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Stochastic dynamics of nanoparticle catalysis: a
discrete-state perspective

Pankaj Jangid and Srabanti Chaudhury *

Recent advancements in single-molecule techniques have allowed researchers to investigate individual

nanocatalysts, which exhibit inherent variations in size, shape, and surface properties, leading to unique

and time-dependent catalytic behaviors. The heterogeneity in surface facets, defects, and structural

dynamics further influences their performance, highlighting the importance of single-particle analysis in

catalyst development. Recent theoretical studies using stochastic modeling have provided valuable

insights into the microscopic dynamics of nanoparticle catalysis. This review systematically examines the

impact of active site heterogeneity on reaction dynamics, the role of dynamic catalytic restructuring in

enhancing efficiency, and the emergence of intra-particle catalytic cooperativity through charged hole

dynamics. By integrating these theoretical advances, this review offers a comprehensive perspective on

the microscopic mechanisms governing nanoparticle catalysis and suggests potential avenues for the

rational design and understanding of more effective catalytic systems.

Wider impact
Understanding the underlying chemical and physical mechanisms of a catalyst at the single-particle level opens new ways for efficient catalyst design.
Theoretical models and numerical simulations have proven valuable in providing both quantitative and qualitative insights into catalyst dynamics. Stochastic
methods are useful for moving beyond the bulk measurements and uncovering the complexity of nanocatalyst behavior. This review gathers recent theoretical
studies using stochastic modeling to show how intrinsic fluctuations and heterogeneity influence the reaction dynamics of nanocatalysts. The key
developments discussed include the application of theoretical models to resolve heterogeneity in size, shape, and surface facets, stochastic models that
connect microscopic active-site fluctuations to macroscopic kinetics, and the identification of the role of dynamic restructuring and charged hole-mediated
cooperativity as drivers of enhanced and time-dependent catalytic activity. This area is of broad interest in catalysis modeling, as moving beyond ensemble
averages uncovers mechanistic complexity that reveals catalyst performance and selectivity, which are central to sustainable energy conversion and green
synthesis. Furthermore, integrating real-time single-particle experiments with stochastic and data-driven models will enable the development of atomically
informed design rules for next-generation catalysts.

1 Introduction

Heterogeneous catalysts can accelerate chemical reactions with
high selectivity and are proven to be vital in industrial pro-
cesses. They play a critical role in shaping our society and will
be essential for its sustainable future.1 The catalysts must be
highly efficient and environmentally friendly for this role. The
design and development of new catalysts have been heavily
based on traditional trial-and-error experimental methods.2

Several theoretical and computational studies at different
scales of investigation have become a reasonable choice in
the initial design and understanding of catalysts.3,4

Nanoparticle catalysts have revolutionized heterogeneous
catalysis due to their unique size- and shape-dependent

properties and high surface area and the ability to tailor their
surface characteristics through simple modifications.5,6 These
catalysts are highly complex materials optimized for use with
high selectivity and reaction rates. The composition and struc-
ture of these catalysts can be tuned to obtain high performance
under the given reaction conditions.7–10 Nanocatalysts have
been known for more than a century and have been studied
by many experimental and theoretical methods. Advances in
single-molecule techniques have enabled researchers to dis-
cover new results that existing theoretical studies could not
achieve.11–16

Single-molecule fluorescence microscopy experiments have
been able to investigate chemical reactions on nanocatalysts.
These experiments can provide insight into the catalyst beha-
vior with unprecedented spatial and temporal resolutions
that have revealed multiple new features.17–23 Individual nano-
catalysts differ in size, shape, and surface sites, leading to
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time-dependent, particle-specific catalytic activity.24–32 Surface
facets and surface defects can affect the catalytic activity. Active
site heterogeneity has been observed by several density func-
tional theory (DFT) studies as well.33–36 Catalysts can also
undergo structural changes under reaction conditions, leading
to fluctuations in temporal activity and coverage fluctuations
that also differ from one nanoparticle to another.37–41

Smaller nanoparticles, often called nanoclusters, can undergo
isomerization due to thermal fluctuations, where several dif-
ferent forms with different catalytic activities can be
present.42–46 This leads to temporal heterogeneity in their
catalytic dynamics. The development of in situ and operando
techniques has become critically important because they
enable observation under reaction conditions while providing
structural, morphological, compositional, and chemical state
information in working environments.26,47–57 These techniques
have also advanced our understanding of dynamic active-site
transformations.37,58,59 Experimental studies have also sug-
gested the existence of spatial communication between differ-
ent active sites within a single nanocatalyst60,61 and single atom
catalysts.62,63 These findings highlight that nanocatalysts can
exist in dynamically evolving structural states, exhibiting spa-
tial and temporal variations in their catalytic properties.

Computational techniques and mathematical modeling
have been widely used to study complex dynamical systems,
including biochemical networks and complex cellular
processes.64,65 Although there are numerous theoretical models
in the literature to study nanoparticle catalysts, many of them
are based primarily on bulk properties and assumptions
derived from conventional heterogeneous catalysis.66–68

Mathematical modeling of chemical systems heavily relies
on deterministic mass action kinetics, where the dynamical
evolution of reactants and products is given by ordinary differ-
ential equations.4,69,70 The deterministic methods generally
assume macroscopic concentrations and spatial homogeneity
in the system, which effectively averages out fluctuations at the
molecular level. For systems at the nanoscale level with a low
molecular number, this averaging is no longer valid. Single-
molecule experimental techniques treat catalytic turnover as a
sequence of discrete reaction events that occur at an individual
active site.29,71,72 The observed catalytic dynamics in such
experiments are noisy processes, where the intrinsic fluctua-
tions may affect the stationary and transient behavior both
qualitatively and quantitatively. In systems where the number
of molecules is small and discrete, intrinsic noise is not merely
a perturbation. In such cases, the predictions of stochastic and
deterministic approaches can significantly differ and produce
distinct steady states.73,74 Another disadvantage of determinis-
tic methods is that the assumption of mean-field kinetics is not
applicable to heterogeneous nanoparticles with multiple types
of sites, varying particle shapes, and sizes, which are challen-
ging to assess.25,71,75 As a result, deterministic models may
predict behaviour that significantly differs from experimental
observation in real nanoscale systems. The small size of cata-
lysts results in discrete coverages of adsorbate molecules,
which is difficult to describe using a mean-field model.76

To account for molecular fluctuations, where the number of
key species is low and stochasticity plays a determining role in
system dynamics, stochastic approaches are required. The sto-
chastic counterparts of chemical kinetics, such as the chemical
master equation (CME), can explicitly describe the probabilistic
nature of reaction events in small systems.77,78 Computer simula-
tion techniques such as Gillespie’s algorithm and kinetic Monte
Carlo (KMC) can sample several individual reaction trajectories.
Such techniques can directly model discrete molecular interac-
tions and capture behaviors driven by noise.79–82

In this review, we restrict our focus on the mathematical
models rather than the variety of experimental techniques and
software tools used in heterogeneous catalysis. Mathematical
models evaluate the microscopic interplay between elementary
processes in a catalytic system. We critically examine the
physical foundations of the catalyst at the molecular level, the
validity of the presented mathematical models, and the under-
lying assumptions.

