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iptors and explainable prediction
of iron carbide nanoparticles' cytotoxicity via the
Enalos Cloud platform

Maria Antoniou, abc Dimitra-Danai Varsou, cd Andreas Tsoumanis,acd

Georgia Melagraki,e Iseult Lynch f and Antreas Afantitis *acdg

Iron carbide nanoparticles (ICNPs), a distinct type of magnetic nanostructure, have been proposed as novel

candidate therapeutic agents for a wide range of biomedical applications, yet their biocompatibility remains

a critical concern for their safe implementation. To mitigate the need for excessive experiments that screen

bio-related interactions through conventional pathways, in silico methodologies have been established as

cost and time-efficient alternatives. This study presents the development of data-driven workflows for the

risk assessment of ICNP-induced cytotoxicity. Two modelling strategies were established: an evidence-

based approach relying on experimental features and exposure conditions, and an atomistic-based

approach combining attributes that describe NPs at the atomistic scale. While the former methodology

struggled to meet the requirements for robust quantitative predictions, the models implemented on the

enriched dataset displayed improved accuracy. The resultant Random Forest model fully adheres to the

principles outlined by the OECD for the development of quantitative structure–toxicity relationship

(QSTR) models. Beyond deciphering the mechanistic influence of individual features, the effect of the

selected nanodescriptors was reviewed through Shapley additive values and permutation importance

analyses to reveal key input characteristics that drive cell viability predictions. The produced model is

disseminated as a free to use web service hosted by the Enalos CHIASMA Cloud Platform (https://

www.enaloscloud.novamechanics.com/chiasma/icnp/) and data are publicly available through the

NanoPharos database for easy access to the nano-safety community.
1 Introduction

Decades of research in nanotechnology have revolutionised
numerous industries, from agriculture and cosmetics to energy
storage and electronics.1,2 In medicine and healthcare, nano-
materials (NMs) have long been explored for their potential in
diagnostics and treatment modalities.3 Their high surface-to-
volume ratio, tuneable physicochemical properties, and ability
to interact with biological systems at the molecular level have
led to advances in drug and gene delivery, imaging, biosensing,
and regenerative medicine.2 Magnetic nanoparticles (MNPs) are
particularly promising due to their unique superparamagnetic
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behaviour and controlled manipulation by external magnetic
elds.4,5

Iron carbides have long been recognised as active catalytic
phases in Fe-based Fischer–Tropsch synthesis, where the
cementite (q-Fe3C), hexagonal (3-Fe2C), pseudo-hexagonal (30-
Fe2.2C) and Hägg carbide (c-Fe5C2) crystalline phases are
formed as intermediates.6,7 Beyond the bulk material's indus-
trial relevance for liquid fuel production, iron carbide nano-
particles (ICNPs) have recently been proposed as candidates in
biomedical applications.8–10 In bioimaging, they serve as effec-
tive contrast agents in Magnetic Resonance Imaging (MRI) and
Photoacoustic Tomography (PAT). They exhibit excellent
superparamagnetic properties, such as high saturation mag-
netisation (Ms ∼ 140 emu g−1), that enable them to improve
MRI contrast by shortening the relaxation times of surrounding
water molecules.9,11 Fe5C2 nanostructures were reported to
outperform iron oxide nanoparticles (IONPs) in generating
hypo-intensities on T2-weighted MRI maps due to their superior
transverse relaxivity (r2) values, with ICNPs exhibiting an r2 of
464.02 mM−1 s−1 compared to 178.30 mM−1 s−1 for IONPs.12,13

In a therapeutic context, ICNPs have shown great promise as
heatingmediators for magnetic hyperthermia (MHT).6,14,15 Their
high specic absorption rates enable efficient conversion of
© 2026 The Author(s). Published by the Royal Society of Chemistry
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external energy into heat under an alternating magnetic eld to
target tumour tissues.16,17 Their potential extends further to
photothermal therapy, photo- and chemo-dynamic therapy,18

and controlled delivery of antitumour drugs (e.g.,
doxorubicin).19

ICNPs are perceived as safer alternatives to other magnetic
NPs, as their carbon content improves the chemical inertness of
the NP and prevents oxidation. They present higher thermal
stability over metallic iron and iron oxide.20 Herrmann et al.
conducted a long-term exposure study on carbon-encapsulated
ICNPs in mice, revealing that despite persistent localisation in
lung and liver tissues, hardly any necrosis, tumorigenesis,
brosis, or inammation signs were detected over a one-year
period.21 We have recently prepared a systematic review (SR)
examining the toxicity of ICNP exposure in biomedical contexts,
that showed satisfactory biocompatibility of the material in an
in vitro setting.22 Nevertheless, an in silico strategy to assess their
toxicological impact is still lacking.

The cytotoxic potential of ICNPs can be examined through
the development of computational methods that correlate their
distinct physicochemical characteristics with their toxicity
proles. Nanomaterials have a vast array of properties that
inuence their interactions with the surroundingmedium upon
exposure to biological environments. Owing to their high
surface energy they absorb biomolecules (e.g., proteins, lipids
and polysaccharides), which leads to the formation of
a biomolecule corona, a phenomenon that modies their
identity.23–25 Additionally, complex interactions control mecha-
nisms like oxidative stress, membrane disruption, and genera-
tion of reactive oxygen species (ROS), which collectively govern
cytotoxic outcomes.26 Predicting NMs' cytotoxicity in silico is
inherently a non-straightforward task, as it requires a model
capable of capturing this complexity. Mathematical frameworks
and physics-based simulations have proven instrumental in
addressing this challenge; grouping and read-across models,27

nano-quantitative structure activity/toxicity relationships (nano-
QSARs or QSTRs),28–30 adverse outcome pathways (AOPs)31,32 and
physiologically based pharmacokinetic (PBPK) models33,34 have
previously been established for a range of inorganic NMs. Such
methods have gained tremendous popularity in nano-safety
assessment during the past decade as an alternative to tradi-
tional in vivo and in vitro testing. The emergence of articial
intelligence (AI) and increasing availability of NM-focused
databases has produced a growth in machine learning (ML)-
based nano-QSARs.35

