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Microstructures often dictate materials’ performance, yet they are
rarely treated as an explicit design variable because microstructures
are hard to quantify, predict, and optimize. We built an image-
centric, closed-loop framework that makes microstructural mor-
phology a controllable objective and demonstrate its use case with
precursors for Li- and Mn-rich layered oxide cathodes. This work
presents an integrated, Al-driven framework for the predictive
design and optimization of lithium-ion battery cathode precursor
synthesis. This framework integrates a diffusion-based image gen-
eration model, a quantitative image analysis pipeline, and a particle
swarm optimization (PSO) algorithm. By extracting key morpho-
logical descriptors such as texture, sphericity, and median particle
size (Dsp) from SEM images, the platform accurately predicts SEM-
like morphologies resulting from specific co-precipitation condi-
tions, including reaction time-, solution concentration-, and pH-
dependent structural changes. We experimentally validated that
our optimization pinpoints synthesis parameters yielding user-
defined target morphologies of Li- and Mn-rich (LMR) layered oxide
materials, with predicted and synthesized structures showing close
agreement. This framework offers a practical strategy for data
driven materials design, enabling both forward prediction and
inverse design of synthesis conditions and paving the way toward
autonomous, image-guided microstructure engineering.
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Generative inverse design for microstructure
control in precursors for Li- and Mn-rich
layered-oxide cathodes
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New concepts

We introduce a generative, image-guided inverse-design framework that
elevates microstructures from a passive synthesis outcome to an explicit
design variable. Unlike conventional optimization strategies that focus on
composition or bulk properties and assess morphology only retrospec-
tively, our approach directly encodes images as quantitative descriptors
and embeds them into a closed-loop optimization cycle.The key break-
through lies in combining image-based quantification, diffusion-driven
forward simulation, and global optimization into an integrated workflow
that enables both prediction and inverse design of precursors for Li- and
Mn-rich cathodes. This framework achieves experimental realization of
user-defined morphologies and links targeted microstructures to improve
electrochemical stability.Beyond batteries, the concept is material-
agnostic: by swapping descriptors and training data, the same quantifica-
tion prediction optimization triad can be extended to catalysts, alloys,
and porous membranes where geometry governs function. This work
provides the community with a generalizable blueprint for morphology
driven discovery, transforming microstructural control from empirical
trial and error into a systematic, data driven design paradigm.

1. Introduction

Microstructural morphology plays a pivotal role in materials’
performance by orchestrating complex phases and controlling
the heterogeneity of microstructural features." Transformation-
induced plasticity (TRIP) steels,” for instance, feature a meticu-
lously crafted microstructure that undergoes deformation-driven
phase transitions, yielding multiple coexisting phases. The
resulting mechanical properties are a product of synergistic
interactions, resulting in strengths and ductilities that far sur-
pass the mere sum of each phase’s contribution. In the case of
cathode active materials for Li-ion batteries, individual particles
are never identical; thus, morphological heterogeneity likewise
dominates performance. For Li- and Mn-rich (LMR) layered
oxide cathodes, tailored composition can provide an initial
capacity of over 250 mAh g~ '; however, long-term stability and
voltage retention are primarily influenced by variations in parti-
cle size, morphology, and defect concentration.® The inherent
complexity of LMR microstructures has, in fact, obscured the
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critical link between morphology, structural defects, and reac-
tion mechanisms, thereby highlighting a persistent challenge in
materials design.*” While composition and scalar parameters
are routinely optimized, the rich morphology captured in ima-
ging data remains an underexploited design lever.

Conventional material optimization frameworks generally
address microstructures in a relatively indirect manner, with a
focus on maximizing scalar targets (e.g., capacity and conduc-
tivity) or adjusting composition and stoichiometry.® This
approach is often predicated on the assumption that micro-
structural details will emerge because of processing-related
decisions. Consequently, electron microscopic image-level
features are seldom explicitly delineated as design objectives.
In the domain of battery cathode development, for instance,
synthesis recipes are optimized to enhance electrochemical
properties. The microstructure is evaluated post hoc using bulk
average properties such as XRD phase refinement, BET surface
area, particle size distribution, and porosity. This approach
contrasts with the more conventional practice of designing
these proxies upfront. The quantification of an entire SEM or
TEM image in a form suitable for optimization remains a non-
trivial task. Previous studies have employed a limited set of
summary metrics, such as the phase area fraction or character-
istic length scales to incorporate morphology into design.”°
However, these coarse descriptors may overlook the subtle
textural and topological nuances that are crucial for perfor-
mance. Furthermore, there is a lack of discussion regarding the
sufficiency of indirect measures, resulting in a suboptimal
representation of rich, image-derived information within the
inverse design loop.