2 Techniques to study catalysis
2.1 Chemical master equation

For long-time evolution (on the order of thousands of turnover
events), a catalytic system can be assumed to involve transitions
between minimum energy states of the potential energy sur-
face. The system exists in the minimum energy state for a
sufficiently long time before jumping into the next state, so it
forgets about the past state from which it came. A process with
state-to-state memoryless jumps can describe such dynamics,
also called the Markovian dynamics.77 A widely used method
for analyzing systems with jump processes and inherent sto-
chasticity is the CME.77,83 Unlike the deterministic kinetic
equations, where a deterministic differential equation gives
the time evolution of the number of reaction species, the
CME gives the time evolution of the probability of the number
of reaction species. One of the key advantages of the CME
framework is its ability to generate the full probability distribu-
tion of events, rather than just their average values. Generally,
the mean predicted by the CME converges to the quantities
obtained from ensemble-based approaches. The CME is a
versatile tool that can be used in various fields to model jump
processes.84 A schematic representation of jump processes is
given in Fig. 1(a), where each discrete state can be considered
as a specific configuration of reactants and products on the
catalyst surface, lower panel in Fig. 1(a). Two different config-
urations or numbers of reaction species correspond to two
different discrete states.

Suppose a chemical reaction consists of M chemical species
that can be present in N distinct chemical states. A chemical
state, n = (n1, n2, . . ., nM), can be considered a vector that
indicates the number of different reaction species. Note that
the specific arrangement of different reaction species on the
surface is ignored here. However, for a detailed description of
the system, the chemical state n also consists of specific
locations and orientations of reactants, see Fig. 1(b). The
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reaction can be in any of the N chemical states at any instant.
The transition rate from state i to state j is defined as rji. Let
P(n,t|n0,t0) be the probability density function for finding the
system in state n, since the system was in state n0 at some
earlier time t0. Then the time evolution of P(n,t|n0,t0) can be
written using the forward CME

dP n; tjn0; t0ð Þ
dt

¼
XN
j¼0
jan

rnjP j; tjn0; t0ð Þ � rjnP n; tjn0; t0ð Þ
� �

(1)

Here, the first term in the summation on the right-hand side
indicates the gain in probability, and the second term indicates
the loss in probability. Using eqn (1), the probability distribu-
tion can be calculated. For clarity, we will remove the initial
conditions in the probability densities and write P(n,t). Let P(n)
denote the steady state distribution of state n, which is defined
as P(n) = P(n,t - N). Therefore, from the forward CME, we
can write

XN
j¼0
jan

rnjPð jÞ � rjnPðnÞ
� �

¼ 0 (2)

The forward CME has been used in several studies, making
it a versatile tool in various disciplines. In the CME equation
(eqn (1)), the waiting time distribution before making a transi-
tion is exponentially distributed. However, when the waiting-
time distribution deviates from a single exponential, a more
general form of master equations can be used.83,85

2.2 First passage time

In catalysis, we are generally interested in the time it takes for
the reactants to form the products. The time taken by any
stochastic process from an initial state to a final state for the
first time is known as the first passage time (FPT).77,83,86 It is
also called the first hitting time and exit time in the literature.
The time evolution of the FPT probability density function is
governed by a backward CME. Suppose a process starts from an
initial state n at time t0 and reaches a fixed state m at time t0, for
the first time. The backward CME describes how the probability
density changes as a function of the initial state n, keeping the
final state m fixed. It evolves the probability backward, which is
written as77

dP m; t 0jn; t0ð Þ
dt0

¼
XN
j¼0
jam

rjmP m; t 0jn; t0ð Þ � rjmP m; t 0jj; t0ð Þ
� �

: (3)

In the backward CME, the final state is absorbing, which
means P(m,t0|m,t0) = d(t � t0). This indicates that if we start the
process from the final state, it will be instantly achieved. For
clarity, the FPT probability density can be written in a different
form keeping only initial conditions, F(n,t) = P(m,t0|n,t0) and
F( j,t) = P(m,t0|j,t0), where t = t0 � t0 is the time taken to achieve
the final state. Then the backward CME in eqn (3) reads

dFðn; tÞ
dt

¼
XN
j¼0
jan

rjnF j; tð Þ � rjnF n; tð Þ
� �

: (4)

In a stochastic process, several trajectories are possible from
the initial to the final state, and the time taken in those
trajectories (FPT) is a random variable. Therefore, a statistical
approach is used to realize several first passage times, and the
mean and higher moments of FPT can be obtained.

The backward master equation offers several advantages,
particularly in problems that focus on how future outcomes
depend on the initial state. It is especially well-suited for
calculating quantities like the mean first-passage time (MFPT)
and survival and absorption probabilities. Note that the same
problems can be solved by the forward CME by applying
suitable boundary and initial conditions.77 Unlike the forward
equation, which evolves the full probability distribution over
time, the backward equation allows one to isolate the role
of the starting point and simplifies the analysis of stochastic
processes where the path to a target or an absorbing state
is of primary interest.77 Using F(n,t) the moments of FPT
can be obtained using simple probability theory rules of

Fig. 1 (a) Schematic diagram of a network of N discrete states. A discrete
state is a coarse grained version of a long lived catalytic state where each
discrete state can be a specific configuration of microstates of the catalyst.
(b) Schematic of O2 dissociation on a catalytic surface where different
orientations of the adsorption can also represent different discrete states.
Panel (b) is reproduced with permission from ref. 82, Copyright 2012
American Chemical Society.
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expectation value.

trh i ¼
ð1
0

trFðn; tÞdt (5)

