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ng mechanochemistry forward: accelerating
and tuning organic synthesis by mechanochemistry

Isaiah R. Speight *a and James Mack *b
The ability of organic chemistry to solve
humanities most serious problems is
a story as old as chemistry itself. Major
advancements in the eld have been built
on the foundation of optimization, crea-
tivity, and by seizing bold opportunities
for growth. More recently, organic
chemists have sought to merge other
technologies with organic reactions to
push the boundaries of synthesis strate-
gies. Thus, photochemistry,1 ow chem-
istry,2 electrochemistry,3 biochemistry,4,5

as well as others have found their way
into the sphere of organic syntheses and
have proven robust tools for the chemist.
Mechanochemistry has proven extremely
useful to the organic chemist with the
appropriate experimental optimizations
and tool selection.6,7 The core areas in
which mechanochemistry can accelerate
the development of new organic chemical
approaches are through (a) the adoption
of advanced molecule preparation and
total synthesis, (b) the development of
combinatorial methods, and (c) the
creation of mechanochemical tools for
industrial applications. While mechano-
chemistry can add to the organic chem-
ist's toolbox, the eld of
mechanochemistry can benet from
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organic chemists developing tools for
making mechanochemistry more
predictable and desirable.
Areas in which
mechanochemistry
needs help from organic
chemists

Traditionally, organic chemistry is
divided into two complementary
branches: synthetic and physical organic
chemistry that work in tandem to expand
the boundaries of our understanding and
capabilities in chemistry. On one hand,
synthetic organic chemists focus on
making molecules to play a crucial role in
human advancement, particularly in
areas such as pharmaceuticals, agri-
chemicals, devices, polymers, and ne
chemical production. On the other,
physical organic chemists delve into the
underlying principles to seek a deeper
understanding of reaction mechanisms
and processes. This allows chemists to
more effectively predict and control
reactions, making syntheses more effi-
cient and reliable.

The Wöhler synthesis of urea in 1828
was the rst recognized organic reaction
and showed that organic compounds
could be created from inorganic
substances but the term “Physical
Organic Chemistry” was coined over
a century later by Louis P. Hammett.8
ciety of Chemistry
Since then, physical organic chemists
have signicantly enhanced the under-
standing of chemical reactions, as exem-
plied by Woodward and Hoffmann,
whose rules revolutionized organic
chemistry.9

Mechanochemistry is at a similar early
stage; its synthetic capabilities have out-
paced the understanding of its under-
lying mechanisms. It involves the use of
mechanical force to induce chemical
reactions, offering a solvent-free and
oen more environmentally friendly
approach to synthesis. However, for the
eld to advance, stronger collaborations
with physical organic chemists are
essential because synthetic chemists are
oen cautious about adopting new
methodologies without a solid under-
standing of the reaction pathways.

One of the main challenges facing
mechanochemistry is the lack of in situ,
structure-sensitive instruments. Physical
organic chemists oen rely on tech-
niques such as real-time, in situ NMR to
provide insights into the dynamic
processes occurring during a reaction.10

In contrast, mechanochemists typically
carry out post-reaction analyses. There
are some exceptions, and in situ tech-
niques have signicantly contributed to
our understating of metal–organic
frameworks (MOFs), cocrystals, and
various inorganic syntheses.11–27
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Mechanochemistry in
total synthesis and
advanced molecule
preparation

Some of the seminal accomplishments
are in synthesizing large, complex mole-
cules such as natural products, active
pharmaceutical ingredients, macrocyclic
peptides, complex dyes, to demonstrate
the versatility of mechanochemistry.
Syntheses of molecules such as
morphine,28 taxol,29 saxitoxin,30 strych-
nine,31 and countless others are examples
of robust chemical syntheses across
challenging chemical landscapes. While
technologies such as biocatalysis,32–34

photocatalysis,35,36 and electrocatalysis37

have been applied to total synthesis in
numerous ways, mechanochemistry has
yet to nd its footing.