In addition to the limitations of coarse descriptors, effective
image-based inverse design of microstructures confronts sev-
eral intertwined challenges. The process of distilling the rich,
multi-scale patterns visible in SEM and TEM images into
quantitative features is exceptionally difficult. Conventional
metrics such as median grain sizes, porosity, or aspect ratios
capture only fragmentary aspects of morphology, leaving subtle
textural and topological nuances unquantified. The establish-
ment of robust, predictive links between synthesis parameters
and the resulting microstructure remains largely empirical.
Minor changes in precursor concentration, temperature, or
mixing protocol can provoke disproportionate or unpredictable
morphological shifts. This forces reliance on laborious trial-
and-error tuning. Because of the absence of an integrated closed-
loop framework that treats image-derived morphology as an
explicit design variable, researchers resort to an inefficient
Edisonian cycle (adjust, synthesize, characterize, and repeat),
an approach that becomes untenable as materials systems
become more complex. In order to surmount the aforemen-
tioned impediments, it is imperative to employ methodologies
that systematically encode substantial image data, facilitate
dependable process-morphology predictions, and underpin
autonomous, closed-loop design of targeted microstructures.

To address these gaps, we propose a closed-loop, image-
driven inverse design framework that integrates wavelet-based
image quantification, diffusion-based generative modelling,
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and global optimization into a unified methodology. First,
microstructure images are transformed into a compact
“morphology fingerprint” that captures multi-scale texture,
particle sphericity, and size distribution metrics via image-
based quantitative morphology analysis.""'*> Subsequently, a
conditional diffusion model functions as a forward simulator,
synthesizing realistic SEM images from process parameters or
target descriptors with high fidelity.">'* Next, a particle swarm
optimization (PSO) algorithm is employed to iteratively adjust co-
precipitation conditions."® This process is intended to direct the
generated images toward the desired morphology. The efficacy of
each iteration is evaluated using quantitative morphology
metrics, which serve to determine the algorithm’s “fitness”. By
treating the microstructure image itself as the design objective
rather than relying on scalar proxies, our approach actively
explores the space of possible morphologies in a feedback loop.
We validated this framework by synthesizing Li- and Mn-rich
layered oxide cathodes under the optimized conditions predicted
by our algorithm, and SEM characterization confirmed that the
experimentally obtained microstructures closely matched the
target morphology fingerprint.

2. Results

2.1. Integrated frameworks for forward prediction and inverse
design

The proposed workflow (Fig. 1) reimagines precursor synthesis
as a closed-loop, data-driven process, rather than the tradi-
tional, time-intensive trial-and-error approach. The system is
composed of three synergistic modules that form the backbone
of the overall structure. First, a morphology analysis model was
developed that extracts three reproducible descriptors directly
from SEM micrographs. The developed model supplants quali-
tative labels such as “needle-like” or “plate-like” with a texture
metric,"*"® and it replaces conventional laser-diffraction PSA
measurements with sphericity and particle-size metrics, thereby
providing richer, SEM-scale insights. Secondly, a conditional
diffusion-based image generator has been developed to learn
the mapping between co-precipitation parameters (i.e., pH,
concentration of NaOH and NH,OH, and reaction time)'®***°
and realistic SEM-like morphologies. This model enables the
reconstruction of multiscale morphological features, thereby
facilitating rapid virtual screening of admissible parameter
sets.">'*?1?% Thirdly, a particle swarm optimization (PSO) rou-
tine interrogates the generator iteratively to converge on synth-
esis conditions that meet user-defined morphological targets.'®
PSO ultimately completes the cycle by sampling the design
space, querying the generator for a virtual image, extracting
descriptors through the analysis model, and updating its velocity
based on the discrepancy between its current state and the target
morphology.

2.2. Image-based quantitative morphology analysis

Domain-knowledge based morphology descriptors are indispensa-
ble for correlating precursor microstructures with electrochemical

This journal is © The Royal Society of Chemistry 2025
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Fig. 1 Schematic overview of the integrated Al-based framework for precursor morphology optimization. The framework consists of three key
components: (a) a morphology analysis module that quantifies texture, sphericity and Dsg from the images, (b) a diffusion-based image generation model
that predicts SEM-like precursor morphologies from co-precipitation parameters, and (c) a particle swarm optimization (PSO) algorithm that iteratively
refines synthesis conditions to minimize the difference between predicted and target morphologies. Given a user-defined target morphology (right), the
framework iteratively generates precursor images under candidate synthesis conditions, quantifies their morphology features, and updates the input
parameters until convergence is reached. The bottom table shows an example of the co-precipitation parameters used as model input.

and mechanical behavior. Accordingly, this study employs the two
metrics already standard in powder engineering the median
equivalent diameter (Ds) and the sphericity of secondary particles
(agglomerates) reporting both their population means and full
distributions.***” To complement these metrics, we introduce a
texture descriptor that quantitatively captures the primary-
particle shape, which prior qualitative labels could not describe
consistently.

