidant and photocatalytic
activity of the nanoparticles. GA capping also introduces surface
functional groups that may contribute to dye adsorption,
degradation pathways, and antioxidant applications.28 Strong
antioxidant activity is believed to be produced by the metal core
through redox reactions, which interfere with free radicals and
produce reactive oxygen species (ROS). However, the antioxi-
dant potential is also increased due to the synergistic effect
between NPs and GA. When combined, these NPs show strong
antioxidant activity, which makes them attractive options for
use in environmental protection, wound healing, and
medicine.29,30
© 2026 The Author(s). Published by the Royal Society of Chemistry
Optimization of degradation parameters may involve much
time and resources via typical experimental approaches. By
enabling the forecasting and analysis of complicated correla-
tions between reaction conditions and degradation conse-
quences, machine learning (ML) offers a strong alternative.31

Machine learning models, such as Decision Trees, Articial
Neural Networks (ANN), and Random Forests, are very useful for
improving complex systems because they can nd hidden
patterns and make accurate predictions. Decision Trees make it
easier to understand how different factors affect decisions by
showing how decisions are made visually. Articial Neural
Networks are great at capturing complicated, non-linear inter-
actions, so they work well with data that has complicated
patterns. By combining many decision trees, Random Forest
makes predictions more accurate and reliable, reduces over-
tting, and improves generalisation. These models work
together to make photodegradation processes better, making
sure that decisions are made quickly and accurately in chal-
lenging situations.32,33

Although the green synthesis of monometallic NPs using GA
capping has been reported in the literature, the GA-based green
synthesis of NCs has been studied scarcely. Therefore, in this
study, the rst-time synthesis of GA-capped ZnO–NiO NCs has
been reported for improved photocatalytic and antioxidant
potential. The GA-capped pristine ZnO NPs and NiO NPs, and g-
ZnO-NiO NCs have been analyzed for photocatalytic efficacy to
degrade CV and CR dyes under visible light irradiation. Owing
to the superior activity of the g-ZnO-NiO NCs based on the
development of a Z-scheme heterojunction, the effects of reac-
tion parameters, pH, catalyst dose, initial dye concentration,
and radical scavengers were also examined and optimized using
ML tools. Various ML models were employed, like Decision
Tree, Articial Neural Network, and Random Forest, to train,
validate, and predict the reaction parameters. The article
demonstrates the dual role of gallic acid in NP production and
performance enhancement, contributing to the development of
sustainable materials for environmental cleanup.
2. Experimental
2.1. Materials and methods

The synthesis was carried out using high-purity analytical-grade
chemicals procured from Sigma-Aldrich, Germany. Nickel
nitrate hexahydrate (Ni(NO3)2$6H2O), zinc nitrate hexahydrate
(Zn(NO3)2$6H2O), and gallic acid (GA; C7H6O5) were used to
make ZnO NPs, NiO NPs, and ZnO–NiO NCs, respectively. We
used distilled water (DW) for all of the washing and solution-
making steps. The Supplementary Information (Section S1)
includes all the information about the instruments used for
synthesis and characterization.
2.2. Synthesis of g-ZnO NPs, g-NiO NPs, and g-ZnO-NiO NCs

Using GA as a reducing and capping agent, GA-capped zinc
oxide nanoparticles (g-ZnO NPs) were synthesized by a green
approach. A 0.67 M solution of Zn(NO3)2$6H2O was prepared by
dissolving 2 g of salt in 10 mL of water. Aqueous GA solution
Nanoscale Adv., 2026, 8, 224–239 | 225
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(0.1 M, 0.17 g/10 mL) was added to the above solution with
constant stirring for 10 minutes. The pH of the solution was
adjusted to 9 by adding a 0.1 M solution of NaOH. The reaction
mixture was heated to 85 °C and stirred continuously for 1 h.
Aer the appearance of milky white precipitate, the mixture was
cooled, followed by centrifugation at 6000 rpm for 30 min. The
precipitates were washed with DW and dried at 80 °C for 2 h.
Aerward, the precipitates were calcined at 350 °C for 3 h in
a muffle furnace. The g-ZnO NPs obtained were cooled down
and stored.

GA-capped nickel oxide nanoparticles (g-NiO NPs) were
synthesized by mixing the nickel nitrate hexahydrate solution
(0.67 M, 1.95 g/10 mL) with the GA solution (0.1 M, 0.17 g/10
mL) following the same procedure and conditions described
above.

For the preparation of g-ZnO-NiO NCs, the separately
prepared solutions of Zn(NO3)2$6H2O (0.67 M, 2 g/10 mL) and
Ni(NO3)2$6H2O (0.67 M, 1.94 g/10 mL) were mixed, followed by
the addition of GA solution (0.2 M, 0.34 g/10 mL) and adjusting
the pH at 9 by adding 0.1 M NaOH with a constant stirring rate
at 85 °C. Aer 2 hours, the precipitates were ltered off and
calcined at 350 °C for 3 hours. The dark brownish color
precipitates of g-ZnO-NiO NCs were collected and stored for
further use.
2.3. Photodegradation of dyes

The photocatalytic activity of green-synthesized GA-capped g-
ZnO NPs, g-NiO NPs, and g-ZnO-NiO NCs was evaluated for
the degradation of CV and CR dyes under solar light, following
the reported procedure.10,34 A 10 ppm dye solution was prepared
by dissolving 1 mg of dye in 100 mL of distilled water. For each
experiment, a photocatalyst dose of 50 mg/20 mL was dispersed
in the dye solution and stirred in the dark for 20 minutes to
achieve adsorption–desorption equilibrium. A baseline UV-vis
absorbance spectrum was recorded before exposure. The reac-
tion mixtures were then irradiated under sunlight for 100
minutes, and absorbance was recorded at 10 minute intervals
using a UV-visible spectrophotometer. Dye degradation was
evidenced by the progressive fading of solution color and
Fig. 1 Absorbance spectra of dye at different time intervals: (a) CV dye

226 | Nanoscale Adv., 2026, 8, 224–239
a decrease in absorbance intensity, as shown in Fig. 1a and b.
The absorbance was measured at the dyes' maximum absor-
bance wavelengths (498 nm for CR (Fig. 1b) and 599 nm for CV
(Fig. 1a)). For kinetic studies, ln(C0/Ct) versus time was plotted to
determine the rate constant (k) for the degradation reaction.
Eqn (1) was used to determine the concentrations of dyes
degraded.