In silico studies in nanotechnology are immensely delimited
by small datasets, usually with little variation in the reported
NMs properties (in part driven by the relatively narrow scope of
read-across in the EU regulatory context36 which requires
a common core composition as a basis for structural similarity
read-across approaches), and heavy reliance on experimental
results and/or computationally intensive simulations.37,38 This
oen leads to case-by-case studies focused on specic types of
NPs, and results in models with constrained applicability to
other classes of NMs. Nanotoxicity studies with broader appli-
cability prospects must undergo laborious data mining
processes, given that the required information is extracted from
© 2026 The Author(s). Published by the Royal Society of Chemistry
one-at-a-time experiments. Recent efforts by Labouta et al.39 and
Shirokii et al.40 have focused on collecting cytotoxicity evidence
frommultiple individual studies across various NM types. Meta-
analyses were conducted on these large, diverse datasets,
allowing them to validate their ndings on external data.

Another challenge is the lack of universally accepted
descriptors, which are essential for representing the distinctive
characteristics of NP samples. Nanodescriptors encoding size,
shape, chemical composition, surface charge are typically
acquired from direct measurements aer NP synthesis, through
advanced microscopy techniques and other analytical methods.
Beyond experimental properties, theoretical descriptors serve as
supplementary input for models in nanotoxicology.38

Quantum–mechanical properties derived from density func-
tional theory (DFT) methods (e.g., highest occupied/lowest
unoccupied molecular orbital (HOMO/LUMO) energies,
enthalpy of formation, absolute electronegativity, etc.), as well
as periodic table descriptors (e.g., atomic radii, periodic number
of metals, the number of valence electrons, etc.) have been
widely used as input to nano-QSARs in the past. Other tech-
niques have been successful in annotating the three-
dimensional nanostructures, while accounting for their size,
shape and attached ligands.41,42 Despite their high computing
requirements, these full particle nanodescriptors capture
geometric and topological features and give a measure of the
NMs' stability under the exposure conditions. Computational
descriptors from the 3D representation of inorganic NPs have
been incorporated into ML pipelines in NMs' toxicology
research.43–46

ML has proven invaluable not only in predicting NM's
properties and adverse effects, but also in interpreting amodel's
decisions with different explainable AI (XAI) techniques. Since
most ML models are designed for use and interpretation by
non-informatics experts (e.g., experimentalists, industry stake-
holders, regulators and risk assessors), it is essential to
strengthen user condence in the model's utility by explaining
the factors that drive a prediction. XAI's goal is to understand
the reasoning behind the generated predictions, rather than
just the outcomes themselves.47 The inclusion of mechanistic
insights from omics data and AOPs into ML models is also ex-
pected to open up the opaque nature of apical endpoints
currently used in much of toxicological regulation which give
very limited insights into the source of any observed effects in
vivo.48 Yu et al. showcased the advantages of XAI in nano-
informatics through two studies: one on predicting the toxicity
of metal oxide and quantum dot NPs,49 and another on inves-
tigating NP uptake during seed priming.50

This work compares two in silico methodologies to examine
the biological response of ICNPs in a physiological environ-
ment. The initial modelling procedure involved using the
current knowledge gathered from the previously conducted
SR.22 The modelling procedure was further amplied by atom-
level structural information derived from the crystal structure
of the bulk iron carbide material. By comparing the predictive
accuracy of these methods, we demonstrate the added value of
integrating structural NP information for improved predictive
performance. Furthermore, model interpretability techniques
Nanoscale Adv., 2026, 8, 646–661 | 647
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were pursued for both physicochemical and structural features
supporting users in understanding the basis on which the
model predictions are generated. The curated dataset has been
made available in a dedicated database, and the nal trained
model has been deployed as a web service for easy access.
2 Materials and methods
2.1. Dataset

In our previous work, information on the toxicological proles
of ICNPs applied in a biomedical context was collected via data
mining the literature, with the majority of the included studies
using colorimetric assays to evaluate the biosafety of ICNPs. Ten
immortalised cell lines from human and murine organisms
were exposed to the NPs, and the percentage of surviving cells
compared to a control sample was measured at different NP
concentrations. All viability endpoints (n = 186 data points)
correspond to a 24-hour treatment period, which represents the
dominant timeframe in the conducted studies. Shorter and
longer incubation times were excluded due to paucity of avail-
able data, as these time points did not provide sufficient
coverage of ICNP chemistries.

The unied dataset comprised nine attributes related to
physicochemical properties, the experimental setup and
exposure-related factors. The diameter of the spherical iron
carbide cores (ranging from 4.9 to 44.3 nm) and the thickness of
the shell material, which wasmostly around 2–2.5 nm, were also
extracted from the publications. Each experimental sample has
a distribution of NP sizes, serving as a measure of size unifor-
mity. The standard deviation from the average size in each
treatment was derived from the studies to quantify the vari-
ability in size, as narrower NP size deviations are oen associ-
ated with more uniform cellular interactions and
internalisation rates.51,52
Fig. 1 Schematic representation of the experimental design of ICNP
modifications, size ranges, and exposure concentrations. The dataset
assessments.