Generally, it is difficult to solve for the full FPT distri-
bution in the time domain. However, it is easier to solve the
first-order differential equation in Laplace space, where the
differential equation becomes a simple linear algebraic
equation.84 Let the Laplace transform of F(n,t) be written as
~Fðn; sÞ ¼

Ð1
0
e�stFðn; tÞdt. Then the rth moment of the first

passage time can be written as

trh i ¼ ð�1Þrd
r ~Fðn; sÞ
dsr

����
s¼0
: (6)

2.3 Stochastic fluctuation quantification

Catalytic turnover from a single nanoparticle is intrinsically
noisy and physically relevant information is concealed in the
noise, emphasizing the importance of stochastic fluctuations in
observable quantities. Several studies have shown the impor-
tance of stochastic effects in biological systems such as living
cells,87,88 physical phenomena such as phase transitions,89

chemical kinetics, and nanocatalysts.14,71 In the ensemble
experiments, the stochastic fluctuations are often averaged
out. Stochastic modeling methods allow us to estimate the
higher moments of turnover times from nanocatalysts, which
can provide valuable information on the nature of fluctuations.
Several statistical parameters are used in the literature for this
purpose, such as the Fano factor, Poisson indicator, coefficient
of variation, and randomness parameter.90–95 These para-
meters are based on the first and second moments of obser-
vable quantities, which are used to probe the extent of
stochastic fluctuations in the system. In single-molecule turn-
over reactions, the quantification of stochasticity is generally
done using a statistical quantity known as the randomness
parameter, R.93–98 It is defined as

R ¼
t2
� �
� th i2
th i2 ¼ VarðtÞ

th i2 : (7)

Single molecule experiments provide the distribution of the
individual product formation event. Randomness can be easily
calculated from single turnover statistics from these experi-
ments. For a single-step Poisson process, the waiting time
distribution is exponential and the numerical value of R will
be unity. If there are multiple rate-determining kinetic pro-
cesses, the distribution becomes nonexponential, and R devi-
ates from unity. In the case of multiple rate-limiting steps, the
waiting time distribution has a peak followed by decay, and the
randomness parameter will be less than one. If the distribution
has long multiexponential tails, it indicates that there are
multiple parallel pathways to reach the product and one
observes R 4 1. Thus R provides a quantitative idea of the
shape of the dwell time distribution. It measures the degree
of stochastic fluctuations and provides information on the

underlying chemical kinetic scheme. Deviation in the value of
R from unity is a manifestation of the dynamic disorder. Earlier
studies indicated that R provides information about the num-
ber of steps (intermediates) present in a stochastic system. The
reciprocal of R gives the bound for the number of rate-limiting
states for sequential kinetic schemes. Therefore, different
values of R can hint at hidden states, multiple rate-limiting
steps, dynamic disorder, off-pathway branches, and non-
exponential statistics.93,94

We take an example of a simple reaction with irreversible
steps n, each with the same rate constant.

A1 !
k
A2 !

k
A3 !

k � � � !k An�1 !
k
An

The first passage time distribution of reaching An from A1 in
this case is a single exponential given by

FðtÞ ¼ kne�kttn�1

ðn� 1Þ! : (8)

Then, the MFPT and the second moment can be given by

hti ¼
Ð1
0 tFðtÞdt ¼ n=k and t2

� �
¼
Ð1
0 t2FðtÞdt ¼ nðnþ 1Þ

k2
. In this

case, the randomness parameter is R = 1/n, which is the inverse
of the number of steps in the reaction, and the number of rate-
limiting steps in the dynamics can be estimated from the value
of 1/R. The value of R is important for the quantitative assess-
ment of the microscopic mechanism. However qualitative
trends of R can also be very informative.

2.4 Kinetic Monte Carlo simulations of nanoparticle catalysis

Kinetic Monte Carlo (KMC) is a powerful computational
method to simulate reaction systems while considering intrin-
sic noise.79,80 The KMC method is also known as Gillespie’s
Stochastic Simulation Algorithm (SSA). The KMC method is
well-suited for chemical processes where the system evolves
through discrete states with known transition rates. KMC can
capture the correct temporal dynamics of rare events by sam-
pling both the type and timing of the next reaction event.
Extensions of the KMC algorithm for time-dependent rates
and non-Markovian systems have also been proposed.99–101

One of the essential steps in the KMC simulation for
real catalytic systems is the estimation of rate constants.
Many studies use approximate values of rate constants
based on fitting simple models to experimental data, approx-
imating rates from similar known systems and statistical
methods.70,102–104 A more accurate and systematic approach
is to utilize first-principles calculations and statistical methods
to obtain rate parameters.105–112 In the general framework of
KMC, the system is described by a set of discrete states, each
associated with a set of possible transitions characterized by
reaction propensities.113 The essential structure of this discrete
event simulation algorithm is as follows:

1. Initialize the system: initialize the counts of all reaction
species and set the simulation time to zero:

t = 0
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2. Calculate the rates: for all possible transitions, i, from the
current state calculate the rate (or propensity) ki for each event
and calculate the total rate, ktot of transitions.

ktot ¼
X
i

ki

3. Calculate the next reaction time: draw a uniform random
number r1 from the interval (0,1) and calculate the time
increment using

Dt ¼ �ln r1ð Þ
ktot

and update the simulation time:

t ’ t + Dt

4. Calculate the next reaction: draw a uniform random
number r2 from the interval (0,1). Determine the next event j
by finding the smallest number j such that

Xj
i¼1

ki 4 r2ktot �
Xj�1
i¼1

ki

5. Update the system: according to the transition j in step 4
update the system state.

6. Repeat: store the updated state and simulation time for
analysis and repeat steps 1–5 until the simulation does not
reach the desired time, e.g. t o tfinal.