Despite the potential benets of
mechanochemistry, such as solvent
reduction, the use of unique reagents by
removing solubility hurdles, or by accel-
erating reactions due to more efficient
mixing, mechanochemistry has not yet
been broadly adopted for advanced
molecule preparation. However, the
continually expanding library of
mechanically susceptible reactions
provides an important opportunity for
organic chemists to integrate mechano-
chemistry into total synthetic strategies.
Examples include reactions such as
Frǐsčić and Colacino's synthesis of
tolbutamide, an active anti-diabetic
pharmaceutical ingredient.38 Work by
Lamaty and coworkers has developed
sustainable mechanochemical methods
for peptide synthesis such as aspartame,
a commercially used articial sweetener,
on a multi-gram scale.39 Other groups
have explored multi-peptide synthesis
and have transformed complex mole-
cules such as the work by Yu and Su
et al.,40 but it is still necessary to employ
mechanochemistry for more complex
syntheses and advanced molecules. A
solvent-free or solvent-minimal total
synthesis of a natural product would be
a signicant feat and propel mechano-
chemistry into the same relevance as
photochemistry or electrochemistry.
Thus, mechanochemistry has the
10 | RSC Mechanochem., 2026, 3, 9–14
potential to facilitate organic syntheses
by not requiring a solution phase.40

Mechanocatalysis has become more
common due to the use of the reaction
vessel as an active reagent.41,42 The use of
auxiliaries in grinding to tune reactivity
has also added versatility43,44 so that the
mechanochemical toolbox is rapidly
expanding and is poised for use in total
synthesis in a robust way.
Advances and
opportunities for
combinatorial chemistry

Chemists have utilized different energy
sources for conducting chemical reac-
tions. The most common method
involves thermal energy. In the 18th
century, chemists discovered how to use
electricity to conduct chemical reac-
tions,45 and by the late 18th and early
19th centuries, light emerged as a new
energy source for facilitating new reac-
tions not accessible under thermal or
electrochemical conditions.1 Over the
past decades, biological materials,
specically enzymes, have been utilized
to inuence chemical reactions.46 While
each of these energy sources are powerful
on their own, it is difficult to apply them
together.47

Mechanochemistry, on the other
hand, can be combined with other energy
sources. Combining mechanical and
thermal energy has unlocked pathways
for synthesizing organic reactions that
were not possible by simply just milling
or heating;48–55 for example, the combi-
nation of milling and thermal energy has
been shown to provide direct control over
the product distribution.56

Mechanochemistry and photochem-
istry have been combined to carry out
solvent-free photomechanochemical
reactions that are faster and typically
have higher yield than their solution
counterparts.57–61 They can form different
products from solid-state crystal photol-
ysis or solution reactions. For instance, it
was demonstrated that photomechano-
chemical [2 + 2] dimerization of ace-
naphthylene, yields syn stereoselectivity,
while photochemistry in the solid state
without mechanochemistry yields anti
stereoselectivity, while solution
© 2026 The Author(s
photolysis is not selective.62More recently
these processes were carried out on
300 mmol scale, roughly equivalent to 65
grams. By comparison to solution reac-
tions, photomechanochemical reactions
required anywhere from 20–90 minutes
versus 48 hours in solution.58

One more effective combination is
enzymatic chemistry under mechano-
chemical conditions, a eld known as
mechanoenzymology.63–69 Enzymes have
been shown to perform excellently in
a variety of milling methods from ball
mills to extruders. Similar to thermal-
and photo-chemistry, they occur faster
and with higher yields than their sol-
vothermal counterparts.

As our understanding of mechano-
chemistry grows, its versatility and ability
to develop tandem processes are
becoming increasingly viable. Although
there is great potential, the rate-limiting
step is oen the development of new
mechanochemical tools so that these
combinatorial elds will continue to
expand as more tools are developed.
Development of
industrial scale
mechanochemistry tools

The tools utilized in mechanochemistry
are not foreign to industrial-scale
processes. Extrusion is commonly used
in pharmaceutical formulation
processes,70 and ball milling has also
been used at an industrial scale. Mixers
of various types have been use for mate-
rials, fuels, paints and coatings
manufacturing.71,72 It is common for
mechanochemistry to co-opt methodolo-
gies and tools from other elds, but for
mechanochemistry to fully be adopted by
industrial chemists, there must be more
studies on scaling mechanochemistry, in
situ monitoring, and developing contin-
uous methods.