648 | Nanoscale Adv., 2026, 8, 646–661
In addition, information about the surface chemistry of
ICNPs was gathered. Where present, shell materials encircling
the iron carbide core included layers of iron oxide, amorphous
carbon, silica or manganese dioxide. Surface modications with
therapeutic molecules, stabilising agents and stealth coatings
were also documented. Different chemical moieties, such as
poly(acrylic) acid,53 pluronic acid,15 and polyethylene glycol
(PEG),18,54 were used for surface alterations to amplify the
particles' biocompatibility. Lastly, the remaining attributes
were related to the experimental setup, including the conditions
under which the biological evaluation took place (i.e., cell type,
treated organism, cell line health status (normal or cancer
cells)). A graphical summary of the experimental dataset
composition is presented in Fig. 1.
2.2. Atomistic descriptors for data enrichment

Nanodescriptors that characterise the NPs at the atomic scale
were generated using a modied version of the NanoConstruct
toolbox.55 The ICNP spherical cores of different sizes found in
the main dataset were constructed from the unit cell of the
material. NP structures were derived from the most thermody-
namically stable crystal congurations of the respective iron
carbide phases, and they correspond to energy-minimised
formations of monodisperse, uncoated NPs in vacuum. A
core–shell model was applied to describe the structural
composition of the NPs, where the shell region was dened as
the atomic layer extending up to 4 Å from the surface, while the
remaining atoms formed the NP core. This approach facilitated
the derivation of nanodescriptors quantifying essential features
of surface and bulk atoms. The tool calculates atomistic
descriptors for three NP regions: the entire particle, the iron
carbide core and the shell region surrounding the core.

The Crystallographic Information Files (CIF) of three iron
carbide phases were derived from the Crystallography Open
s, including the distribution of core phases, shell materials, surface
includes both murine and human cell models used in cytotoxicity

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Model development schema: 70% of the assembled dataset was used to train and build models from a pool of ML algorithms. A nested k-
fold (k= 5) cross validation techniquewas used for hyperparameter optimisation, where one fifth of the instanceswere used for validation in each
split. The remaining 30% of the data (blind set) was used for external validation, which was followed by model interpretation.
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Database (Fe2C: 1543664.cif,97 Fe3C: 1008725.cif,98 Fe5C2:
1521831.cif99). The NanoConstruct tool generates a list of
candidate force elds from the OpenKIM repository,56 ranked
from less to more generic based on the chemical elements
present in the respective CIFs. For Fe–C phases, we selected the
modied embedded atom method (MEAM) interatomic poten-
tial by Liyanage et al..57 The MEAM parameters have demon-
strated good agreement with DFT results and experimental
measurements (±5%) for bulk iron and Fe–C alloys58 and have
been benchmarked for nanoscale iron carbide particles of
∼5 nm in size.59

A total of 57 atomistic descriptors related to the macroscopic
structure and microscopic properties of the NPs were computed
to augment the main dataset. The computed descriptors
included, but were not limited to, the number of atoms present,
NP volume and surface area, average potential and lattice
energies and force-related descriptors (e.g., coordination
parameters at cutoff distances of 3 Å, 4 Å, and 5 Å). These
descriptors were calculated either for the three mentioned
regions, or as descriptors expressing ratios or differences
between core and surface atoms. More information on the
comprehensive list of the computational descriptors can be
found in the original publication describing NanoConstruct.
2.3. Overview of the model development process

The current work examines two approaches to predict possible
cytotoxicity caused by ICNPs. The rst relies solely on the
evidence extracted from the literature to model cell viability in
a quantitative manner. The second approach estimates the cell
survival percentile by combining atomistic-based information
© 2026 The Author(s). Published by the Royal Society of Chemistry
that characterises the NP structures (Section 2.2) with the
existing experimental knowledge. The general proposed work-
ow followed for model development in both cases is depicted
in Fig. 2. The overall workow was conducted using the Isalos
(https://isalos.novamechanics.com/) (ref. 60) (v.0.4.0) analytics
platform, and the Python programming language.

The following algorithms were examined in an iterative
process: Random Forest (RF), k nearest neighbour (kNN), Linear
Stochastic Gradient Descent (SGD), Multi-layer Perceptron
(MLP), Light Gradient-Boosting Machine (LightGBM), and
XGBoost Regressor. They represent diverse learning paradigms,
including ensemble-based methods (RF, XGBoost), distance-
based proximity models (kNN), linear regression approaches
(Linear SGD), and neural network architectures (MLP). They
were tted on a portion of the initial data designated for
training (70%), which was separated from a test set for unbiased
evaluation.

To optimise the performance of each surveyed algorithm,
ne-tuning was conducted with a randomised search using
parameter combinations from a specied grid. An inner loop
was used for hyperparameter selection and an outer loop for
external model validation (Fig. 2). In the inner loop, a nested k-
fold (k = 5) cross-validation (CV) procedure was used to train
each model multiple times using a distinctive subset as the
training set and the remaining 20% subset for validating
purposes.61 In the nested CV scheme, the performance of the
trained models for each training fold was evaluated with Mean
Absolute Error (MAEcv) and the highest score averaged over the
ve holdout folds determined the best-performing algorithm
for each task. A summary of the key hyperparameters optimised
for each algorithm is provided in Table 1.
Nanoscale Adv., 2026, 8, 646–661 | 649
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Table 1 Optimised hyperparameters and normalisation requirements for each machine learning algorithm

Algorithm Optimised hyperparameters Feature scaling

Random Forest regressor Number of trees in the forest, tree depth, minimum impurity reduction required for a node to split No
k-Nearest Neighbours Number of neighbours, weight function Yes
Linear SGD Learning rate, maximum number of iterations Yes
MLP regressor Activation function for the hidden layer, initial learning rate No
LightGBM Number of boosted trees, learning rate No
XGBoost regressor Learning rate, maximum depth per tree No
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2.3.1. Data preprocessing. Once assembled into a stand-
ardised dataset, preprocessing steps included addressing
missing features that arose due to inconsistent reporting across
individual studies. Zeta potential, a property that approximates
NP surface charges and mediates cytotoxicity, was oen not
measured or reported in the collected studies, thus it was
omitted from the analysis. Categorical attributes were converted
into numerical forms with ordinal or binary encoding where
necessary, to map relationships within and between features.
Varied surface modiers across the dataset were grouped
according to their intended function (i.e., polymer-based,
protein-based, bare NPs and other).