Sphericity and Ds, of secondary particles are widely used
because they predict packing density, stress distribution during
electrode calendaring, and fracture resistance under compression.>®
Al-assisted segmentation enabled calculation of both Ds, and
sphericity from the projected area and equivalent radius (Fig. 2b).
The resulting Ds, values matched laser diffraction data within +£4%
(Fig. 2c).

The texture descriptor fills the gap left by subjective terms
such as “plate-like”, “rod-like” or “needle-like”.'®*® Although
such qualitative labels may hint at the dominant crystallographic
facets, they are inherently unreliable because their meaning is
observer-dependent and they reduce complex three-dimensional
geometry to a single adjective. Most importantly, they do not

This journal is © The Royal Society of Chemistry 2025

provide a continuous metric that can be incorporated into
engineering models or statistical analyses.

Because texture is computed directly from voxel-level geo-
metry, it remains reproducible even when phase boundaries are
indistinct, enabling robust quantification of the primary particle
shape (Fig. 2a). Several groups have attempted to quantify the
primary-particle shape by first segmenting the particles and then
extracting geometric metrics from the segmented volumes.
While conceptually attractive, this “direct segmentation” route
becomes highly sensitive to hyper-parameter choices or to the
specific distribution of labels in the training set once inter-phase
boundaries are diffuse or crystallographic domains intergrow.

To verify that the selected descriptors carry complementary
information, we calculated pairwise Pearson correlation coeffi-
cients among Ds,, mean sphericity, and texture (SI Fig. S4). The
values were —0.38 (Dso vs. sphericity), —0.17 (Ds, vs. texture),
and 0.26 (sphericity vs. texture), indicating only weak correla-
tions. This confirms that the domain knowledge-based descrip-
tor set is mutually independent and therefore suitable for
quantitative morphology analysis. The correlation with experi-
mental variables further demonstrates how particle shape can
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Fig. 2 Quantitative image-based analysis of precursor morphology using texture, sphericity, and Dso. Texture and sphericity values are given on a
normalized 0—-1 scale. (a) Texture quantification based on discrete wavelet transform (DWT), used to distinguish fine primary particle structures reflecting
differences in surface microstructural complexity. (b) Sphericity analysis of secondary particles visualized with color-coded segmentation. Average
sphericity (Avg) and standard deviation (Std) values are presented for each sample (bottom-left graph). (c) Comparison between Dsq values extracted
from image analysis and experimental particle-size analyzer measurements across different synthesis times. The close match validates the reliability of

the image-based quantification method.

be tuned. Texture exhibited a strong dependence on pH, as well
as on the concentrations of NaOH and NH,OH. It reached
values >0.7 when the concentrations of NaOH and NH,OH
were set to x0.25 and x0.09, respectively, under pH 10 condi-
tions that produced high texture value (thin, faceted lamellae).
In contrast, texture dropped below 0.3 when the concentrations
were changed to x0.08 and x0.29 at pH 11, or when O, induced
Mn>" promoted platelet thickening. Sphericity increased mono-
tonically with reaction time, while its standard deviation
decreased, indicating progressive morphological homogeniza-
tion. Higher concentrations of NaOH enhanced nucleation
density and resulted in more spherical particles, whereas lower
PH or the presence of oxygen gas reduced sphericity.

2.3. Forward prediction via diffusion-based image generation

The conditional diffusion model translates arbitrary co-
precipitation parameters into realistic SEM-like micrographs
in <5 s on a consumer GPU. Fig. 3a juxtaposes experimental
and generated 15000x images, highlighting accurate replica-
tion of the rapid texture relaxation observed even in the very
first nucleation steps (~ 120 min). In 3000x images (Fig. 3a),
secondary particle densification and aggregate coalescence are
reproduced with striking visual fidelity.

Furthermore, although the model is not constrained by
explicit physical equations, it internalizes the mapping between
synthesis parameters (pH, NaOH, NH,OH, time, etc.) and
precursor morphology, generating results that mirror the
underlying growth dynamics. In practical co-precipitation, nas-
cent nuclei rapidly aggregate, producing abrupt morphological
changes; subsequently, crystals embedded within the agglom-
erates grow more slowly.>>*° The diffusion model reproduces
this sequence: during the first 120 min it tracks the rapid
evolution of secondary and primary particles, and at later times
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it recreates the Ostwald-ripening regime in which convex regions
dissolve, concave regions grow, and overall particle sphericity
increases.>' For each synthesis condition, texture is computed
per particle and summarized as the condition-level mean (¢) and
standard deviation (SD). To quantify model variability, we draw
100 independent conditional generations per condition and
compute the same per-particle texture, reporting the model
u £ SD and overlaying individual sampled estimates. As shown
in Fig. 3d, model means track experimental means with R* = 0.98
for texture; Ds, trajectories in Fig. 3c align with R* = 0.91. These
results indicate that the model preserves underlying structural
statistics rather than merely imitating visual style.