From a simple one-step reaction to a highly complex surface
catalyst dynamics, the scheme mentioned above remains at the
heart of their stochastic simulations. The possible orientations
of the reactant molecules can be accounted for in the KMC
approach. Also, the KMC simulation facilitates modeling
adsorption, desorption, and diffusion of reaction species while
accounting for the shape and size of the nanocatalyst.114–116

Studying heterogeneous catalysis with KMC simulations is a
large and fast growing field. Interested readers can explore the
detailed procedure reviewed here,81,117,118 along with various
software tools.119–121

3 Single molecule measurements in
catalysis

Observations from single-molecule techniques have been well
known in the case of enzyme catalysts. Single-molecule fluores-
cence microscopy is an indispensable tool in single-molecule
studies that allow researchers to observe the behavior of
individual molecules in real time.122,123 These techniques
provide a high signal-to-noise ratio for visualization while
retaining key features in the physiological context of native
biological systems. This approach was initially developed to
study catalysis by single enzyme molecules.124–127 The pioneer-
ing works on the enzyme catalysts and advancements in
microscopy techniques have made it possible to probe the
nanocatalysts at high spatial resolution.13–15,71,128–130 By

utilizing fluorogenic catalytic reactions and imaging the
fluorescence signal of the product, one can monitor these
reactions in real time at single-turnover resolution under
steady-state reaction kinetics on a single nanoparticle.14,71,131

In the chemical reaction involved in single-molecule tech-
niques, a non-fluorescent substrate (resazurin) gets converted
to a fluorescent product (resorufin) on the nanoparticle
surface.14,15,71 Each product formation event results in a
fluorescence burst when excited by a laser, which can be
captured using fluorescence microscopy. Though the fluores-
cence burst in these reactions is very quick, the waiting time
between two successive bursts, htoffi, is significant and can be
detected with high temporal resolution. Similar techniques
have been applied in the electrocatalysis at single-reaction
resolution.16

Ensemble-averaged techniques such as the Langmuir–Hinshel-
wood mechanism, among others, were commonly employed to
investigate nanoparticle catalysis theoretically.14,71 These
approaches are inspired by pioneering studies in enzymatic
catalysis, where substrate binding and unbinding to the enzyme
are treated as reversible processes.

Let a substrate S bind to the any one of the N active sites on a
gold nanocatalyst surface, forming the bound state Au–S, which
can form the product with rate k2 as shown in the reaction
mechanism in Fig. 2(a). Then the fraction of coverage of sites,
the sites in Au–S states, in the limiting case where k2 { k1 and
k2 { k�1 is given by

y ¼ K½S�
1þ K ½S� (9)

where K = k1/k�1 is the equilibrium constant and [S] is the
substrate concentration. Then the inverse of the waiting time
before a fluorescence burst can be written as71

toffh i�1 ¼ kNK½S�
1þ K ½S� (10)

Experimental data of htoffi�1 for varied substrate concentra-
tions and different sizes of the Au-nanoparticle catalyst are
shown in Fig. 2(b), where the lines show fitting of eqn (10).
With increasing substrate concentration, the Au-nanoparticles
show a similar kinetics of htoffi�1 as in eqn (10), solid fitted
lines in Fig. 2(b). These observations can be well explained by
the Langmuir–Hinshelwood approach.

4 Why stochastic modeling?

Microkinetic modeling, stochastic methods, and energy-
landscape theory offer complementary but fundamentally dis-
tinct insights into catalytic phenomena. Microkinetic modeling
employs a deterministic and mean-field approach, built from
elementary reaction steps. This method is helpful for quantify-
ing steady-state rates and identifying rate-determining steps in
chemical reactions.4,132,133 The use of a mean-field approxi-
mation and a heavy reliance on accurately known kinetic
parameters limit its ability to capture the spatial and temporal
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heterogeneity inherent in real nanocatalysts. Energy-
landscape theory adopts a thermodynamic viewpoint and
reveals design principles, such as the relationship between
energy gaps and catalytic turnovers, while unifying kinetics and
thermodynamics.134–136 Stochastic models resolve catalysis at
the level of individual nanoparticles or active sites, capturing
microscopic heterogeneity and temporal fluctuations that
ensemble approaches average out. Stochastic models provide
direct access to turnover-time distributions, dynamic disorder,
and rare events, which makes them highly valuable for inter-
preting data from single-particle spectroscopy and elucidating
particle-to-particle variability.91,95,98,137 However, their analyti-
cal intractability, high computational cost, and data require-
ments limit their use to nanoscale systems rather than large-
scale systems. In short, stochastic methods can reveal micro-
scopic heterogeneity, microkinetics quantitatively predict
macroscopic rates and selectivity, and landscape theory pro-
vides generalizable design rules rooted in fundamental
thermodynamics.

Since each turnover event in a single molecule experiment
gives a different turnover time and activity fluctuation rate, this
provides a measure to quantify the fluctuations in turnover.

Fluctuations in activities can also arise due to dynamic
restructuring.14 Fig. 2(c) presents the fluctuation rate as a
function of the turnover rate of the Au nanoparticles. This
figure shows that the fluctuation rate is higher when the
turnover rate is larger and the catalyst size is smaller. The
Langmuir–Hinshelwood model presented in the previous sec-
tion is based on the assumption that the Au catalyst surface is
uniform and the substrate binding–unbinding reaction is very
fast (compared to the product formation) and reaches equili-
brium on the surface with a large area. However, if the number
of catalytic sites is small, the average coverage approach does
not work well as the y will be a highly fluctuating random
variable. In the analysis of individual reactions, higher
moments of observables, generally the second moment, are
vital in the statistical analysis. The ensemble approaches
cannot produce such higher moments. Therefore, quantifica-
tion of fluctuations requires stochastic methods that utilize the
probabilistic approach to explain and predict the properties of
reactions on nanoparticles while accounting for intrinsic
fluctuations.95 These methods become essential when the
dynamics of catalysis is too intricate and random to be com-
pletely explained by deterministic tools.

5 Stochastic modeling of nanoparticle
catalysis

Nanocatalysts are fundamentally different from the bulk cata-
lysts due to their high surface to volume ratios, structural
heterogeneity, and flexibility. Structural heterogeneity can arise
from different atomic configurations, leading to a diverse
ensemble of sites on a single nanocatalyst.138,139 Due to ther-
mal fluctuations, adsorbate binding, and reaction environ-
ments, nanocatalysts can also undergo dynamic surface
restructuring. For example, Pt nanoparticles can restructure
to expose different facets in hydrogen evolution reactions.140,141

Surface restructuring indicates that the nanocatalyst is not
static but a statistical ensemble of several metastable config-
urations. The relative populations of metastable states can
change in response to the reaction environment. Fluctuations
in surface structure can also correlate with reaction rates,
implying that dynamic site rearrangements can influence cat-
alytic efficiency. In addition, nanocatalysts can have coopera-
tivity across spatially distant sites. Evidence of cooperativity has
been observed in single-molecule experiments, where distant
catalytic sites on a nanoparticle can communicate synergisti-
cally via charged hole migration.60,142 Fig. 3 summarizes these
phenomena in a nanocatalyst. The origins of these phenomena
lie in the nanoscale nature of the catalyst; therefore, under-
standing and leveraging heterogeneity, dynamics, and coopera-
tivity together offer a powerful paradigm for designing next-
generation nanocatalysts. Using the discrete state stochastic
modeling approach, these properties of the nanocatalyst have
been studied.96–98,143,144 Using the concepts of stationary state
and first passage time distributions, important dynamic prop-
erties of nanoparticle catalysis were evaluated. We also discuss

Fig. 2 (a) Michaelis–Menten chemical reaction for nanocatalysis. (b)
Mean turnover rate as a function of substrate concentration for Au-
nanoparticles of different sizes. (c) Activity fluctuation rate in the turnovers
from the Au-nanocatalyst. (b) and (c) are reproduced with permission from
ref. 14. Copyright 2009 American Chemical Society.
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these studies and other similar works in this direction in the
upcoming sections.