Based on ISO standards for the performance of in vitro
assays, a decrease in cell viability to less than 70% of the control
sample is indicative of cytotoxic potential.62 Among the
samples, 18.3% are considered cytotoxic and 81.7% non-
cytotoxic. This skew can bias the model towards stronger
performance in predicting non-cytotoxic outcomes. Although
the modelled endpoint is a continuous measure rather than
a binary toxicity outcome, stratied sampling was applied
during the dataset split to maintain a balanced representation
of each viability category. The dataset was split into training and
test sets in a 70:30 proportion, where at least one treatment
from each original experiment was retained in the hold-out set
to ensure adequate representation of all available chemistries in
both subsets.

Distance-based and linear supervised algorithms are sensi-
tive to feature ranges and require normalisation, while rule-
based algorithms are considered scale-invariant. When stand-
ardisation was required (Table 1), values were transformed with
a z-score (Gaussian) function into features of zero mean value
and unit standard deviation. Normalisation was determined
based on the training subset and then it was applied to the test
set.

2.3.2. Feature selection. For the approach relyingmerely on
experimental and physicochemical measurements, all available
features were retained to capture the maximum possible
knowledge from this relatively limited dataset. In contrast,
feature selection was conducted for the augmented dataset due
to the signicantly larger pool of variables. Initially, features
that only described the biological evaluation (e.g., cell type,
health status of the cell) were omitted, while attributes char-
acterising the shell and coating material, the core and overall
size and the exposure dose were included. The majority of
calculated atomistic descriptors are dependent on nanoparticle
size, introducing unwanted multicollinearity in the extended
650 | Nanoscale Adv., 2026, 8, 646–661
dataset. As a measure to reduce redundancy among data,
attributes that contributed limited information (i.e., number of
atoms on core and surface) were excluded through zero-variance
ltering and a subsequent pairwise Pearson correlation analysis
(correlation >0.99). Five descriptors for coordination parame-
ters at the smallest cutoff distance returned zero values and
were excluded. This is observed due to the cutoff distance of 1.2
times the sum of atomic radii of Fe–C atoms being shorter than
the bond lengths between Fe–C atoms in the respective unit
cells, thus no neighbouring atoms are detected.

To further rene the selection, global feature importance
was determined by calculating Shapley Additive exPlanations
(SHAP) values for each feature (Section 2.4). SHAP-based feature
selection operates by computing values for each instance,
aggregating them to derive absolute mean scores for each
atomistic feature and retaining the highest-ranked ones.63 A
Random Forest Regressor with 40 estimators and a maximum
depth of 10 was trained on the full feature set and a TreeEx-
plainer64 was built on the established model. Attribute selection
was performed on the training data, to avoid information
leakage from the unseen test data.

2.3.3. Performance assessment. Following the hyper-
parameter optimisation for a selection of ML algorithms in the
nested CV schema, their performance was evaluated on the
remaining portion of the initial data that was not involved in the
training process (Fig. 2). The performance of the tuned models
was evaluated on previously unseen data samples by quanti-
fying the extent to which the predicted values are different to the
true measured observations. The equations for all statistical
metrics are provided in Table S1 of the SI for reference. The
algorithm exhibiting the best overall validation scores was
selected for nal modelling in both the evidence-based and
atomistic-based approaches.

To further assess the nal model, the leave-one-out (LOO) CV
technique was used due to its suitability for small datasets. To
eliminate concerns about potential overtting, the Y-
scrambling technique was applied with ve randomisations,
to examine whether the selected algorithm learns true correla-
tions among data rather than tting noise. As an external vali-
dation step, the nal model was evaluated according to the
acceptability criteria proposed by Golbraikh and Tropsha.65,66

These guidelines assume a sufficient QSAR if the following
conditions are met: (i) the LOO cross-validated correlation
coefficient (Qloo

2) must be greater than 0.5; (ii) the coefficient of
determination for predictions (R2) must exceed 0.6; (iii) the
difference between the predicted and observed determination
© 2026 The Author(s). Published by the Royal Society of Chemistry
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coefficients (R2 – Ro
2) should be less than 0.1; and (iv) the slopes

(k and k0) of regression lines through the origin must fall
between 0.85 and 1.15.

2.3.4. Applicability domain denition. The small datasets
and minimal NP diversity in NMs' in silico studies constraints
their practicality within the boundaries of the conditions used
to train a model. Although dening the applicability domain
(APD) in nanotoxicity modelling helps identifying the region of
the input space where the model's assumptions are regarded as
correct.67 A broad APD strategy for QSARs has yet to be adopted
by modellers and regulatory authorities.68

A distance-basedmethod was utilised here to dene the APD,
relying on the idea that the model's assumptions are more likely
to be valid for data points similar to the training data, based on
the proximity among those observations. Firstly, the distances
between all training samples are calculated, and the subset of
distances lower than their average is retained. Next, the new
average value <d> and standard deviation of the remaining
distances are determined to form an APD threshold as follows:

APDlimit = <d> + Zs (1)

A prediction for a query NP is deemed unreliable if the
computed distance from its nearest neighbour in the training
subset exceeds the predened APD limit. We considered a dual
distance assessment for dening the APD. Firstly, Euclidean
distances were used, with categorical attributes (shell material
and functionalised groups) excluded from the domain calcula-
tion. Subsequently, we employed the same methodology using
Gower distances to quantify similarity for mixed data types. The
Gower distance metric considers both continuous and cate-
gorical variables and allows feature-specic weights to be
assigned according to feature importance.69 While this distance
metric has been previously proposed as a quantitative measure
of similarity in materials informatics applications,70 to the best
of our knowledge it has yet to be introduced in an APD deni-
tion. Full details on the calculation of Gower distances and
feature weights, are provided in SI (S2).

2.4. Explainable AI prospects

Model interpretability is particularly important in elds like
nanotoxicology and risk assessment, where stakeholders' trust
in computational models is still developing. Thus, toolkits with
exploratory functionalities and visualisation features are used
to provide iconographic aid and ensure that the underlying
mechanisms governing the predictions are well-understood.
Several XAI techniques such as permutation feature impor-
tance, individual conditional expectation (ICE) with partial
dependence (PDP) plots, and Shapley additive explanations
(SHAP) have been used in nanoinformatics research thus far.
These methods can be performed either at a global (for the
model as a whole) or local (for each observation) level.