Our model demonstrates robust performance within the
training manifold, effectively capturing morphology variations
across multiple synthesis parameters. Morphology evolution
under varying pH conditions is accurately reproduced, and
intermediate states are reliably interpolated (Fig. S5). In this
univariate pH conditioned case, the model was trained using
experimental data at pH 10.0, 10.7, and 11.0; the generated
morphologies at these same points closely match the experi-
mental textures, confirming reconstruction fidelity. The inter-
polated prediction at pH 10.5, which was absent from the
training dataset, further highlights the model’s capacity to
generalize within the same chemical series, consistent with
known growth mechanisms such as the directional adsorption
of metal-ammonia complexes on the (001) plane."®

Building on this capability, forward predictions were then
performed in a two-dimensional synthesis parameter space in
which pH and initial NH,OH concentration were varied
together from pH 10.0/0.29 M NH,OH to pH 11.0/0.57 M
NH,OH to generate intermediate conditions via linear inter-
polation of the conditioning inputs (Fig. S6; using the same
trained diffusion backbone and protocol as in the pH only

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Comparison of experimental and model-generated precursor morphologies and their quantitative descriptors across synthesis time. (a) Side-by-
side comparison of experimental SEM images (top row) and diffusion model-generated images (bottom row) across different synthesis durations at low
magnification (3000x), capturing the development of secondary particle morphology and packing structure. (b) Corresponding comparison at high
magnification (15000 x), where the model panel shows one randomly sampled output; texture values are annotated on each panel. (c) Comparison of
Dsq values (median secondary particle size) estimated from experimental SEM images and model-generated images. Error bars indicate span of particle
size distribution (span = (Dgg—D10)/Dsp). (d) Model-estimated texture mean and standard deviation obtained from 100 independent samples for each
synthesis time. (e) Quantitative comparison of texture values over synthesis time; black points denote experimental data, while blue points represent
individual model estimates, demonstrating consistent trends between experimental and model data.

case). All other synthesis variables were fixed within that
separate experimental series. The predictions reveal a mono-
tonic decrease in Ds, with increasing pH and ammonia concen-
tration, while particle sphericity remains essentially constant
across the interpolation domain.

2.4. Inverse design validation through PSO optimization

To showcase practical utility, we defined a target morphology
characterized by high texture, high sphericity, low o (spheri-
city), and elevated Ds, traits associated with fast Li* diffusion
and high tap density. Motivated by prior studies linking particle
geometry to diffusion kinetics, packing behavior, and structural
stability, we selected morphological targets comprising high

This journal is © The Royal Society of Chemistry 2025

texture, high sphericity, low o (sphericity), and elevated D5o.**°

These choices respectively shorten Li* diffusion pathways, pro-
mote dense packing and smooth powder flow, enforce uniform
particle shape conducive to stable Li* transport, and increase tap
density. PSO launched 40 search points across the feasible para-
meter space, each iteratively querying the generator, quantifying
descriptors, and updating its trajectory. Convergence occurred
within 50 iterations, yielding the following optimal synthesis
conditions. A low-dimensional data projection indicates that the
optimized run lies within the empirical manifold derived from
experimental data (see Fig. S9).

Experimental validation verified the model’s accuracy. SEM
images of the synthesized precursor (Fig. 4b, bottom) reveal
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Fig. 4 Optimization of precursor morphology using an integrated image-based inverse design framework. (a) Visualization of the optimization result in a
three-dimensional morphological design space defined by sphericity, sphericity standard deviation, and Dsq (median secondary particle size). The color
scale represents texture, with warmer colors indicating finer primary features. Each point corresponds to an experimentally measured dataset. The green
dashed line marks the predefined target morphology, and the green solid line denotes the optimized result. (b) SEM image comparison of the predicted
target morphology (top row) and the experimentally synthesized result (bottom row) obtained using the optimized co-precipitation conditions. Low and
high magnification images are shown to evaluate both particle shape and primary particle texture.

densely packed secondary particles and finely textured primary
networks that mirror virtual predictions (top). Descriptor dis-
crepancies between prediction and experiment remain <5%
across all metrics. Electrochemical cycling tests show a 3%
smaller capacity fade and improved voltage retention (smaller
average-voltage decay) relative to baseline LMR cathodes under
identical conditions (SI Fig. S7 and S8).