Degradation of azo dyeð%Þ ¼ A0 � Af

A0

� 100 (1)

Here, A0 and Af represent the initial and the nal absorbance of
solutions, respectively.

2.4. Effect of reaction parameters (pH, initial dye
concentration, catalyst dose, and radical scavengers) on dye
degradation

The effect of reaction mixture pH on dye degradation was
examined by altering the pH of the dye solution (2, 4, 6, 8, 10,
and 12), utilising 0.1 M HCl or 0.1 M NaOH. For every batch
reaction, the catalyst dose (50 mg/20 mL) was added to the dye
solution, followed by 20 minutes of stirring and then exposure
to sunlight for 100 minutes. The degradation (%) was moni-
tored by continuously recording the UV-vis spectroscopic
absorbance data.

To evaluate the initial dye concentration effect on degrada-
tion, dye solutions with concentrations of 10, 20, 30, 40, and
50 ppmwere prepared. Each sample solution (20mL) wasmixed
with 50 mg of the photocatalyst and stirred in the dark for 20
minutes to establish adsorption–desorption equilibrium. The
mixtures were then exposed to sunlight and dye degradation
was monitored spectrophotometrically.

To study the effect of catalyst dosage, varying amounts of the
synthesized nanocatalyst (5–70 mg/20 mL) were added to
a 10 ppm solution of each dye. The same procedure as described
above was used to evaluate the degradation efficiency of each
batch reaction.

To examine the role of dominant ROS in the photocatalytic
process on the surface of the nanocatalyst, different radical
scavengers were used: isopropanol (IPA) for hydroxyl radicals
(cOH), p-benzoquinone (p-BQ) for superoxide radicals (cO2

−),
and (b) CR dye.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The ANN (MLP Regressor) showing the connected input,
hidden, and output layers.

Fig. 3 The Decision Tree Regressor's workflow, illustrating the hier-
archical structure of the decision nodes and leaves.
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Na2EDTA for photogenerated holes (h+), and L-ascorbic acid for
hydrogen peroxide (H2O2). Each scavenger (1 mM, 10 mL) was
added to the dye–catalyst suspension before exposure to
sunlight. The same procedure as described above was used to
evaluate the degradation efficiency of each batch reaction.

2.5. ML tool-based modelling and optimization

All machine learning operations were carried out on the Kaggle
computational platform, which offers a Python environment
equipped with widely used libraries such as scikit-learn,
pandas, NumPy, and Matplotlib. A structured pipeline frame-
work was developed to maintain consistency and reproduc-
ibility across preprocessing, model training, and evaluation
stages. During preprocessing, numerical features were stan-
dardized, and categorical variables were encoded to ensure
uniformity throughout the dataset. The decision tree regressor,
random forest regressor, support vector regressor with an RBF
kernel, and an ANN implemented as a multilayer perceptron
regressor were among the machine learning techniques utilized
for model training. Leave-One-Out Cross-Validation (LOOCV)
was performed during training to guarantee that the models
were well-tted and to enhance the trustworthiness of the
results.

Three regularly used error metrics – the mean absolute error
(MAE), the root mean square error (RMSE), and the coefficient
of determination (R2) – were then used to evaluate the predic-
tion effectiveness of these models. Aer dening the evaluation
metrics, the structural operations of the applicable ML models
are described to allow a better comprehension of their
structures.

ANN modelling is considered a better option over traditional
models, like regression or response surface models, because it
does not depend on predened functional relationships and
can accurately model systems that are nonlinear, multidimen-
sional, and very interactive. Also, ANNs learn directly from data,
which makes them more accurate at predicting things, more
adaptable to new situations, and more exible in experimental
elds that are complicated or unclear.35 The ANN (MLP
Regressor) workow comprises an output layer that predicts the
target variable, one or more hidden layers that conduct
nonlinear transformations, and an input layer that receives the
data. To reduce the disparity between anticipated and experi-
mental values, the network learns by altering its weights using
backpropagation. This design (Fig. 2) permits the modelling of
the dataset's complicated and nonlinear interactions.

The Decision Tree model (Fig. 3) separates the information
continually depending on feature values to minimize prediction
error at each node. While core nodes represent decision rules
generated from the input features, leaf nodes give the nal
predicted values. This format makes it easy to comprehend how
features affect the target variable.

2.6. DPPH, FRAP and TPC assays

The antioxidant potential of g-ZnO NPs, g-NiO NPs, and g-ZnO-
NiO NCs was evaluated by DPPH (1,1-diphenyl-2-picrylhydrazyl)
radical scavenging assay, total phenolic content (TPC), and
© 2026 The Author(s). Published by the Royal Society of Chemistry
FRAP (ferric reducing antioxidant power) assay, following the
reported procedure.36,37 The detailed description of antioxidant
assays is explained in Supplementary Information S2.

2.7. Statistical signicance

All photocatalytic studies were performed in triplicate, and the
data are reported as mean ± standard deviation (SD). Statistical
analysis was performed using ANOVA, with a signicance level
set at p < 0.05.

3. Results and discussion

The use of GA as both a capping and a reducing agent played
a key role in the green synthesis process. It regulates the
nucleation and growth of NPs, leading to a uniform size
distribution, an optimized energy bandgap, and improved
crystallinity. This eco-friendly approach not only enhanced the
stability and dispersion of the material but also aligned with the
principles of green chemistry, making the synthesized nano-
particles promising candidates for sustainable photocatalytic
applications.29

3.1. XRD analysis

X-ray diffraction (XRD) analysis was performed to investigate
the crystalline structure and phase composition of g-ZnO NPs,
Nanoscale Adv., 2026, 8, 224–239 | 227
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Fig. 4 XRD spectra of (i) g-NiO NPs, (ii) g-ZnO NPs, and (iii) g-ZnO-
NiO NCs.