SHAP is a model-agnostic method adopted from game theory
that quanties the contribution of each feature to a model's
output.71 Formally, it provides a means for assigning a “contri-
bution” score to each feature, which represents the impact of
a feature on the predicted outcome. The SHAP value is thus the
© 2026 The Author(s). Published by the Royal Society of Chemistry
average contribution of feature i across all possible combinations
of features, and features with higher mean absolute SHAP values
are considered more contributory a model's output (eqn (S1)).
Negative values were associated with parameters that drove the
model's predictions towards cytotoxicity (lower cell viabilities),
while positive values pushed the predictions towards non-
cytotoxicity (higher cell viabilities). For this analysis, SHAP was
employed both at a global level to guide feature selection, and at
the local level to explain how individual features' values affect the
outcome of specic observations.

Additionally, ICE and PDP plots were further used to deci-
pher predictions. A PDP estimates the marginal effect of a given
independent variable on the predicted outcomes by averaging
over the inuence of all other variables.72 ICE plots extend PDPs
by visualising the individual dependence of each observation
separately, resulting in one curve per instance rather than
averaging effects.71,73 Plots for the most relevant features
impacting cytotoxicity were generated using the PDPbox toolbox
in Python (https://github.com/SauceCat/PDPbox/).74
3 Results and discussion

The objective of the present study is the development of
predictive models for the assessment of in vitro cytotoxicity
caused by exposure to ICNPs. Two workows were examined for
modelling the dose–response dataset reduction of cell viability
aer exposing immortalised cell lines to ICNPs. The former
direction relied on the experimental conditions and physico-
chemical parameters measured aer the synthesis of the NPs,
sourced from independent studies. The second approach
involved augmenting the original set of variables with compu-
tational descriptors that characterised the structural properties
of the NP core material.

Both methodologies for nanotoxicity prediction were devel-
oped within a coherent modelling and validation framework
that adhered to regulatory standards. The principles for QSAR
models published by the Organisation for Economic Co-
operation and Development (OECD) (updated in 2014) were
followed to ensure compliance with regulations. These guide-
lines include: (1) a denition of the modelled endpoint, (2) the
use of an unambiguous algorithm, (3) a transparent description
of the model's APD, (4) appropriate methods to measure
goodness-of-t, robustness, and predictive performance of the
model and (5) where feasible, mechanistic insights into the
selected variables.75 This section presents the evaluation of the
ML-based QSTRs developed for both approaches, highlights key
atomistic descriptors contributing to prediction accuracy, and
demonstrates the use of XAI for model interpretability. Finally,
the dissemination of the nalised modelling workow as a web
application is discussed.
3.1. Evidence-based approach

The initial approach leveraged the maximal available knowl-
edge derived from twelve experimental studies, containing
physicochemical parameters and exposure conditions. Core
diameter, shell thickness, NP concentration, surface
Nanoscale Adv., 2026, 8, 646–661 | 651
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Table 2 Model validation metrics based on test and training subsets
for the evidence-based approach

Statistical measure Test set Training set

R2 63.5% 95.2%
Adjusted R2 56.4% 94.8%
Mean absolute error 0.089 0.014
Mean squared error 0.021 0.002
Root mean squared
error

0.146 0.045
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modications and tested cell lines were among the modelled
features. Model evaluation relied on a diverse set of metrics
(Table S1) and model acceptance was contingent on meeting
Globraikh and Tropsha's criteria for QSARs.65,66

XGBoost emerged as the best performing regressor by di-
splaying the lowest MAEcv value over the ve holdout validation
sets in CV (MAEcv = 0.067). However, evaluationmetrics applied
on the two subsets (Table 2) demonstrate insufficient predictive
accuracy and overtting on the training data. Also, the model
only partially meets the acceptability criteria, reecting poor
external predictivity and overtting tendencies (Table 3). None
of the six tested algorithms meet all of the validation criteria,
which underscores the challenge of developing fully acceptable
QSTRs using low-sample datasets. In the case of ICNPs, algo-
rithms trained on the initial dataset alone are not capable of
capturing more complex relationships and extrapolating to
quantitative predictions, justifying our strategy to augment the
original data collected from the SR.
3.2. Atom-based approach

Subsequently, we incorporated atom-level structural descriptors
as additional features. Initially, 57 computational descriptors
were extracted to characterise the NPs of different iron carbide
phases and core sizes. A lter was applied on the supplemented
set of features to exclude the highly correlated features, nar-
rowing the pool to 33 descriptors (Fig. S1). The attributes
removed by the correlation lter were mainly related to the
atomic count distribution within the NP core and surface, or
they involved atomic arrangement properties such as bond
orientation and surface density.

Aer feature reduction, SHAP analysis was conducted on the
training subset to evaluate the global importance of each atom-
Table 3 Golbraikh and Tropsha's acceptability criteria for the XGBoost
Regressor

Metric threshold Score Acceptability criteria met

R2 > 0.6 R2 = 0.635 Yes
Qloo

2 > 0.5 Qloo
2 = 0.317 No

r2 − R0
2/r2 < 0.1 r2 − R0

2/r2 = 0.518 No
r2 � R0

02=r2\0:1 r2 � R0
02=r2 ¼ �0:005 Yes

�
�
�R0

2 � R0
02
�
�
�\0:3

�
�
�R0

2 � R0
02
�
�
� ¼ 0:332 No

0.85 < k < 1.15 k = 0.983 Yes
0.85 < k0 < 1.15 k0 = 0.988 Yes

652 | Nanoscale Adv., 2026, 8, 646–661
level attribute. The eight most contributing atomistic descrip-
tors were prioritised, as listed in Table 4. Five variables from the
initial dataset (core size, surface chemistry, shell material, shell
thickness, and administered dose) that are typically known
prior to NP synthesis were also selected, resulting in a nal set
of 13 key descriptors.