3. Conclusion

These findings confirm that the proposed inverse-design
approach effectively guides experimental synthesis toward tar-
get morphological features, underscoring its potential for
rational microstructure control in materials design. By repla-
cing vague descriptors with a triad of quantitative metrics
(texture, sphericity, and Ds,), the SEM image itself becomes a
first-class design variable. Correlation analysis (the Image
based quantitative morphology analysis section) revealed that
sphericity, sphericity standard deviation, Ds,, and texture each
exhibit low mutual correlation, indicating that these morpho-
logical descriptors independently characterize distinct aspects
of secondary-particle structures (SI Fig. S4). This independence
delineates a controllable processing window for optimizing tap
density, Li-ion diffusivity, and capacity retention.

The high-fidelity synthetic micrographs generated entirely in
silico demonstrate the feasibility of rapid morphology scouting
across extensive compositional spaces (e.g., the full pH-NH,OH

Mater. Horiz.

range) in mere minutes, thereby compressing weeks of wet-lab
trial-and-error into GPU time. Every pixel in the conditional
diffusion generator is conditioned on the same descriptor set
used for experimental quantification, allowing researchers to
trace visual motifs back to numerical targets. Tens of thou-
sands of hypothetical conditions can thus be screened per hour
on a single consumer GPU (throughput unattainable with
conventional CSTR campaigns) and the linear scaling of opti-
mization cost with the descriptor count permits seamless
integration of further constraints (impurity limits, BET, and
grain-boundary texture) without architectural overhaul.

Some localized deviations from monotonic behavior
observed in interpolated morphologies (the Forward prediction
via diffusion-based image generation section) can be attributed
to nonlinear interactions between chemical equilibria (e.g:,
complexation efficiency, and supersaturation) and kinetic fac-
tors (e.g., nucleation and coarsening). Such discrepancies are
common in multivariate synthesis landscapes and highlight
opportunities for refinement through expanded data coverage
or conditioning guided by physical constraints.

Although demonstrated for Li- and Mn-rich layered-oxide
precursors, the framework has the potential to be material
agnostic. The framework is morphology first under fixed com-
position; composition conditioned inputs (e.g., Ni/Mn ratio) can
be incorporated in the conditioning vector when harmonized
multi-chemistry datasets become available. This potential can be
realized by swapping the training image set and descriptor
definitions, enabling immediate transfer to catalysts, additively

This journal is © The Royal Society of Chemistry 2025
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manufactured alloys, or porous membranes where geometry
governs function. The key insight is that while each material
system requires domain-specific morphological descriptors such
as active site exposure area in catalysts or pore connectivity in
membranes the core ‘quantification-prediction-optimization’
closed-loop architecture remains universally applicable. This
structural invariance suggests that the framework’s value lies
not in its current implementation but in its systematic approach
to bridging the gap between morphological targets and synthesis
protocols. By translating explicit morphological targets into
experimentally verifiable recipes, the integrated Al system fur-
nishes a blueprint for accelerating morphology-driven discovery
not only in battery materials but also in catalytic, pharmaceu-
tical, and structural domains.

Several challenges remain before the full implementation of
autonomous morphology design becomes a standard practice.
First, applicability is limited to the present training domain
and image-based objectives (single reactor and restricted pH-
temperature window); extrapolation and strict physical consis-
tency are limited, and federated learning across routes is
needed for generality. Second, electrochemical performance is
still analyzed offline; incorporating cycling data directly into
the loss function would create a fully closed loop that couples
structure and property optimization. Third, residual errors
associated with complex kinetics-thermodynamics coupling
could be reduced by augmenting the training set around these
regions or by introducing physics-informed priors.

The ongoing work integrates multi-reactor datasets and
streams real-time electrochemical feedback, with all code and
pretrained weights to be released under an open-source license.
Coupling this image-driven inverse-design paradigm with
robotic synthesis and high-throughput imaging holds great
promise for achieving truly closed-loop optimization, thereby
accelerating the discovery process for lithium-ion batteries and
beyond. The framework is modular but transferable only with re-
specified inputs/constraints and independent validation for each
new system. We anticipate that data-guided morphology engi-
neering will soon advance from proof-of-concept to a standard
tool in the materials-by-design platform, ultimately accelerating
the decades-long lab-to-fab timeline for morphology-sensitive
materials.