An excellent example of industrial
mechanochemistry is the work by Hast-
ings and coworker's on continuous
extrusion for Sonogashira coupling.73 The
method was implemented using
a process-scale extruder, which facilitated
scale up of the reaction. Browne and
coworkers recently performed a contin-
uous extrusion for amide formation at
). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5mr90035b


Editorial RSC Mechanochemistry

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
8/

20
26

 7
:5

3:
15

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
the 500 g scale.74 These examples,
amongst many more, showcase the
ability for mechanochemistry to be
applied by industry.

In order for mechanochemistry to
truly be applied industrially at the 1 kg
scale or greater, it requires a closer
connection between academics and
emerging industrial technology groups,
to create novel solutions. Additionally,
industrial chemists should be encour-
aged by management to explore ways to
have mechanochemical methods follow
good manufacturing and regulatory
standards, which would enable mecha-
nochemical implementation at critical
junctures not previously accessible.
Additionally, improving the ability to
understand and predict mechanochem-
istry will help give industrial chemists
and engineers more reason to buy in to
the use of mechanochemical methods in
their workow.

Mechanochemistry has the ability to
serve as a powerful scouting tool for R&D
scientists while also giving the opportu-
nity for manufacturing and process
chemists to minimize waste output and
potentially lower risk. Browne and
coworkers highlight the safety consider-
ations of mechanochemistry, and their
insights showcase the limitations of ball
milling from a safety angle, which invoke
thought-provoking conversations about
the safety of other forms of chemistry.75

Through the use of mechanochemistry,
as well as other chemical technologies,
we can help promote better chemical
practice, more thoughtful chemical
hygiene, and thus clear our conscience
when doing chemistry at larger scales.

As mechanochemistry continues to
evolve and expand, organic chemists will
slowly add it to their toolbox. However,
we as mechanochemists have to invite
organic chemists into the conversation.
The development of new tools, reactions,
and platforms will encourage more cross
collaborative efforts. As photochemistry,
electrochemistry, and microwave chem-
istry all started with an idea and a few
testbeds, mechanochemistry is
continuing along a similar pathway
towards broader adoption. Mechano-
chemistry can move organic chemistry
forward by creating new and unique
reaction platforms and testbeds but, in
© 2026 The Author(s). Published by the Royal So
the same vein, organic chemistry can
propel mechanochemistry upwards
through providing targets of interest as
well as the tools for better understanding
at the mechanistic level.
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T. Frǐsčíc, Introducing Students to
Mechanochemistry via
Environmentally Friendly Organic
Synthesis Using a Solvent-Free
Mechanochemical Preparation of the
Antidiabetic Drug Tolbutamide, J.
Chem. Educ., 2019, 96(4), 766–771,
DOI: 10.1021/acs.jchemed.8b00459.

39 T. Mohy El-Dine, M. Lavayssiere,
H. Adihou, G. Subra, T.-X. Métro,
). Published by the Royal Society of Chemistry

https://doi.org/10.1038/s41596-021-00545-x
https://doi.org/10.1038/s41467-021-26264-1
https://doi.org/10.1038/s41467-021-26264-1
https://doi.org/10.1016/j.ssnmr.2020.101687
https://doi.org/10.1039/C9SC06224F
https://doi.org/10.1021/acs.cgd.9b01477
https://doi.org/10.1021/acs.cgd.9b01477
https://doi.org/10.1039/D0CC03862H
https://doi.org/10.1002/anie.201800147
https://doi.org/10.1002/anie.201800147
https://doi.org/10.1021/acs.inorgchem.7b00707
https://doi.org/10.1002/chem.201702489
https://doi.org/10.1021/acs.analchem.7b02871
https://doi.org/10.1038/ncomms7662
https://doi.org/10.1038/nprot.2013.100
https://doi.org/10.6023/cjoc201702048
https://doi.org/10.1021/acs.chemrev.2c00763
https://doi.org/10.1021/acs.chemrev.2c00763
https://doi.org/10.1038/s41586-025-09551-5
https://doi.org/10.1038/s41586-025-09551-5
https://doi.org/10.1039/C9OB02627D
https://doi.org/10.1021/acs.orglett.3c00334
https://doi.org/10.1021/acs.orglett.3c00334
https://doi.org/10.1021/jacs.2c00224
https://doi.org/10.1021/jacs.2c00224
https://doi.org/10.1021/jacs.5c05269
https://doi.org/10.1126/science.adl6163
https://doi.org/10.1126/science.adl6163
https://doi.org/10.1021/jacs.5c07148
https://doi.org/10.1021/jacs.5c07148
https://doi.org/10.1021/jacs.5c04761
https://doi.org/10.1021/acs.jchemed.8b00459
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5mr90035b