Table 1 Crystallite parameters of g-ZnO NPs, g-NiO NPs and g-ZnO-
NiO NCs

Nanomaterial
Crystallite
size (nm)

Dislocation density
(q × 10−3) (nm−2)

Microstrain
(3 ×10−3)

g-ZnO NPs 28.24 1.25 0.42
g-NiO NPs 17.93 3.11 0.62
g-ZnO-NiO NCs 11.82 7.06 1.50
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g-NiO NPs, and g-ZnO-NiO NCs. The XRD pattern of g-ZnO NPs
revealed characteristic peaks at 2q values of approximately
31.7°, 34.4°, 36.2°, 47.5°, 56.6°, 62.8°, and 68.0°, which corre-
spond to the (100), (002), (101), (102), (110), (103), and (112)
crystal planes, as shown in Fig. 4(ii). These diffraction peaks are
in excellent agreement with the hexagonal wurtzite structure of
ZnO and match well with the standard JCPDS Card No. 36-1451.
The sharpness and intensity of the peaks indicate the high
crystallinity of the synthesized g-ZnO NPs.38,39

Similarly, the XRD pattern of the g-NiO NPs exhibited
prominent peaks at 2q values of around 37.2°, 43.3°, 62.8°,
75.4°, and 79.4°, which are indexed to the (111), (200), (220),
(311), and (222) planes of the cubic phase of NiO, conrming
successful synthesis of phase-pure NiO NPs, as shown in
Fig. 4(i). These peaks correspond to the standard JCPDS Card
No. 04-0835 and indicate a well-crystallized structure of g-NiO
NPs.40

For the g-ZnO-NiO NCs, the XRD pattern (Fig. 4(iii))
demonstrated a combination of diffraction peaks from both
ZnO NPs and NiO NPs, validating the formation of a binary
nanocomposite. The presence of distinct peaks from both
components suggests that g-ZnO NPs and g-NiO NPs retained
their respective crystalline structures without forming any
secondary phases, supporting the successful fabrication of
a heterojunction system. The coexistence of hexagonal ZnO and
cubic NiO in the composite structure is essential for the
formation of a Z-scheme heterojunction, which is benecial for
enhanced photocatalytic performance.

The crystallite characteristics of the nanomaterials were
estimated using eqn (2)–(4), as illustrated in the literature.41–44

The values of crystallite parameters are displayed in Table 1.
The crystallite characteristics of g-ZnO NPs, g-NiO NPs, and g-
ZnO-NiO NCs revealed distinct structural differences that
signicantly inuence their potential applications. The g-ZnO
NPs possessed the largest crystallite size (28.24 nm), accompa-
nied by the lowest dislocation density (1.25 × 10−3 nm−2) and
microstrain (0.42 × 10−3), indicating a more stable and less
defective crystal structure. In contrast, the g-NiO NPs exhibited
a smaller crystallite size (17.93 nm) along with a higher
228 | Nanoscale Adv., 2026, 8, 224–239
dislocation density (3.11 × 10−3 nm−2) and microstrain (0.62 ×

10−3), suggesting a greater concentration of structural defects
and internal strain relative to ZnO. The g-ZnO-NiO nano-
composites (NCs) displayed the smallest crystallite size (11.82
nm) and the highest dislocation density (7.06× 10−3 nm−2) and
microstrain (1.50 × 10−3), reecting pronounced lattice distor-
tions at the ZnO–NiO interface. Such an increase in structural
imperfections and strain within the NCs indicated a highly
reactive surface, which can enhance catalytic activity, charge
carrier separation, and overall reactivity in applications such as
photocatalysis and sensing. Consequently, the synthesis of g-
ZnO-NiO NCs resulted in a defect-rich material with prom-
ising potential for advanced technologies that benet from
elevated surface activity.

D ¼ kl

b cos q
(2)

d ¼ 1

D2
(3)

3 ¼ b

4 tan q
(4)
3.2. FTIR and ZP analysis

The FTIR spectra (Fig. 5a) provided insight into the functional
groups present on the surface of the GA-capped g-ZnO, g-NiO
NPs, and g-ZnO-NiO NCs. The broad absorption band
observed around 3400 cm−1 in all samples corresponds to the
O–H stretching vibrations, indicating the presence of hydroxyl
groups from GA. The characteristic band around 1700 cm−1 was
attributed to the C]O stretching vibration, conrming the
presence of carboxyl groups from GA, which play a crucial role
in stabilizing and capping the nanoparticles. Bands appearing
in the region of 500–700 cm−1 were associated with metal–
oxygen (M–O) vibrations: Zn–O in the case of g-ZnO NPs, Ni–O
for g-NiO NPs, and both for g-ZnO-NiO NCs.45,46 Some additional
bands (1000–600 cm−1) in the FTIR spectra might be attributed
to the presence of Zn–O–Zn and Ni–O–Ni bonds in the nano-
structures, as supported by the literature.46,47 The successful
incorporation of these functional groups conrmed that GA not
only acted as a reducing agent but also as a stabilizing agent
during green synthesis.