4. Experimental section

4.1. Precursor synthesis and data acquisition

A Mn-rich hydroxide precursor, Nij 33Mn, ¢,(OH),, was synthe-
sized via a continuous co-precipitation process in a water-
jacketed stirred-tank reactor under a N, atmosphere. The
concentrations of NaOH and NH,OH were systematically varied
to control pH (9.8-11.0) and ammonia coordination, while
maintaining the total metal concentration at 2.0 M (Ni:Mn =
33:67). The as-precipitated powders were washed, filtered, and
vacuum dried at 100 °C. The detailed reactor setup and syn-
thesis protocol are described in SI (S1.1.1).

This journal is © The Royal Society of Chemistry 2025
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The resulting precursors were examined using a SEM (JEOL
JCM-6000) at two magnifications (3000 and 15 000) to capture
both secondary and primary particle morphologies. A total of
55 distinct synthesis conditions were recorded, each linked
with paired SEM images and particle-size data (Microtrac
S3500, Ds, values). Image acquisition parameters and data-
pairing procedures are given in S1.1.2 and S1.1.3.

For lithiation, the hydroxide precursor was mixed with
LiOH-H,O at a Li/(Ni + Mn) molar ratio of 1.38 and calcined
at 850 °C for 10 h to obtain Li- and Mn-rich layered oxide
(Li;.16Nip2sMny 560,). Electrode fabrication and electrochemi-
cal assembly details are provided in S1.1.4.

4.2. Morphology quantification and digital image analysis

To transform raw microscopy data into quantitative morpholo-
gical descriptors, we implemented the digital image analysis
framework for characterizing both primary and secondary
particle morphologies (details in S1.2).

Primary-particle features were characterized via wavelet-based
texture analysis, capturing hierarchical structural roughness and
anisotropy directly from 15 000x magnified SEM images without
explicit particle segmentation (S1.2.1). The texture energy, com-
puted as the mean-square magnitude of wavelet coefficients,
served as a scalar metric, reflecting morphological complexity.

Secondary-particle morphology was quantified through
instance segmentation using the Segment Anything Model
(SAM) to identify individual particle boundaries from 3000x
magnified images. Circularity-based sphericity (¥ = 4n4 P2,
where ¥ denotes the sphericity, A is the projected area of the
particle, and P is its perimeter.) and image-derived Ds, values
were computed from the segmented masks (S1.2.2). Ensemble-
level means (u) and standard deviations (SD) of these metrics
were used as quantitative condition-level descriptors.

4.3. Conditional image generation via diffusion modeling

A diffusion-based generative model (adapted from stable diffu-
sion) was employed to synthesize realistic precursor morphol-
ogies under specified synthesis parameters (S1.3). The model
operates in the latent space of a variational autoencoder (VAE)
and was augmented with a ControlNet module to encode user-
defined process conditions (e.g., pH, NH,OH concentration,
and stirring rate).

During training, the base diffusion weights were frozen
while ControlNet layers were optimized via denoising score-
matching (e-prediction) using all available labeled images.
Model convergence was monitored using the peak signal to
noise ratio (PSNR) and structural similarity (SSIM) metrics,
applying early stopping when PSNR > 34 dB and SSIM >
0.965 stabilized within 10 epochs. These training details and
architectural schematics are fully described in S1.3.

4.4. Inverse design of synthesis conditions

To identify optimal synthesis parameters for desired morphol-
ogies, we developed an inverse prediction framework combin-
ing the trained ControlNet-guided generator with particle
swarm optimization (PSO) (51.4).
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Users may specify target attributes such as Ds, (D), sphericity
(M), standard deviation of sphericity (S), and texture (7) numeri-
cally or through reference images. The algorithm generates
candidate parameter sets, produces corresponding synthetic
SEM-like images, quantifies their morphology, and iteratively
minimizes a weighted objective function:

2 2
F =w Z (Dlarget - Dgenerated) + w2 g (Mtargel - Mgenerated)

2 2
+ w3 § (Stargct - Sgcncralcd) + wy g (Ttargct - Tgcncrutcd)

where wy, w,, w; and w, balance the influence of size, shape,
and texture fidelity.

The optimization proceeds until convergence to a minimal
F, yielding synthesis conditions that reproduce the target
morphological characteristics. Full mathematical formulation
and implementation details are provided in S1.4.

This integrated workflow bridges experiment, quantitative
image analytics, and generative modeling to establish a closed-
loop system for both forward prediction of morphology and inverse
design of synthesis conditions. All algorithms, training parameters,
and implementation codes are detailed in SI Section S1.

Author contributions

G. C, C. L, K. J,, and L. P. conceived the original idea and
designed the research project. G. C., J. K., and K. J. carried out
precursor co-precipitation and data collection. C. L. and 1. Y.
performed image analysis, generation, and optimization model
development. G. C., J. K., and 1. P. conducted electrochemical
evaluation. G. C., C. L., K. ]., and L. P. wrote the manuscript with
input from all authors. K. J. and I. P. supervised all aspects of
the research.