Model evaluation was initiated with the nested CV on the
training subset, with RF achieving the lowest CV error of MAEcv
= 0.026. Performance metrics on both training and test subsets
are listed in Table 5, with the best-performing algorithm high-
lighted in bold. The RF model's generalisation capability is
evidenced by consistent performance metrics between the two
subsets. The evaluation against Golbraikh and Tropsha's
acceptability criteria (Table 3) is as follows:

� R2 = 0.844 (Pass).
� Qloo

2 = 0.639 (Pass).
� r2 − R0

2/r2 = 0.082 (Pass).
� r2 � R0

02=r2 = −0.001 (Pass).
�
�
�
�R0

2 � R0
02
�
�
� = 0.068 (Pass).

� k = 0.994 (Pass).
� k0 = 0.995 (Pass).
All requirements for external predictivity are met. Results

from the Y-scrambling test (Fig. 3A) show that RF outperforms
the models trained on the scrambled response variable, whose
error metrics are clustered at higher values. This outcome
demonstrates that the selected model captures genuine corre-
lations within the data rather than relying on chance patterns.
The residual plot (Fig. 3B) illustrates the difference between true
and predicted cell viability values for the training (R2 = 88.8%)
and test (R2 = 84.4%) sets. Apart from a few outliers in both
subsets, the residuals are clustered relatively narrowly around
the zero line. However, the relative sparsity of data points in the
lower cell viability region (<40%) may affect the model's effec-
tiveness in detecting highly toxic conditions.

Next, a qualitative measure of model uncertainty was speci-
ed by dening the APD, according to OECD recommendations
(principle (3)).84 The obtained APD threshold value was equal to
96.307 for Euclidean distances and 0.2652 for Gower distances,
with all test samples falling within the APD limits. All key
information of the nal model is fully documented via a QSAR
Model Reporting Format (QMRF) template (S3 in the SI) for
transparency.76

Noticeably, the effectiveness of the tuned regression algo-
rithms applied on the extended set of features improves vastly,
compared to using the initial experimental data alone. The
atomistic-based approach yields signicantly lower cross vali-
dation scores (MAEcv = 0.026–0.044) across all tested algo-
rithms (Table S2). Full grid search settings and hyperparameter
congurations for the two methodologies are provided in Table
S3 of the SI le accompanying this work.
3.3. Limitations of the proposed methodology

While the current approach shows signicant improvement in
predicting ICNP-induced cell viability, several limitations must
be acknowledged. A key consideration is the lack of experi-
mentally measured properties such as zeta potential and
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Global feature importance sorted by mean SHAP value for the top eight influential atomistic descriptors

Notation Selected descriptor Mean SHAP value

D46 The average second hexatic order parameter of all atoms 0.0163
D7 The average difference of the potential energy between core and shell atoms (eV) 0.0137
D32 Lattice energy of NP (eV) 0.0129
D5 The average potential energy of the core atoms (eV) 0.0126
D15 The average coordination parameter (3 Å) of the core atoms 0.0112
D48 The average second hexatic order parameter of the shell atoms 0.0077
D21 The average coordination parameter (4 Å) of the shell atoms 0.0072
D33 Lattice energy of bulk material – lattice energy of NP (eV) 0.0061

Table 5 Training and test set metrics for each selected algorithm

Subset R2 Adjusted R2 MAE MSE RMSE

Random forest Test 0.844 0.704 0.063 0.007 0.083
Training 0.888 0.859 0.044 0.005 0.074

k-Nearest neighbours Test 0.518 0.087 0.109 0.021 0.146
Training 0.551 0.438 0.101 0.022 0.148

Linear SGD Test 0.251 −0.420 0.125 0.033 0.182
Training 0.310 0.136 0.125 0.034 0.184

MLP regressor Test 0.071 −0.760 0.136 0.041 0.203
Training 0.325 0.155 0.124 0.033 0.182

LightGBM Test 0.257 −0.410 0.125 0.033 0.181
Training 0.258 0.071 0.131 0.036 0.191

XGBoost regressor Test 0.807 0.635 0.061 0.009 0.092
Training 0.924 0.905 0.021 0.004 0.061
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hydrodynamic size. These parameters are used as markers of
surface charge and stability/accessibility to cells, respectively,
and are known to inuence the interactions of NPs with bio-
logical systems.77,78

Substantial limitations originate from the data used in this
study, as the dataset reects exposure at a xed time duration.
This incubation time may not capture meaningful cytotoxic
effects over longer exposure scenarios, as prolonged exposure
causes toxicity mechanisms different from those observed at
a 24-hour time point.79 The model is therefore calibrated for
a single-time effect, and extrapolation to shorter or longer
exposures falls outside its applicability domain.

The developed models were trained and validated on
aggregated data with high heterogeneity in terms of NP char-
acteristics and exposure conditions. For instance, conjugated
ligands and NP concentrations were selected independently
across the different studies each of which were performed in
different labs by different research groups. The presence of
a few outliers in Fig. 3B underscores the need for further data
collection to capture the full spectrum of cell survival responses.
In addition, since no oversampling methods were applied to
avoid synthetic redundancy, subtoxic treatments are being
overrepresented in the dataset. The limited dataset size is
reective of the poor availability of nano-related data in the
public domain. The scarcity of data and class imbalance remain
limiting factors for model generalisability.

Another potential weakness of the current approach is that
extrapolation of in vitro ndings to in vivo scenarios is not
feasible. The present work assumes that NMs adjacent to the
© 2026 The Author(s). Published by the Royal Society of Chemistry
ones found in the dataset induce similar cytotoxic effects.
However, the response of living organisms to the ICNPs remains
speculative.80,81 Finally, the model covers only the metabolic
activity of immortalised cells aer NP exposure as a cytotoxicity
endpoint. Other critical biochemical metrics including cell
uptake, protein expression, ROS production, and cell death,
which may portray a NMs' biosafety prole more thoroughly,
were not taken into account due to inadequate reporting in the
limited number of available studies. This may be due to the
focus on IONPs for use in biomedical applications – a widening
of the search criteria to toxicological studies more generally may
result in complementary data. As the models were built using
data strictly for FexCy spherical structures, the extrapolation to
other types and shapes of magnetic nanostructures should be
carefully considered by the users.
3.4. Interpretation of the selected descriptors

The intent of the h OECD principle for QSAR model devel-
opment and validation is to ensure that there is an association
between the descriptors used and the endpoint predicted; if
a descriptor in the model is considered as important, that
means it may act as a decisive factor in the cell viability
reduction caused by the NMs.