5.1 Modeling of a single reaction

The model of a single reaction involves the substrate S binding
to a catalytic site, and via a sequence of reversible steps, the
product is formed. To illustrate the utility of the CME, we take a
toy example of a simple two-step reaction, similar to the
Michaelis–Menten reaction, as shown in Fig. 2(a). Since we
are interested in the rate of product formation, we can use the
backward CME to solve this problem. Let F(n,t) be the FPT
probability density function of forming a product in time t
initially starting from state n. Here n A {S,CS} and C is the
catalytic site, Au in Fig. 2(a). Using the backward CME the time
evolution for F(n,t) is written as

dFðS; tÞ
dt

¼ k1½S�FðCS; tÞ � k1½S�FðS; tÞ (11)

dFðCS; tÞ
dt

¼ k2dðtÞ þ k�1FðS; tÞ � k2 þ k�1ð ÞFðCS; tÞ (12)

The mean rate of product formation obtained from the above
equations is

th i�1 ¼
ð1
0

tFðS; tÞdt
� �

¼

k1

k�1
k2½S�

1þ k1

k�1
½S� þ k2

k�1

�

k1

k�1
k2½S�

1þ k1

k�1
½S�
; (13)

which is the same expression obtained from the ensemble
methods (eqn (10)). This expression has been obtained by the
renewal method described in ref. 144, which is quite similar to
the first passage time approach. The explicit formula of the
randomness parameter was calculated in this study, which was
inaccessible in previous studies of similar catalytic
systems.14,16,71 The value of the randomness parameter
obtained using eqn (7) can be written as

R ¼

k2

k�1

� �2

þ2 k2

k�1
þ k1

k�1
½S� þ 1

� �2

1þ k2

k�1
þ k1

k�1
½S�

� �2
(14)

For the limiting case of the fast binding–unbinding rate,
k2 { k1,k�1, we obtain R = 1, indicating that product formation is
the only rate limiting step in the reaction. Randomness parameter
variation as a function of substrate is depicted in Fig. 4, where at a
specific substrate concentration, the maximum stochasticity is
observed, indicated by minima of R. Secondly, for the case of one
catalytic site, the R approaches unity at extreme [S] values;
however, this trend is changed at low [S], when two competing
sites are present. This indicates that R can effectively distinguish a
single reaction and two competing pathways. Though this study
focused on the case of two active sites on the catalyst, the
generalization of this was limited.144

Different classes of reactions can have different active sites
on the nanocatalyst and show different catalytic activities.
Several factors, such as geometric, electronic, and confinement
effects, can heavily influence the activity of an active site and
its length scales and timescales.50 Analysis of single-catalytic-
site systems is widely understood from the perspective of
enzyme catalysis. However, nanoparticle catalysis has several

Fig. 3 Schematic diagram to unify the role of surface heterogeneity, flux-
ionality, and cooperativity. Surface sites can have multiple types due to spatial
heterogeneity. Under reaction conditions or applied perturbation, the catalyst
can access an ensemble of different structures with different activities.
Charge transfer from one site to another can lead to cooperative commu-
nication between spatially distant sites. Stochastic modeling approaches can
provide several practically important observables.

Fig. 4 Randomness parameter for a two site heterogeneous enzyme as a
function of substrate S concentration. The dotted line is for the turnover
from a single reaction and the solid line is for the turnover from two
different reactions. P1 and P2 denote the fractional contribution of each
reaction in the turnover. Reproduced from ref. 144, Copyright (2015), with
permission from Elsevier.
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complexities. First, the reaction mechanism from substrate
adsorption to product formation can be complicated and can
involve several intermediate states. Even the simplest reactions,
such as hydrogen evolution and CO oxidation, can have a
complex pathway.147,148 Second, there are several active sites
on a nanocatalyst.50,149 Therefore, accounting for all the
chemical processes in the theoretical analysis can be
cumbersome.

Though single-molecule experiments have enabled us to
measure single-turnover events on a single nanoparticle
directly, they cannot describe the number of catalytically active
sites on the nanoparticle, because a fluorescence burst due to
the product can occur on any of the surface sites. Furthermore,
these observations cannot explain how the statistics of catalytic
turnover events and the turnover distributions are connected to
the microscopic dynamics of catalytic reactions.

5.2 Effective kinetic scheme

A theoretical framework using a discrete state approach was
proposed by Chaudhury et al. to efficiently account for the
multiple sites on the catalyst.150 Initially, this model was
presented for a fixed number of active sites; however, in a
further study, it was generalized for multiple reaction steps, a
variable number of active sites, and heterogeneous active
sites.97,98 These studies present a general scheme to account
for multiple reactions occurring in parallel on a nanocatalyst
with N sites based on an effective kinetic scheme.

This scheme coarse-grains the multiple steps of the
chemical reaction on an active site into effectually two
states. First, when the catalytic site is empty and no substrate
is attached to the site, and second, when the catalytic reaction
is in the intermediate state, from where a single step can
directly form a product. Essentially, there are only three
effective transitions possible: (1) binding of the substrate
to an empty site, which directly leads to the last intermediate
state (the state just before product formation); (2) product
formation (irreversibly) from the last intermediate state,
which leads to an empty site and product; (3) dissociation of
the last intermediate state all the way back to the substrate.
Fig. 5(a) shows a schematic of a nanocatalyst with N active sites
where a substrate S can bind and form the product. The
reaction mechanism on a single active site is shown in
Fig. 5(b) (upper), where a sequence of M steps leads to product
formation.