Zeta potential analysis (Fig. 5b–d) was conducted to evaluate
the surface charge and colloidal stability of the synthesized
nanostructures. The measured zeta potentials were −31.25 mV
for g-ZnO NPs,−25.92 mV for g-NiO NPs, and−30.09 mV for the
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 (a) Comparative FTIR spectra of gallic acid, g-ZnO NPs, g-NiO NPs, and g-ZnO-NiO NCs, (b) ZP of g-ZnO NPs, (c) ZP of g-NiO NPs, and
(d) ZP of g-ZnO-NiO NCs.
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g-ZnO-NiO NCs. These signicantly negative values indicated
good colloidal stability and strong electrostatic repulsion
among particles, which prevents agglomeration. The high
surface charge was primarily attributed to the presence of
ionizable groups from gallic acid, conrming effective capping.
Notably, the slightly lower zeta potential of the g-NiO NPs
compared to g-ZnO NPs suggested a variation in surface inter-
action between GA and metal oxide surfaces. The g-ZnO-NiO
NCs exhibited a zeta potential value close to that of g-ZnO,
indicating stable composite formation with retained surface
charge characteristics, which contributes to enhanced disper-
sion and photocatalytic performance.
3.3. Optical properties of NPs and NCs

The UV-visible absorption and Tauc plot analyses offer signi-
cant insights into the optical characteristics and band structure
of g-ZnO NPs, g-NiO NPs, and g-ZnO-NiO NCs. The UV-vis
spectra of g-ZnO NPs (Fig. 6a(ii)) showed a clear absorption
edge around 358 nm, depicting a wide band gap. The g-NiO NPs
(Fig. 6a(i)) had an absorption peak close to 288 nm, and the g-
ZnO-NiO NCs (Fig. 6a(iii)) had an absorption edge around
317 nm. The change in the absorption edge for the NCs implies
that ZnO and NiO interact strongly with each other electroni-
cally, which conrms that a heterojunction has formed that
improves the absorption of visible light. In addition to the
© 2026 The Author(s). Published by the Royal Society of Chemistry
shiing, the g-ZnO-NiO NC peak was also relatively broader
than that of pristine NPs, indicating the wide sunlight
absorbing potential and visible light responsiveness of NCs. A
similar trend has been reported previously for Z-scheme
heterojunctions.48

Tauc plot analysis further validated the optical properties by
calculating the band gaps of the synthesized nanomaterials.49

The Tauc plot of the sample was plotted utilizing eqn (5), where
a, h, n, and B denoted the molar extinction coefficient, Planck's
constant, frequency, and proportionality constant, and n
represents the nature of electron transition (n = 1/2) for direct
transitions.

ðahnÞ1n ¼ B
�
hn� Eg

�
(5)

The g-ZnO NPs (Fig. 6b) exhibited a direct band gap of
3.15 eV, while g-NiO NPs (Fig. 6c) showed a slightly narrower
band gap of 2.78 eV, indicating better absorption in the visible
range. Importantly, the g-ZnO-NiO NCs (Fig. 6d) demonstrated
a reduced band gap of 2.90 eV, falling between that of pure g-
ZnO NPs and g-NiO NPs. The narrowing of the band gap in
the NCs was due to the two metal oxides working together,
which makes it easier to separate charges and increases pho-
tocatalytic efficiency. Conclusively, the optical characterization
supported that the incorporation of NiO with ZnO not only
Nanoscale Adv., 2026, 8, 224–239 | 229
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Fig. 6 (a) UV-vis spectrum of g-NiO NPs (i), g-ZnO NPs (ii), and g-ZnO-NiO NCs (iii), (b) Tauc plot of g-ZnO NPs, (c) Tauc plot of g-NiO NPs, and
(d) Tauc plot of g-ZnO-NiO NCs.
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improves visible light responsiveness but also optimizes the
electronic structure through the formation of a Z-scheme
heterojunction. This made the g-ZnO-NiO NCs a promising
candidate for efficient solar-driven photocatalytic applications.

3.4. SEM and EDX analyses

The SEM, particle size distribution histogram, and EDX anal-
yses collectively conrm the morphology, size, and elemental
composition of the g-ZnO NPs, g-NiO NPs, and g-ZnO-NiO NCs.
Generally, it has been observed that with a decrease in particle
size in nanomaterials, the surface area increases, resulting in
a larger number of active sites on the catalyst and improved
photocatalytic activity. More interaction of the pollutant with
the catalyst surface results in better adsorption on the surface
and more generation of ROS for redox reactions.50

In the SEM images, g-ZnO NPs (Fig. 7a) appeared as agglom-
erated granular particles with a relatively uniform distribution.
Their corresponding particle size distribution histogram (Fig. 7b)
showed an average size of 78.9 ± 12.3 nm, indicating moderate
uniformity in NP dimensions. The EDX spectrum (Fig. 7c)
conrmed the presence of Zn and O as major elements, vali-
dating the formation of g-ZnO NPs with high purity.

The g-NiO NPs (Fig. 7d) exhibit a slightly more irregular
morphology with dense packing of the particles. The particle
size distribution histogram (Fig. 7e) showed a wider range of
particle sizes, with an average size of 86.6 ± 16.1 nm. EDX
analysis (Fig. 7f) showed strong peaks for Ni and O, as well as
230 | Nanoscale Adv., 2026, 8, 224–239
weak signals for Cl, Na, Si, S, and Ca. These weak signals might
have occurred due to trace impurities.

The SEM image of the g-ZnO-NiO NCs (Fig. 7g) showed
a more compact, embedded shape that is typical of NCs. The
histogram of particle size distribution (Fig. 7h) showed that the
average size was 75.5 ± 16.7 nm, which means that both oxides
were successfully combined at the nanoscale. The EDX spec-
trum (Fig. 7i) displays distinct peaks for Zn, Ni, and O, affirming
the successful synthesis of the composite material containing
both ZnO and NiO phases.
3.5. Photocatalytic activity of g-ZnO NPs, g-NiO NPs, and g-
ZnO-NiO NCs

The photocatalytic performance of g-ZnO NPs, g-NiO NPs, and
g-ZnO-NiO NCs was systematically evaluated against crystal
violet (CV) and congo red (CR) dyes under solar irradiation. As
shown in Fig. 8a and b, all materials demonstrated progressive
dye degradation with increasing irradiation time; however, g-
ZnO-NiO NCs exhibited the highest efficiency, achieving
∼95% CV and ∼92% CR degradation within 100 min. In
contrast, g-ZnO NPs and g-NiO NPs showed comparatively lower
degradation efficiencies, indicating the synergistic effect of the
heterojunction in the nanocomposite.