At rst, the selection of concentration is plausible, consid-
ering that the data used for modelling are derived from dose-
dependent viability plots. Moreover, NP toxicity is believed to
be inuenced by their size, since it controls their surface-to-
volume ratio and directly affects the translocation, diffusion,
Nanoscale Adv., 2026, 8, 646–661 | 653
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Fig. 3 Performance of the RF model: (A) validation results over five y-
randomisations. The blue dots represent the external validation
metrics (test set) for clarity, and (B) residual plots between the true (y)
and predicted (ŷ) cell viability values with ±10% tolerance lines.
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and accumulation of NPs in different organs and cell tissues.26

Shell materials and coating groups surrounding the NPs were
selected owing to their inuence on nano-bio interactions. The
surface functional groups determine how ICNPs interact with
cell membranes and tissues, shaping the protein corona formed
from the cell culture medium serum and ultimately impacting
cytotoxicity.82,83

The use of atomistic computations allows the transition
from the macroscopic to the microscopic level in the assess-
ment of the inuence of NP properties on the toxicity they
induce in cells. The average potential energy of core atoms and
the potential energy difference between core and shell atoms
were selected due to their correlation to the NP's structural
stability. Lower potential energies are indicative of more stable
structures, while large differences between the two layers of
atoms reect potential instabilities. The lattice energy of a NP
and its difference from that of the bulk material's lattice energy
are also descriptive of the particles' stability. Coordination
parameters, at a cutoff distance of 3 Å (D15) for core and 4 Å for
shell (D21), provide information into NP's atomic arrangements
by calculating the average number of neighbouring atoms of
a single atom.84

In addition to interpreting the inuence of individual
features mechanistically, XAI techniques were employed to
decipher the model's decision-making process. A post hoc SHAP
analysis was used to describe how each NP property inuences
the model's outputs in understandable terms. The summary
654 | Nanoscale Adv., 2026, 8, 646–661
plot in Fig. 4A shows the magnitude of each feature's impact on
the model's nal cell viability/cytotoxicity predictions when
compared to the average prediction. Each dot corresponds to
a sample of ICNP cellular toxicity obtained from the entire
extended dataset, and the colour signies the feature's value.
The features are ranked by greater importance and those
exhibiting negative SHAP values drive the model's output
towards lower survival percentages (i.e., higher cytotoxic
effects).

The results indicate that experimentally derived parameters
contribute more to the nal prediction, with the features
‘concentration’ and ‘coating group’ identied as the most
determinant ones. These ndings are in agreement with the
subgroup analyses conducted in our previous work.22 Fig. 4B
illustrates how the predictive performance of the RF model
evolves as features are incrementally added. While concentra-
tion and coating groups have emerged as the most inuential
factors driving cytotoxicity during the previous analysis, it is
clear that these two features alone are insufficient in achieving
reliable predictions and that performance improves consider-
ably with the inclusion of computational attributes. Notably,
although individual atomistic-level features appear to have
a limited direct effect on the response regardless of their
magnitudes, their combined presence in the model is
paramount.

More precisely, higher concentration values and coating
groups of lower ordinal values (encoding uncoated NPs) typi-
cally drive the output towards reduced cell survival rates. As
shown in the isolated PDP (Fig. 4C), at very low concentrations
predictions near zero effect and at doses higher than 10 mg
mL−1 ICNPs have a noticeable negative impact on cell survival.
Reduction in cell viability with increasing dose persists up to
100 mg mL−1 and further increases beyond that point have
a small additional effect. Also, while smaller ICNP core sizes
were associated with higher cytotoxicity in Fig. 4A, the direct
impact of this feature on model predictions is minimal. This
suggests that NP size alone does not inuence outcomes in
comparison to dose and surface modications. The trivial effect
of ICNP core size is also affirmed by the feature's interaction
with the most determinant feature (Fig. 4D), where NP size
impacts toxicity only at low doses (<25 mg mL−1). At higher
doses, the size becomes secondary as concentration fully drives
cytotoxicity.
3.5. Web implementation via the Enalos CHIASMA Cloud
platform

In an attempt to facilitate the safety assessment of ICNPs, the
RF model was integrated as an online web application via the
Enalos CHIASMA Cloud Platform. A collection of computational
and informatics workows on drug discovery,85,86 chemical
safety estimation,45,46,87 property calculation88,89 and virtual
nanostructure construction55,90 are hosted on the Platform.
Their distribution as freely offered Graphical User Interfaces
(GUIs) makes these models Findable, Accessible, Interoperable,
Re-useable (FAIR), and benets domain experts unfamiliar with
programming and ML trends. The web tool developed for this
© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (A) Local interpretability summary for the selected descriptors. (B) R2 and RMSE evolution with progressive addition of features to a RF
model (attributes are ranked by average SHAP value). (C) PDP (highlighted in orange) and ICE plots (blue lines) for the most relevant feature
correlating cell viability in the RF model. The feature distribution is displayed in bins below the x-axis, and the y-axis shows the centred effect of
concentration on the predicted outcome. (D) Two dimensional PDP between ICNP concentration and the core size of the NPs. Darker blue
regions indicate higher predicted viability.
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study can be easily accessed through the link https://
www.enaloscloud.novamechanics.com/chiasma/icnp/ or via an
application programming interface (API) for remote access,
allowing fast evaluation of ICNP toxicological impact. Besides
numerical estimations, the web service returns interpretability
plots for each submitted sample that illustrate the marginal
contribution of each feature value, helping users understand
why certain nano-formulations are estimated as potentially
hazardous (Fig. 5).