Using the coarse-grained chemical process, the reaction on
all catalytic sites can be easily projected onto the effective
kinetic model.98 Let n be the number of active sites present
in the CSM state on the catalyst; then, for an N site nanocatalyst
system, the coarse-grained effective model has N + 1 possible
effective states. The transition between the effective states is a
1D random walk like process, as shown in Fig. 5(b) (lower). A
weighted average is carried out across all the effective states to
obtain the turnover from a full catalyst, written as hti. The
weighted average ensures that most probable effective state
have larger contribution in the turnover time. Some of the

limiting observations from these calculations are

hti /M

N
and lim

N!1
R ¼ 1 (15)

These studies showed that the mean reaction times in a
catalytic system are inversely proportional to the number of
active sites, irrespective of any chemical reaction taking place
on the active site,98,150 see Fig. 5(c). The turnover time increases
linearly as a function of the intermediate steps in the reaction,
depicted in Fig. 5(d). Also, stochastic fluctuations were quanti-
fied by the randomness parameter (R). As shown in Fig. 5(e), the
randomness parameter is the smallest for one site (N = 1) and
increases with increasing number of sites. For a larger catalyst
size, the R E 1 indicates little stochastic fluctuations. Note that
catalytic sites generally increase with a catalyst’s size; however,
this trend may not always be true. The randomness parameter
result suggested that the stochastic effects in the dynamics
are canceled out due to the averaging of noise by several
chemical processes that take place independently at different
catalytic sites.

Kang et al. have also proposed an experimental measure to
estimate the number of active sites on the catalyst surface.145

Using the counting statistics of turnover events of the catalyst,
they investigated how the catalytic dynamics depend on the
number of active sites and the reaction mechanisms. They also
proposed that the turnover count statistic is a renewal process
for longer time limits; therefore, their proposed measure
becomes valid for a large time limit, even if an individual
catalytic reaction may not be a renewal process. Their observa-
tion of randomness is shown in Fig. 5(f), where a minimum of
randomness is observed with increasing reactant concentration
(CR/KA). All these studies, utilizing various methodologies,
complement each other in improving the understanding of
catalytic dynamics.

5.3 Spatial heterogeneity in the nanocatalysts

The structural heterogeneity of nanocatalysts represented by
the distribution in the size, morphology, and local coordination
environment of the active sites is almost inevitable in practical
nanocatalysts. Individual nanoparticles can differ in shape and
size; however, a single nanoparticle can also have different
surface sites. Many heterogeneous catalysts exhibit heteroge-
neity in the surface composition at the nanoscale level, result-
ing in multiple phases within the catalysts, which eventually
can have distinct catalytic activities.151,152 One of the first
direct pieces of evidence for the different activities of various
reactive sites coexisting on a supported metal catalyst was
obtained using molecular-beam and in situ IR spectroscopy
methods.153,154 More recent single-molecule experimental stu-
dies have shown that different surface site types can be present
even on a single nanoparticle. For example, active sites can be
different at corners, edges and facets, and their catalytic
features depend significantly on the morphology of the nano-
particle and the spatial location of active sites. Chen and co-
workers have done a series of experimental works to under-
stand the nanocatalysts at the microscopic level.15,155–157 Using
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super-resolution fluorescence microscopy, it has been observed
that the same surface facets on the sides of a single nanorod
exhibit reactivity that is not constant and exhibits a gradient
from the center of the nanorod toward its two ends.15 In
another study, Chen and coworkers studied a 2D nanocrystal.
In the nanocrystal, the activity of the catalyst is the lowest for
the flat surface facets and the highest for the corner regions.155

In anisotropically shaped photocatalyst particles, the different
constituent facets may form interfacet junctions at their adjoin-
ing edges, and these interfacet junctions could lead to spatial
variations of electronic and photoelectrochemical properties
along the particle surface, even within the same facet, at near-
edge regions showing different catalytic activities.156,157 These

findings have indicated that merely identifying the surface
facets of nanocatalysts is not sufficient to correlate with and
predict their reactivity, and a single nanoparticle can show
significant heterogeneity in its activities.

In situ techniques have revealed that the exposed crystal
facet also exerts a significant influence on both the quantity
and nature of catalytically active sites, where within a single
facet, the presence of various coordinatively unsaturated sur-
face sites gives rise to distinct adsorption environments. For
example, Zhang et al. showed that the intrinsic heterogeneity of
conventionally synthesized supported Rh catalysts can offer
distinct advantages in heterogeneous catalysis where isolated
Rh species exhibit high activity for the initial dehydrogenation

Fig. 5 Schematic representation of a nanoparticle catalyst with N identical catalytically active sites. (b) A simple representation of chemical reaction
taking place on a single active site. (bottom) The effective kinetic model of the N site catalyst, where r = u/M is the effective rate of reaching the CSM state
from C + S. The turnover rate as a function of (c) total catalytic sites on the nanoparticle and (d) the number of intermediate steps in the reaction pathway.
(e) The randomness parameter varied with the number of catalytic sites. (f) The randomness parameter as a function of concentration of the substrate.
(a)–(e) are reproduced with permission from ref. 98. Copyright 2021 American Chemical Society. (f) Reproduced with permission from ref. 145. Copyright
2021 American Physical Society.
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step, whereas Rh ensemble sites display high efficiency in the
subsequent transformation, a step for which isolated Rh sites
are essentially inactive.54 In such a case optimal catalytic
performance is achieved only when both types of sites coexist,
illustrating the beneficial role of heterogeneity in multistep
catalytic processes. During the oxidation of 5-hydroxymethyl-2-
furfural (HMF) on Pt nanocrystals, molecular O2 tends to
generate �OH species on the Pt(100) facet and �O2

� species
on the Pt(111) facet.53 Relative to �O2

�, the �OH species formed
on Pt(100) demonstrates a stronger ability to activate oxygen,
thereby promoting aerobic oxidation of HMF through a dehy-
drogenation pathway.