Editorial RSC Mechanochemistry

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 1

/2
8/

20
26

 7
:5

3:
15

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
O. Ludemann-Hombourger and
F. Lamaty, Synthesis of Peptides by
Reactive Extrusion. Application to the
Continuous and Solventless
Preparation of Aspartame, Chem. Eur.,
2024, e202400007, DOI: 10.1002/
ceur.202400007.

40 J. Yu, Y. Zhang, Z. Zheng and W. Su,
Total mechano-synthesis of 2-
cyclopropyl-4-(4-uorophenyl)
quinoline-3-acrylaldehyde—a pivotal
intermediate of pitavastatin, RSC
Mechanochem., 2024, 1(4), 367–374,
DOI: 10.1039/D4MR00036F.

41 S. Hwang, S. Grätz and L. Borchardt, A
guide to direct mechanocatalysis,
Chem. Commun., 2022, 58(11), 1661–
1671, DOI: 10.1039/D1CC05697B.

42 W.Pickhardt, S.Grätz andL.Borchardt,
DirectMechanocatalysis: UsingMilling
Balls as Catalysts, Chem. – Eur. J., 2020,
26(57), 12903–12911, DOI: 10.1002/
chem.202001177.

43 H. P. DeGroot and T. P. Hanusa,
Solvate-Assisted Grinding: Metal
Solvates as Solvent Sources in
Mechanochemically Driven
Organometallic Reactions,
Organometallics, 2021, 40(21), 3516–
3525, DOI: 10.1021/
acs.organomet.1c00316.

44 C. Wang, C. Yue, A. Smith and J. Mack,
Rate enhancement of using silica gel as
a practical,efficient grinding auxiliary
to break p-p stacking under
mechanochemical conditions, J.
Organomet. Chem., 2022, 976, 122430,
DOI: 10.1016/
j.jorganchem.2022.122430.

45 R. D. Little and K. D. Moeller,
Introduction: Electrochemistry:
Technology, Synthesis, Energy, and
Materials, Chem. Rev., 2018, 118(9),
4483–4484, DOI: 10.1021/
acs.chemrev.8b00197.

46 D. Mondal, H. M. Snodgrass,
C. A. Gomez and J. C. Lewis, Non-
Native Site-Selective Enzyme Catalysis,
Chem. Rev., 2023, 123(16), 10381–
10431, DOI: 10.1021/
acs.chemrev.3c00215.

47 M. J. McLeod, S. A. E. Barwell,
T. Holyoak and R. E. Thorne, A
structural perspective on the
temperature dependent activity of
enzymes, Structure, 2025, 33(5), 924–
934, DOI: 10.1016/j.str.2025.02.013.
© 2026 The Author(s). Published by the Royal So
48 J. F.Reynes andF.Garćıa, Temperature-
ControlledMechanochemistry Unlocks
the Nickel-Catalyzed Suzuki–Miyaura-
Type Coupling of Aryl Sulfamates at
Different Scales, Angew Chem. Int. Ed.
Engl., 2023, 62(2), e202215094, DOI:
10.1002/anie.202215094.

49 G. Félix, N. Fabregue, C. Leroy,
T.-X. Métro, C.-H. Chen and
D. Laurencin, Induction-heated ball-
milling: a promising asset for
mechanochemical reactions, Phys.
Chem. Chem. Phys., 2023, 25(35),
23435–23447, DOI: 10.1039/
D3CP02540C.

50 R.R. A.Bolt, S. E.Raby-Buck,K. Ingram,
J. A. Leitch and D. L. Browne,
Temperature-Controlled
Mechanochemistry for the Nickel-
Catalyzed Suzuki–Miyaura-Type
Coupling of Aryl Sulfamates via Ball
Milling and Twin-Screw Extrusion,
Angew Chem. Int. Ed. Engl., 2022,
e202210508, DOI: 10.1002/
anie.202210508.
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