As noted above, limited input data (size, dose and surface
functionalisation) are enough to generate a reliable cell viability
prediction for ICNPs. Interested users can utilise the Nano-
Construct soware to derive the eight atomistic descriptors
required as input (see Table 4), by simply specifying the crystal
phase (e.g., CIF) and size of the material. The tool supports
a virtual screening environment: researchers are able to intro-
duce multiple entries for different input parameters and
observe how different ICNP characteristics might elicit unde-
sirable cellular responses.87 Virtual screening allows unt and
unfavourable candidate materials to be discarded before allo-
cating time and resources for their synthesis. Instead, experts
can prioritise and design potential NMs most likely to be safe
for humans and animals and that possess the desired proper-
ties for example of cellular uptake and retention for imaging, or
payload capacity for drug delivery applications.91,92 In this
context, the developed service can aid in reducing the number
© 2026 The Author(s). Published by the Royal Society of Chemistry
of NP syntheses and complementary experiments needed to test
their biocompatibility.

To demonstrate the applicability of our methodology on
a real-world scenario, we applied it to an blind dataset obtained
from Castellano-Soria et al.,93 which was not used in the original
training or test sets. This study evaluated the biocompatibility
of medium-sized Fe3C@C core–shell ICNPs (Fe3C phase:
Pnma62, graphite shell coating of ∼2.5 nm in thickness) using
the same experimental protocol adopted in our training data (24
hours in vitro exposure on MCF-7 tumour cells), on adminis-
tered doses between 12.5 and 100 mg mL−1. Despite the small
sample size (n = 4), the predicted values showed good align-
ment with experimental observations, achieving a MAEext of
0.033. To quantify uncertainty, a bootstrapping procedure was
applied, in which the initial dataset was resampled with
replacement 1000 times, and the RF model was retted for each
bootstrap sample. Validation metrics and 95% condence
intervals generated for the out-of-bag data are reported in the
QMRF (Section S3 in SI). Fig. 5 presents the GUI output of this
example, and the waterfall plots for two datapoints corre-
sponding to concentrations of 25 and 50 mg mL−1. In this case,
the absence of coating on the magnetic NPs appears to be the
main feature pushing the output towards non-cytotoxicity.

Model-friendly nanomaterials databases (e.g., eNano-
Mapper, S2NANO, NanoPharos, etc.) are fundamental in
promoting data reusability and sharing for widespread use
Nanoscale Adv., 2026, 8, 646–661 | 655
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Fig. 5 Example output from the web service. The results for each submitted sample include the cell viability prediction, an indication of reliability
based on APD with euclidean distances, and waterfall plots by clicking on a sample of interest. Features contributing to increased and decreased
predicted viability appear in red and blue, respectively. The two plots correspond to two datapoints from the blind set from ref. 93.
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among the scientic community.30,94,95 In alignment with the
FAIR principles,96 the curated dataset was uploaded to Nano-
Pharos, a repository that hosts ready-to-use datasets for nano-
QSAR development. All information, including the raw and
extended data used in this study, can be accessed via the link
https://db.nanopharos.eu/Queries/Datasets.zul?
datasetID=np29 and via an API (https://db.nanopharos.eu/
Queries/Datasets.zul?datasetID=np29) for further integration
into ML/modelling platforms. Assessments for other material
chemistries tested in either similar physiological contexts or
using multi-timepoint assays can be used to supplement the
current NanoPharos entry and support the development of an
approach with broader applicability domain.
4 Conclusion

In this work, we implemented computational methods for the
hazard assessment of iron carbide nanoparticles (ICNPs) in
a physiological context, a magnetic type of nanomaterial with
relatively sparse biosafety data. Two distinct approaches for the
prediction of cytotoxicity were explored: (1) one relying purely
on the maximal available knowledge from the experimental
dataset generated through a systematic review, and (2) a hybrid
one combining computational descriptors that correspond to
different properties and structural characteristics of the
magnetic cores on the atomistic level.

In the rst approach, an XGBoost algorithm demonstrated
the best predictive performance, displaying the lowest MAEcv
value (0.067) in a cross validation scheme. However, the model
was not successful in yielding reliable quantitative predictions
656 | Nanoscale Adv., 2026, 8, 646–661
for cell viability, since further evaluation revealed overtting
and inadequate external predictivity. In the latter approach, ve
experimental features -core size, surface chemistry, shell
material, shell thickness, and exposure concentration-were
collated with atomistic descriptors indicative of NP stability.
The RF algorithm was selected among a panel of algorithms to
proceed with the rest of the analysis (MAEcv = 0.026), and it was
validated using external validation, cross validation, and y-
scrambling methods. The optimal model trained using both
experimental and atomistic descriptors, achieved an R2 of
84.4% (on the test set) and met all the acceptability criteria for
quantitative predictions, outperforming the model developed
with the former approach.

A mechanistic interpretation was provided, and model-
agnostic methods were employed to break down the gener-
ated outputs to useful insights into the model's decision-
making process. SHAP analysis revealed that even though
ICNPs' size exhibits negligible association with induced toxicity
in cells, other experimentally derived features – concentration
and coating composition – have the greatest contribution to the
model's output. Feature addition analysis showed that the
supplemented atomistic descriptors, although weak predictors
individually, boost the RF's performance when combined with
the selected experimental inputs. The nal workow fully
adheres to the principles outlined by the OECD for the devel-
opment of QSARs and their documentation via a QMRF. A novel
APD denition is presented for datasets with mixed data types,
complimenting a well-established distance-based thresholding
methodology to account for both numerical and categorical
features.
© 2026 The Author(s). Published by the Royal Society of Chemistry
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The eventual model was disseminated as a publicly available
web application with an intuitive GUI to simplify its accessi-
bility among interested stakeholders. The web tool supports the
safe-by-design strategy, since it enables virtual screening of
potential ICNPs by showcasing how different NP characteristics
inuence cell viability.
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