Using stochastic methods, Chaudhury et al. presented a
model to account for the underlying heterogeneity on the
catalytic sites and heterogeneity on the reaction pathways,97

as shown in Fig. 6(a). The mean turnover time from this model,

for two different active sites, was found to be

htiN1;N2
¼ 1þM

N1a1 þN2a2
(16)

Here, M is the number of intermediate steps in the reactions. A
similar result was also observed in other studies.145,150 It is
argued that the application of the proposed theoretical
approach to real nanocatalyst systems could uncover essential
molecular details of the underlying chemical processes. There
are three sources of heterogeneity in a catalytic system. First, we
investigate the heterogeneity that arises as a result of the
distribution of different types of sites. Second, heterogeneity
in the chemical reaction (mechanism or the number of steps)
occurs in the chemical reactions on the catalyst. Third, hetero-
geneity due to different activities of intermediate steps (though
the number of steps may be the same). It was proposed that the

Fig. 6 Schematic representation of a nanoparticle catalyst with two different types of, N1 and N2, catalytically active sites. (bottom) The chemical
reaction taking place on each type of site. The randomness parameter as a function of (b) N1 while keeping N2 constant and (c) M1 while keeping M2

constant. (d) Randomness for a heterogeneous model with substrate concentration. (e) CO oxidation rate schematic on surface sites of Au clusters of
different geometries. (f) Fitted parameters A, B, and C for the adsorption energy model for O and H. (a)–(c) are reproduced from ref. 97, with permission
from AIP Publishing. (d) is reproduced with permission from ref. 145. Copyright 2021 American Physical Society. (e) is reproduced with permission from
ref. 146 Copyright 2018 American Chemical Society. (f) is reproduced with permission from ref. 34. Copyright 2024 American Chemical Society.
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randomness parameter can capture these heterogeneities.97 As
shown in Fig. 6(b), when two competing pathways have similar
contributions to turnover, the randomness parameter is the
lowest, showing maximum stochastic fluctuation. In addition,
heterogeneity in reaction pathways can have a dual effect based
on the number of steps in the other active sites; see Fig. 6(c). A
similar heterogeneous system studied by Kang et al.145 showed
that the randomness parameter shows a bistable behavior
when the substrate concentration increases, as shown in
Fig. 6(d).

Apart from these theoretical developments, several compu-
tational studies have been carried out to investigate hetero-
geneity. Wang et al. studied CO oxidation on an Aux catalyst,
where they obtained an optimized structure of the nanocatalyst
using revised particle swarm optimization and DFT
calculations.33 They observed weak adsorption of CO and O2

onto the face sites, which resulted in lower activity. Xu et al.
investigated, using DFT calculations, how the geometric char-
acteristics of nanoparticles determine the binding strength of
surface adsorbates and, consequently, influence their catalytic
activity,146 as shown in Fig. 6(e). Omoniyi et al. developed a
computational approach to analyze the effects of adsorbate–
surface and adsorbate–adsorbate interactions on multifaceted
platinum nanoparticles using DFT-based models.34 This study
finds strong repulsive lateral interactions for oxygen compared
to hydrogen, see Fig. 6(f), which significantly impact adsorption
behavior across different Pt facets and also depend on the
adsorbate identity. Surface site heterogeneity studies have been
carried out to investigate propane oxidative dehydrogenation
on hydroxylated Ni-doped CeO2 nanorods.35

6 Communicating catalytic sites

In an earlier discussion, the models presented had considered
an important assumption that catalytic sites are independent.
More specifically, the catalytic reaction on one active site does
not influence the reaction on neighboring sites. This assump-
tion is valid in most cases; however, it is far from reality, and
communication between spatially separated catalytic sites
exists in nature. Such communication has been well
known for the catalytic allostery of enzymes, where binding
or catalytic conversion of a substrate molecule at one site
influences the binding or catalysis at another.159,160 The funda-
mental reason behind the allostery is the communication
via structural changes occurring at local and global scales,
which are mediated by covalent bonds and intermolecular
interactions.161 The cooperativity is not limited to enzyme
catalysts and has been confirmed experimentally in nano-
particles of various materials, where reactions at different sur-
face sites on the same nanoparticle or single atom catalyst
(SAC) can communicate.60–63,162,163 In heterogeneous catalysis,
the spillover effect enables product diffusion, connecting reac-
tions at different sites on the same catalyst.164,165 Investigation
of the oxygen reduction reaction (ORR) on a single-atom Fe–N4

catalyst has established the relationship between the inter-site

distance and the turnover rate at individual sites.62 Li et al.
reported the presence of synergetic interactions between neigh-
boring Pt monomers. These interactions cause distinct reaction
pathways and can yield enhanced catalytic performance com-
pared to isolated monomers in the CO2 hydrogenation
reaction.63 A study conducted by Chen and co-workers reported
intra-particle catalytic cooperativity during the catalysis of
redox chemical reactions on Au and Pd nanoparticles.60 Statis-
tical analysis of Pearson’s cross correlation coefficients (PCCs)
between different segments of individual nanoparticles
revealed that successive product-formation events were corre-
lated with a temporal memory (or lifetime) of B10–100 s and a
communication distance of B200–600 nm. Here the motion of
positively charged holes is responsible for the observed cataly-
tic communication and cooperativity.

Punia et al. presented a novel theoretical framework to
investigate cooperative communication on the nanorod.158

The model is based on the migration of charged holes created
during a redox reaction to neighbouring segments on the
nanorod. The theory assumes that the probability of the
catalytic reaction to take place at a given active site depends
on the local concentration of positively charged holes, and each
redox reaction creates an additional amount of charged holes.
By dividing the nanorod into segments of the same length, they
proposed that the charged holes that are produced in any
segment after a catalytic reaction (rate k) move to adjacent
segments with a jump process (rate u) and disappear due to a
finite lifetime (rate r), as shown in Fig. 7(a) (upper panel). This
situation can be modeled as a birth-death-like process where a
hole created at site zero has an equal probability to move in
both directions, see Fig. 7(a) (lower panel). For a non-linear type
nanoparticle, the hole migration can occur in two or three
dimensions, which can be accounted for by using a similar
approach. The stationary distribution of probabilities for find-
ing the charged hole in a segment was calculated for the 1D
model, and it was found that there is an increased probability
to find the messenger (hole) at the same place where it was
produced (n = 0), and the distribution exhibits exponential
decay as the distance from the origin increases. This discrete
state minimal model could also explain the existing correlation
between two successive fluorescence burst events observed in
the experimental research.158 Fig. 7(b) shows the comparison of
Pearson’s correlation coefficient using this theoretical
approach, and excellent quantitative agreement between theo-
retical predictions and experimental values was observed for all
systems investigated, supporting the theoretical approach.158

Thus, this theoretical framework could quantitatively describe
the phenomena of catalytic communications from the micro-
scopic point of view.