Conflicts of interest

There are no conflicts to declare.

Data availability

All data supporting the findings of this study are included in
the main article and the supplementary information (SI). The
supplementary information contains additional experimental
details, model descriptions, and supporting figures and tables
related to the main text. See DOI: https://doi.org/10.1039/
d5mh01850a.

Due to company data policies, the raw datasets used for
model training cannot be made publicly available; however,
further details may be provided by the corresponding author
upon reasonable request within confidentiality constraints.

The custom code developed for image analysis, diffusion-
based image generation, and optimization is provided as a
zip file.

Mater. Horiz.

View Article Online

Materials Horizons

Acknowledgements

This work was supported by POSCO Holdings and the National
Supercomputing Center with supercomputing resources includ-
ing technical support (KSC-2022-CRE-0402). This research was
also supported by the Regional Innovation System & Education
(RISE) program funded by the Ministry of Education (MOE) and
the Jeollanamdo, Republic of Korea (2025-RISE-14-003) and the
Sunchon National University Glocal University Fund in 2025.

References

1 H. M. Hau, et al., Earth-abundant Li-ion cathode materials
with nanoengineered microstructures, Nat. Nanotechnol.,
2024, 19, 1831-1839.

2 Y. Li, et al., Ductile 2-GPa steels with hierarchical substruc-
ture, Science, 2023, 379, 168-173.

3 W. Zuo, et al., Li-rich cathodes for rechargeable Li-based
batteries: reaction mechanisms and advanced characteriza-
tion techniques, Energy Environ. Sci., 2020, 13, 4450-4497.

4 G. Choi, et al, Unraveling and regulating superstructure
domain dispersion in lithium-rich layered oxide cathodes
for high stability and reversibility, Energy Environ. Sci., 2024,
17, 4634-4645.

5 Y. Lee, et al., Elucidating and controlling phase integration
factors in Co-free Li-rich layered cathodes for lithium-ion
batteries, Mater. Horiz., 2025, 12, 3731-3742.

6 L. Chen, et al., Hierarchical Li; ,Ni;,Mn,¢0, Nanoplates
with Exposed {010} Planes as High-Performance Cathode
Material for Lithium-Ion Batteries, Adv. Mater., 2014, 26,
6756-6760.

7 J. Kim, et al., Data-driven insights into the reaction mechanism
of Li-rich cathodes, Energy Environ. Sci., 2025, 18, 4222-4230.

8 Y. Lee, et al., Elucidating and controlling phase integration
factor in Co-free Li-rich layered cathode for lithium-ion
batteries, Mater. Horiz., 2025, 12(11), 3731-3742.

9 U.-H. Kim, et al., Heuristic solution for achieving long-term
cycle stability for Ni-rich layered cathodes at full depth of
discharge, Nat. Energy, 2020, 5, 860-869.

10 U.-H. Kim, et al., Microstructure-Controlled Ni-Rich Cath-
ode Material by Microscale Compositional Partition for
Next-Generation Electric Vehicles, Adv. Energy Mater.,
2019, 9, 1803902.

11 G. Lee, R. Gommers, F. Waselewski, K. Wohlfahrt and
A. O’Leary, PyWavelets: A Python package for wavelet ana-
lysis, J. Open Source Softw., 2019, 4, 1237.

12 S. Arivazhagan and L. Ganesan, Texture classification using
wavelet transform, Pattern Recognit. Lett., 2003, 24, 1513-1521.

13 J. Ho, A. Jain and P. Abbeel, Denoising diffusion probabilistic
models, Adv. Neural Inf. Process. Syst., 2020, 33, 6840-6851.

14 L. Zhang, A. Rao and M. Agrawala, Adding conditional control
to text-to-image diffusion models, in: Proceedings of the IEEE/
CVF international conference on computer vision, (2023).

15 J. Kennedy and R. Eberhart, Particle swarm optimization, in
Proceedings of ICNN’95 — International Conference on Neural
Networks, 1995.

This journal is © The Royal Society of Chemistry 2025


https://doi.org/10.1039/d5mh01850a
https://doi.org/10.1039/d5mh01850a
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5mh01850a

Open Access Article. Published on 02 December 2025. Downloaded on 1/23/2026 11:25:17 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Materials Horizons

16

17

18

19

20

21

22

23

24

25

26

C. Xu, S. Guan, L. Li, C. Sun, B. An and X. Geng, Electro-
chemical properties of LiNij ¢Coo,Mn, ,0, cathode materi-
als prepared with different ammonia content, Coatings,
2021, 11, 932.

Z. Wu, et al., Investigating the effect of pH on the growth of
coprecipitated Ni, gCop1Mn, ;(OH), agglomerates as pre-
cursors of cathode materials for Li-ion batteries, Ceram.
Int., 2023, 49, 15851-15864.