The kinetics of the degradation reaction were studied using
the Langmuir–Hinshelwood mechanism (eqn (6)), which
demonstrates the dependence of the rate constant on the
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 (a) SEM image of g-ZnO NPs, (b) particle size histogram of g-ZnO NPs, (c) EDX spectrum of g-ZnO NPs, (d) SEM image of g-NiO NPs, (e)
particle size histogramof g-NiONPs, (f) EDX spectrumof g-NiONPs, (g) SEM image of g-ZnO-NiONCs, (h) particle size histogram of g-ZnO-NiO
NCs, and (i) EDX spectrum of g-ZnO-NiO NCs.
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concentration of the pollutant and surface coverage of the
catalyst.51

Rate of reaction ¼ �dC

dt
¼ krq ¼ krKC

1þ KC
(6)

Here, kr, K, q, and C represent the reaction rate constant, reac-
tant adsorption constant, fraction of catalyst surface coverage,
and pollutant concentration at time t. Since the concentration
of dyes is very low, the rate of degradation is mainly dependent
on the concentration of the pollutant and eqn (6) cancer
equation (eqn (7) and (8)).

�dC

dt
¼ kt (7)

On integration,

ln

�
C0

Ct

�
¼ kt (8)

Here, C0 and Ct represent the initial and nal concentrations of
CV and CR dyes aer time ‘t’. By plotting ln(C0/Ct) vs. t, the
kinetic analysis (Fig. 8c and d) revealed that the degradation
followed pseudo-rst-order kinetics for both dyes, with the
highest rate constants (k) observed for g-ZnO-NiO NCs – 2.84 ×

10−2 min−1 for CV and 2.56 × 10−2 min−1 for CR – signicantly
© 2026 The Author(s). Published by the Royal Society of Chemistry
higher than those for g-ZnO NPs (1.42× 10−2 min−1 for CV; 1.37
× 10−2 min−1 for CR) and g-NiO NPs (1.33 × 10−2 min−1 for CV;
1.19 × 10−2 min−1 for CR). The superior activity of g-ZnO-NiO
NCs can be attributed to enhanced charge separation and
preservation of strong redox potentials via a Z-scheme electron
transfer pathway. Furthermore, GA-capping played a dual role:
it enhances the dispersion and stability of the NPs and provides
surface functional groups that facilitate dye adsorption and
interaction with reactive radicals. This combination of efficient
charge carrier dynamics, preserved redox potential, and surface-
mediated adsorption–reaction synergy accounted for the
markedly superior photocatalytic activity of g-ZnO-NiO NCs
compared to their single-component counterparts.

3.6. Effect of pH, catalyst dose, initial dye concentration,
and radical scavengers

The photocatalytic efficiency of g-ZnO-NiO NCs toward CV and
CR dyes was strongly inuenced by pH (Fig. 9a). pH affects the
adsorption efficiency of the dye molecules on the surface of the
catalyst. Since the catalyst's surface is negatively charged, as
indicated by the ZP value, the adsorption of the dyes must
increase with a decrease in pH.52,53 But experimentally, it was
observed that the dye degradation increased progressively from
acidic to slightly alkaline media, with maximum removal (95%
Nanoscale Adv., 2026, 8, 224–239 | 231
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Fig. 8 Degradation of dye on the surface of g-NiONPs (i), g-ZnONPs (ii), and g-ZnO-NiO NCs (iii): (a) CV dye and (b) CR dye; and kinetics plot of
degradation of (c) CV dye and (d) CR dye under optimum reaction conditions (10 ppm initial dye concentration, 50 mg/20 mL catalyst dose, and
pH 8).
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for CV, 92% for CR) observed at pH 8. Under acidic conditions
(pH 2–4), degradation efficiency dropped signicantly due to
protonation of dye molecules, capture of radicals and electrons
by hydronium ions, and surface charge alteration of the cata-
lyst, which hindered electrostatic adsorption. At higher alkaline
pH (>8), a slight decline was observed, possibly due to OH−

oversaturation leading to recombination of photogenerated
electron–hole pairs. These ndings are consistent with reports
that optimal pH enhances surface hydroxyl radical formation
and dye–catalyst interaction.3

Catalyst dosage also had a pronounced effect on dye degra-
dation, as shown in Fig. 9b. An increase from 5 mg to 50 mg
improved degradation efficiency, attributed to the availability of
more active sites for dye adsorption, photon absorption, and
reactive species generation, as described in the literature.54

Beyond 50 mg, a marginal decrease occurred, likely due to
excessive turbidity and light scattering, which reduced light
penetration and photon utilization efficiency.55

The initial dye concentration study (Fig. 9c) revealed that the
highest removal rates occurred at 10 ppm (95% CV, 92% CR).
Generally, the rate of removal of pollutants increases with an
increase in concentration due to an increase in collisional
probability between pollutant molecules and catalysts.
However, aer optimal concentration, the degradation effi-
ciency is decreased due to the turbidity of the solution in pho-
tocatalytic systems.56,57 Therefore, the increase of dye
concentration from 10 ppm to 50 ppm decreased degradation
efficiency. This reduction is ascribed to increased competition
232 | Nanoscale Adv., 2026, 8, 224–239
of dye molecules for active sites and reduced light trans-
mittance in more concentrated solutions, leading to lower
reactive radical generation per dye molecule. Similar trends
have been reported for other semiconductor photocatalysts.49

Radical scavenger experiments (Fig. 9d) provided mecha-
nistic insights into the degradation pathway.58 Addition of L-
ascorbic acid (L-AA, an O2c

− scavenger) reduced degradation to
∼59% (CV) and ∼57% (CR), while Na2EDTA (a hole scavenger)
caused the most signicant decrease (∼43% CV, ∼38% CR),
indicating that photogenerated holes (h+) played a dominant
role. Isopropanol (cOH scavenger) and p-benzoquinone (p-BQ,
O2c

− scavenger) also reduced efficiency, conrming that both
hydroxyl radicals and superoxide radicals participate in dye
degradation. The pronounced effect of Na2EDTA suggests that
the Z-scheme heterojunction of g-ZnO-NiO NCs effectively
preserves high oxidation potential in the valence band of NiO,
enabling hole-driven generation of cOH radicals.

To further verify the generation of ROS and electron transfer
in NCs, the band edge positions of g-ZnO NPs and g-NiO NPs
were calculated using the Butler-Ginley method (explained in
Supplementary Information S3), which revealed that both oxides
possess valence bands sufficiently positive to drive oxidative
processes, while their conduction bands have relatively positive
potentials for superoxide generation. g-ZnO NPs, with a band gap
of 3.14 eV, exhibited valence and conduction band potentials of
approximately +2.86 V and −0.28 V vs. NHE, respectively. In
contrast, g-NiO NPs, with a narrower band gap of 2.78 eV, showed
corresponding potentials of +2.49 V and −0.29 V vs. NHE. These
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 9 Effect of (a) pH, (b) catalyst dosage, (c) initial dye concentration, and (d) radical scavengers on dye degradation.
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positive valence band positions exceed the oxidation potential of
the hydroxyl radical formation reaction (OHc/OH− z +2.44 V vs.
NHE at pH 7), enabling photogenerated holes to oxidize surface
hydroxyl ions or water molecules to highly reactive OHc radicals.
However, since their conduction band potentials are more posi-
tive than −0.33 V vs. NHE, the threshold required to reduce
molecular oxygen to superoxide radicals (O2c

−), the photogene-
rated electrons in both g-ZnO NPs and g-NiO NPs lack sufficient
reducing power to initiate this reaction. Consequently, under
illumination, these materials predominantly facilitate oxidative
pathways involving h+ and OHc generation, while the formation
of superoxide radicals remains thermodynamically unfavorable.
However, from the experimental results (Fig. 9d), it can be
observed that all the ROS, including O2c

−, were produced on the
interface of g-ZnO-NiO NCs that strongly supported the appro-
priate band alignment of the oxides in the NCs.

Based on radical scavenging experiments, a Z-scheme mecha-
nism of electron transfer was proposed in the g-ZnO-NiO NCs, as
shown in Fig. 10. The proposed Z-scheme mechanism involved
solar-light-induced excitation of electrons, generating electron–
hole pairs in NCs, and the electrons from the CB of one material
are transferred to the VB of other materials, resulting in the better
charge separation of electrons in the CB of the 2ndmaterial and h+

in the VB of the 1st material.35,59,60 In the heterojunction, photog-
enerated electrons in the CB of ZnO recombine with photogene-
rated holes in the VB of NiO at the interface. This selective
recombination results in the highly reducing electrons in the CB of
© 2026 The Author(s). Published by the Royal Society of Chemistry
NiO (ECB more negative) and the strongly oxidizing h+ in the VB of
ZnO (EVB more positive). The retained electrons in NiO can effec-
tively reduce dissolved oxygen to cO2

−, while the holes in ZnO
oxidize water or hydroxide ions to hydroxyl radicals (cOH). These
ROS act synergistically to break down dye molecules into smaller,
less toxic products, leading to effective mineralization. Hence, the
optimal photocatalytic performance at pH 8, 50 mg catalyst dose,
and 10 ppm dye concentration, combined with ROS results,
conrmed that the degradation mechanism followed a Z-scheme
charge transfer pathway, where synergistic action of h+, O2c

−,
and cOH radicals drives efficient breakdown of CV and CR dyes
under solar irradiation. The proposed degradation mechanism is
illustrated in Supplementary Information S4. Briey, the degra-
dation mechanism of azo dyes on g-ZnO-NiO NCs under sunlight
occurs via a Z-scheme photocatalytic route involving the following
steps. Firstly, on exposure to solar irradiation, both g-ZnO NPs and
g-NiO NPs absorb photons, resulting in the generation of e−/h+

pairs. These active charge carriers then drive a chain of redox
reactions at the catalyst surface. The h+ in ZnO's VB oxidize
adsorbed water or hydroxyl ions to produce cOH and hydronium
ions, while the electrons in NiO's CB convert O2 to O2c

−. The O2c
−

can further change into hydroperoxyl radicals (HO2c) and hydrogen
peroxide (H2O2), which break down into more cOH radicals,
intensifying the oxidative environment. These ROS, along with
direct hole oxidation, attacked the dye molecules. This resulted in
intermediate intermediates, and in the end, the dye was fully
mineralized into CO2 and H2O. So, the synergistic charge transfer
Nanoscale Adv., 2026, 8, 224–239 | 233
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Fig. 10 Proposed Z-scheme heterojunction based on g-ZnO NPs and g-NiO NPs.

Nanoscale Advances Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
N

ov
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
1/

20
26

 3
:3

0:
06

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
in the g-ZnO-NiO NCs enhanced carrier separation, maintained
simultaneous oxidation and reduction events, and explained why
azo dyes break down so well in sunlight.