W. Hua, et al, Unravelling the growth mechanism of
hierarchically structured Ni;;3C04/3Mny/3(OH), and their
application as precursors for high-power cathode materials,
Electrochim. Acta, 2017, 232, 123-131.

J. Seo, et al., High quality large-scale nickel-rich layered
oxides precursor co-precipitation via domain adaptation-
based machine learning, InfoMat, 2025, 7, €70031.

S. Yang, X. Wang, X. Yang, Z. Liu, Q. Wei and H. Shu, High
Tap Density Spherical Li [Niy sMn, 3Co, »] O, Cathode Mate-
rial Synthesized via Continuous Hydroxide Coprecipitation
Method for Advanced Lithium-Ion Batteries, Int. J. Electrochem.,
2012, 2012, 323560.

R. Rombach, A. Blattmann, D. Lorenz, P. Esser and
B. Ommer, High-resolution image synthesis with latent
diffusion models, in Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, 2022.

D. P. Kingma and M. Welling, Auto-encoding variational
bayes, arXiv, 2013, preprint, arXiv:1312.6114, DOI: 10.48550/
arXiv.1312.6114.

L. Fuchs, et al., Generating multi-scale Li-ion battery cathode
particles with radial grain architectures using stereological
generative adversarial networks, Commun. Mater., 2025, 6, 4.
C. F. Mora and A. K. H. Kwan, Sphericity, shape factor, and
convexity measurement of coarse aggregate for concrete using
digital image processing, Cem. Concr. Res., 2000, 30, 351-358.
H. Wadell, Volume, shape, and roundness of rock particles,
J. Geol., 1932, 40, 443-451.

K. W. Desmond and E. R. Weeks, Influence of particle size
distribution on random close packing of spheres, Phys. Rev.
E: Stat., Nonlinear, Soft Matter Phys., 2014, 90, 022204.

This journal is © The Royal Society of Chemistry 2025

27

28

29

30

31

32

33

34

35

36

View Article Online

Communication

H. Y. Sohn and C. Moreland, The effect of particle size
distribution on packing density, Can. J. Chem. Eng., 1968,
46, 162-167.

S. K. Vanimisetti and N. Ramakrishnan, Effect of the
electrode particle shape in Li-ion battery on the mechanical
degradation during charge-discharge cycling, Proc. Inst.
Mech. Eng., Part C, 2012, 226, 2192-2213.

P. Barai, Z. Feng, H. Kondo and V. Srinivasan, Multiscale
computational model for particle size evolution during
coprecipitation of Li-ion battery cathode precursors,
J. Phys. Chem. B, 2019, 123, 3291-3303.

Y. Yang, S. Xu, M. Xie, Y. He, G. Huang and Y. Yang, Growth
mechanisms for spherical mixed hydroxide agglomerates
prepared by wcipitation method: A case of Niy;3C0q3-
Mn, ;3(OH),, J. Alloys Compd., 2015, 619, 846-853.

X. Yang, et al., Growth mechanisms for spherical Nij 15C0y 15-
Aly 035 (OH), precursors prepared via the ammonia com-
plexation precipitation method, J. Energy Chem., 2021, 53,
379-386.

Y. Su, et al., Improved Stability of Layered and Porous
Nickel-Rich Cathode Materials by Relieving the Accumula-
tion of Inner Stress, ChemSusChem, 2020, 13, 426-433.

Y. Su, et al., High-rate structure-gradient Ni-rich cathode
material for lithium-ion batteries, ACS Appl. Mater. Inter-
faces, 2019, 11, 36697-36704.

Y. Su, et al, Exposing the {010} Planes by Oriented
Self-Assembly with Nanosheets To Improve the Electroche-
mical Performances of Ni-Rich Li[NiygC0y1Mng 4]0,
Microspheres, ACS Appl. Mater. Interfaces, 2018, 10,
6407-6414.

N. Anansuksawat, T. Sangsanit, S. Prempluem, K. Homlamai,
W. Tejangkura and M. Sawangphruk, How uniform particle
size of NMC90 boosts lithium ion mobility for faster charging
and discharging in a cylindrical lithium ion battery cell,
Chem. Sci., 2024, 15, 2026-2036.

A. Hafez, Q. Liu, T. Finkbeiner, R. A. Alouhali, T. E.
Moellendick and J. C. Santamarina, The effect of particle
shape on discharge and clogging, Sci. Rep., 2021, 11, 3309.

Mater. Horiz.


https://doi.org/10.48550/arXiv.1312.6114
https://doi.org/10.48550/arXiv.1312.6114
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5mh01850a