3.7. ML-assisted modelling and optimization of dye
degradation

ML models were applied to predict the performance of the pho-
tocatalytic degradation of different experimental conditions. The
study was done on two dyes, CV and CR. The three parameters –
pH, dose of catalyst, and initial dye concentration – were
manipulated independently, whilst the remaining parameters
were kept constant. In both cases, graphs were used to compare
the experimental predictions andmodel predictions. These three
parameters were tested together via Leave-One-Out Cross-
Validation (LOOCV) in order to ensure that the model evalua-
tion was correct. Various statistical parameters, like R2, RMSE,
and MAE, were analyzed to understand the level of accuracy of
each model quantitatively. In order to determine the effect pH
has on ML, the pH was varied with a constant dosage of catalyst
and initial concentration of dye. Keeping the other parameters
constant, the ML models were congured to forecast the degree
of degradation over the test range of the pH values, and then the
results were plotted against the actual results. Table S1 provides
a summary of the data employed in the case. The data set was
divided into three parts, which were a training set (70%), a testing
Table 2 Performance comparison of multiple MLmodels in predicting
degradation efficiency across different pH levels

Model

Training set Testing set

R2 RMSE MAE R2 RMSE MAE

Decision Tree 0.981 2.162 1.427 0.917 4.588 4.222
Random Forest 0.958 3.243 2.729 0.793 7.180 5.637
ANN 0.983 2.033 1.458 0.904 4.898 4.178

234 | Nanoscale Adv., 2026, 8, 224–239
set (15%), and a validation set (15%). This was done so that the
network could learn, be tested, and be validated. The models
were compared to each other to assess the suitability for
prediction, as indicated in Table 2 and Fig. S1.

To further verify the model's reliability, predictions were
examined under the optimized conditions (catalyst dose: 50 mg,
pH: 8, and initial concentration: 10 ppm) to assess the accuracy
of the decision tree model. Table 3 illustrates a comparison of
the predicted and experimentally observed degradation effi-
ciencies of CV and CR dyes under optimized pH conditions
utilizing the decision tree model. The model demonstrated
robust predictive accuracy, exhibiting a minimal difference of
1.5% between projected and actual values for both dyes, hence
affirming its dependability in forecasting photocatalytic degra-
dation performance.

To better demonstrate the predictability of the highest-
performing as well as second-best model, an actual vs. pre-
dicted degradation graphs were also plotted, as shown in Fig.
11a (Decision Tree model) and Fig. 11b (ANN model).

To analyze the effect of catalyst dose, the catalyst dose was
changed in the range of 5–70 mg, while keeping the other
parameters constant. The dataset has 16 rows and 6 columns,
with the dose of the catalyst changed and all the other param-
eters kept constant. Table S2 presents an overview of the dataset
used for this case, displaying sample rows of doses of the
catalyst, associated xed conditions, and experimental degra-
dation results. The comparison of the models' performance is
Table 3 Actual versus predicted degradation efficiency under opti-
mized conditions of pH by the decision tree model

Dye
Predicted value
(%)

Actual value
(%)

Difference
(%)

CV 93.50 95.00 1.50
CR 93.50 92.00 1.50

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 11 Actual vs. predicted degradation efficiency (%) plots of the best-performing models for the pH optimization: (a) Decision Tree model, (b)
ANN model.
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illustrated in Table S3 and Fig. S2, which shows the best tting
of the decision tree model. Table 4 showed the comparison of
predicted and observed degradation efficiencies of CV and CR
dyes under optimized catalyst dose settings, as ascertained by
the decision tree model. The ndings indicated that the model
closely aligns with experimental results, exhibiting slight devi-
ations of 4.25% for CV and 1.25% for CR. This minor variation
signies that the model accurately reects the impact of catalyst
dosage on dye degradation performance, exhibiting
commendable prediction accuracy and reliability.

To better demonstrate the predictability of the highest-
performing (decision tree) as well as second-best models
(random forest) for catalyst optimization, an Actual vs. Pre-
dicted graph were also plotted for each value, as shown in Fig.
12a (Decision Tree model) and Fig. 12b (Random Forest model).

Similarly, for the machine learning modelling of the initial
dye concentration (ppm), the parameters, i.e., pH and catalyst
dosage, were kept constant. The data set comprises 10 rows with
6 columns, out of which the initial dye concentration was
changed while the rest of the parameters were kept constant.
Table S4 shows the preview of the data set utilized for this case,
depicting sample rows of the initial dye concentration, corre-
sponding conditions, and experimental degradation outcomes.
Table 4 Actual versus predicted degradation efficiency under opti-
mized conditions of catalyst dosage by the decision tree model

Dye
Predicted value
(%)

Actual value
(%)

Difference
(%)

CV 90.75 95.00 4.25
CR 90.75 92.00 1.25

© 2026 The Author(s). Published by the Royal Society of Chemistry
The performance of the models is shown in Table S5 and
Fig. S3, which shows the best tting of the ANN (MLP) model. At
optimized dye concentration, the degree of agreement between
predicted and actual values is depicted in Table 5. The ANN
model demonstrated excellent predictive performance, with
minimal differences of 1.16% for CV and 0.10% for CR, indi-
cating a high level of accuracy and strong correlation between
predicted and experimental degradation efficiencies.

To better demonstrate the predictability of the highest-
performing (ANN) as well as second-best (decision tree)
models for the initial dye concentration optimization, an actual
vs. predicted graph were also plotted for each value, as shown in
Fig. 13a (ANN model) and Fig. 13b (Decision Tree model).
3.8. Total organic carbon content and reusability analyses

The extent of mineralization of CV and CR dyes by g-ZnO-NiO
NCs was evaluated through TOC measurements (Fig. 14a).
The TOC removal increased steadily with irradiation time,
indicating progressive breakdown of dye molecules into
smaller, less complex organic intermediates, followed by
mineralization into CO2, H2O, and inorganic ions. Aer 5 hours
of solar irradiation, the TOC removal efficiencies reached 84%
for CV and 80% for CR, indicating that the photocatalyst ach-
ieved both effective decolorization and signicant mineraliza-
tion of the dyes. Themarginally higher mineralization efficiency
observed for CV can be attributed to its simpler aromatic
structure, whereas the more complex diazo conguration of CR
tends to generate more stable intermediate compounds during
degradation. These ndings demonstrate the strong perfor-
mance of the Z-scheme heterojunction in maintaining active
oxidative and reductive species over extended irradiation,
thereby facilitating thorough pollutant mineralization.
Nanoscale Adv., 2026, 8, 224–239 | 235
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Fig. 12 Actual vs. predicted degradation efficiency (%) plots of the best-performing models for the catalyst optimization: (a) Decision Tree
model, (b) Random Forest model.

Table 5 Actual versus predicted degradation efficiency under opti-
mized conditions of dye concentration by the ANN (MLP) model

Dye
Predicted value
(%)

Actual value
(%)

Difference
(%)

CV 93.84% 95.00% 1.16%
CR 91.90% 92.00% 0.10%

Fig. 13 Actual vs. predicted degradation efficiency (%) plots of the best-p
Decision Tree model.
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The reusability of g-ZnO-NiO NCs was evaluated through ve
successive photocatalytic cycles for the degradation of CV and
CR (Fig. 14b). Only a slight reduction in efficiency was noted,
with CV removal decreasing from 95% to 89% and CR removal
from 92% to 86% aer the 5th run. This minor decline in
activity is likely due to partial catalyst loss during recovery,
surface contamination from adsorbed intermediates, or slight
erforming models for the initial dye concentration: (a) ANN model, (b)

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 14 (a) Extent of mineralization of dye molecules by TOC analysis and (b) reusability studies of g-ZnO-NiO NCs.
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alterations in surface active sites. Despite this, the strong
retention of photocatalytic performance across multiple cycles
underscores the excellent stability and durability of the GA-
capped Z-scheme NCs, affirming their potential for real-world
wastewater treatment applications.

3.9. Antioxidant potential of g-ZnO NPs, g-NiO NPs, and g-
ZnO-NiO NCs

GA is well known to possess antioxidant power of the neutrali-
zation of ROS and free radicals by the donation of hydrogen
Fig. 15 Antioxidant activity results of g-ZnO NPs, g-NiO NPs, and g-Zn

© 2026 The Author(s). Published by the Royal Society of Chemistry
atoms or electrons through the aid of several hydroxyl groups.
This property is important in decreasing the oxidative stress,
which plays a major role in the prevention of inammation, cell
damage, and other chronic diseases, including cancer, heart
disease, and neurodegenerative disorders. In the case of its
application as a capping agent, GA has the capacity to alter the
antioxidant characteristics of NPs and NCs as demonstrated by
the outcomes of the TPC, FRAP, and DPPH assays (Fig. 15). The
testing of GA-capped NPs by the use of these assays showed that
there was a concentration dependent rise in antioxidant activity
O-NiO NCs by: (a) TPC assay, (b) FRAP assay, and (c) DPPH assay.
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in all the samples analyzed. g-ZnO NPs and g-NiO NPs demon-
strated a high level of phenolic content, equal to 109.6 ± 3.2 and
98.5 ± 2.5 mgGAE mL−1 at a concentration of 500 mg mL−1,
respectively, as illustrated in Fig. 15a. Meanwhile the g-ZnO-NiO
NCs showed the highest phenolic content of almost 119.2 ± 3.5
mgGAE mL−1. Similarly, in the FRAP assay, the g-ZnO NPs have
shown higher reducing power than the g-NiO NPs. The reducing
strengths shown by g-ZnO NPs and g-NiO NPs were 153± 4.2 and
141.7± 3.8 mgGAEmL−1, respectively. The highest reducing power
of 178.5 ± 2.5 mgGAE mL−1 was shown by the g-ZnO-NiO NCs, as
depicted in Fig. 15b. In addition, the DPPH radical scavenging
activity supported the high level of antioxidant activity exhibited
by the g-ZnO-NiONCs, with 85± 2.5% inhibition of DPPH radical
as compared to the g-ZnO NPs (81 ± 2.0%) and g-NiO NPs
(74 ± 1.5%) at the same concentration, as shown in Fig. 15c. The
high antioxidant activity of the g-ZnO-NiO NCs in all the assays
was attributed to the synergies between g-ZnO and g-NiO that
enhance the reactive surface area and charge transfer dynamics
between the two in NCs. Further, the capping and stabilizing
effect of GA is also vital, since it adds a vast amount of hydroxyl
groups, which not only increase the phenolic content and radical-
scavenging effect but also avoid the agglomeration of NPs. The
results described here demonstrated that GA functionalization
has a great contribution in improving the natural antioxidant
properties of the metal oxide nanoparticles and enabling the
nanocomposites to perform better as compared to the individual
component nanoparticles. In conclusion, the g-ZnO-NiO NCs are
the most efficient antioxidant material and may be considered
for treating oxidative stress.
4. Conclusion

Gallic acid-capped ZnO nanoparticles, NiO nanoparticles, and
their Z-scheme g-ZnO-NiO nanocomposites were successfully
synthesized through a green synthesis route and exhibited
remarkable photocatalytic performance for degrading CV and CR
dyes under solar illumination. The g-ZnO-NiO nanocomposites
outperformed the individual oxides, achieving up to 95% and
92% degradation of CV and CR, respectively, with corresponding
rate constants of 2.84× 10−2 min−1 and 2.56× 10−2 min−1, along
with high mineralization efficiencies of 84% and 80%. The
enhanced photocatalytic activity was ascribed to efficient charge
separation and strong redox potential enabled by the Z-scheme
heterojunction, which promoted the formation of highly reac-
tive cO2

− and cOH radicals. The catalyst maintained excellent
stability and reusability over repeated cycles, underscoring its
suitability as a sustainable and durable photocatalyst for waste-
water treatment. Furthermore, machine learning models effec-
tively simulated the photocatalytic degradation behavior of CV
and CR under various experimental parameters. Among the
models tested, Decision Tree, ANN, and Random Forest demon-
strated the highest predictive accuracy, conrming the potential
of ML-based approaches to optimize reaction conditions and
support experimental design in photocatalysis. The antioxidant
studies revealed the higher antioxidant potential of g-ZnO-NiO
NCs, as evidenced by their high TPC (119.2 ± 3.5 mgGAE mL−1),
238 | Nanoscale Adv., 2026, 8, 224–239
FRAP (178.5 ± 2.5 mgGAE mL−1), and DPPH radical scavenging
power (85 ± 2.5%), as compared to g-ZnO NPs and g-NiO NPs.
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