In a later study143 the minimal model of homogeneous diffu-
sion and death rates was extended to a heterogeneous case as the
former did not account for inhomogeneity in the structural and
dynamic properties of single nanocatalysts25,31,155,166 where the
diffusion rate and the decay rate of charged holes spatially vary
along the nanoparticles (see Fig. 7(c)). Using this heterogeneous
model, the communication lifetimes and correlation lengths were
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calculated, which revealed that spatial heterogeneity can increase
the strength of cooperativity, while the communication lifetimes
and distances decrease (see Fig. 7(d)).143 In addition, the impact of
surface restructuring on catalytic communication was also mod-
eled as stochastic transitions between macrostates with different
dynamic properties of charged holes.167 This study revealed that
communication times always decrease with increasing rates of
dynamic restructuring, while communication lengths exhibit a
dynamic behavior that depends on how dynamic fluctuations
affect the migration and death rates of charged holes.167 All of
these findings provide information on microscopic understand-
ing of cooperative communication and suggest potential strate-
gies to improve catalytic efficiency.

7 Dynamic catalysis

In previous sections, we have discussed a class of catalysts in
which the rate of reaction occurring on a nanoparticle site is
constant throughout the reaction. This type of catalyst is
termed the static catalyst. The turnover rate of a static catalyst
has a fundamental limit based on the Sabatier principle.172,173

The principle says that the highest turnover from a catalyst can
be obtained under the condition of intermediate interactions
between the substrate and the catalytic sites. The dissociation
of the product from the catalyst becomes the rate-limiting step

for strong interactions. For very weak interactions, substrate
binding to the site becomes the rate-limiting step. In both
extreme cases, the catalyst efficiency is the lowest and leads to a
volcano-type relation between the turnover rate and the
substrate-catalyst binding energy.174,175 The Sabatier principle
has been crucial in the conceptual understanding and design of
new catalyst materials.

Recently, another type of catalytic system has been investi-
gated in which reaction rates can change in real time, known as
dynamic catalysts. This has led the researchers to examine
whether the activity fluctuations can be utilized to enhance or
control the catalysis. Fluctuations in the shape, surface and
activities of the nanoparticles are already well known in the
literature.176–180 Simulation studies have suggested that surface
modifications by an external perturbation can lead to a higher
catalytic turnover rate. Modification of the surface can be
achieved by external electric fields,181–184 charge fluctuations,
and mechanical forces.185–188 The work of Dauenhauer and co-
workers showed that if the energies of intermediate species in
the chemical reaction are changed periodically, it can lead to
high efficiency, which is beyond the Sabatier limit.189–192 At a
specific frequency of periodic switching, a resonance is estab-
lished where the catalysts show a maximum turnover rate;
therefore, these are called resonance catalysts.193,194 Some
initial experimental observations support the idea that catalytic

Fig. 7 Communication in the nanoparticle catalysis; (a) the schematic diagram of hole creation, migration, and disappearance on a nanorod is divided
into segments of equal length. The panel at the bottom shows the discrete state model, where the lattice sites are labeled as integers for different
segments. (b) Experimental and theoretical (simulated) Pearson’s cross-correlation coefficients against average time separation Dtij of subsequent
reactions at segments i and j on the Pd nanorod. (c) Model for catalytic communication with heterogeneous rate constants. (d) Pearson’s cross-
correlation coefficients varied with average separation Dxij for two segments i and j on the nanorod and comparison between heterogeneous and
homogeneous cases. (a) and (b) are reproduced from ref. 158 published by PNAS under CC BY-NC-ND 4.0. (c) and (d) are reproduced with permission
from ref. 143. Copyright 2023 American Chemical Society.
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efficiency can be improved in dynamic catalysis.195 The basic
working principle of resonance catalysts can be explained by
Fig. 8(a), which shows an energy diagram of A(g) - B(g)
reaction via two intermediates A* and B*. By altering the
energies of intermediates A* and B*, the activation barrier of
the reaction steps can be modified, as indicated by the blue and
green colors. It is noteworthy that the transition A* - B* is
faster in the green state, and the transition B* - B(g) is faster
in the blue energy diagram. The periodic fluctuations between
the blue and green energy curves lead to a low-barrier pathway
in the reaction by coupling of elementary steps with the
oscillations of the catalyst. A Sabatier volcano plot for the static
catalyst case is shown in orange color in Fig. 8(b), where a red
dot indicates the optimum turnover frequency for a single
reaction pathway. By changing the binding energy of B* peri-
odically (at a certain frequency range) the turnover frequency
from a dynamic system can surpass the Sabatier optimum, the
purple line. Resonance catalysts demonstrate that the fluctua-
tions can be utilized to overcome the Sabatier limit, challenging
the traditional notion of a static catalyst in terms of catalytic
dynamics and efficiency.

In addition to forced fluctuations, passive fluctuations
also exist in the fluxional catalysts. Fluxional catalysts are a
class of dynamic catalysts where the fluctuations in the
activity or surface are not forced periodically; rather, they
stochastically interconvert between several isomeric states
due to thermal fluctuation. Each of these isomeric states
can have different activities in the chemical reaction.
Dynamic restructuring of catalytic sites has been reported
in various bulk catalytic surfaces, nanoparticle systems, and
supported nanocluster catalysts.43–45 Some metal nanoclus-
ters have shown dynamic meta-stability at the atomic scale,
where they can transition to multiple low energy states,
exhibiting different catalytic activities.43–45 Nanocatalysts
tend to undergo restructuring under external stimuli during
catalytic reactions, which is triggered by nonequilibrium
external parameters such as reaction temperature, atmo-
sphere, surface adsorbates, electric field, pH, etc.58,138 The
dynamic transformation can range from the atomic scale to
phase changes at the large scale, which has been observed in
in situ operando experiments. For example, the surfaces of Pd
and Pt nanoparticles show an oscillatory characteristic during
CO oxidation.42 Crozier and coworkers have experimentally
demonstrated dynamic structural reconfigurations on CeO2-
supported catalysts Pt, which are correlated with the catalysis
process.40,41 Surface-specific restructuring behavior was also
reported in high-entropy alloys.37,196,197 Pulsed electrolysis is
a promising method for directing reactions due to its ability
to modulate the oxidation state of the catalyst by periodically
applying an oxidative-reductive potential.198–200 Using this
method, the concentrations of H+ and OH� ions can be
modified, thereby improving the selectivity and CO2

reduction reaction.199–202 Dynamic reconstructions open
new pathways to strategically design catalysts with tailored
behavior and facilitate the discovery of new phenomena in
nanomaterials.

7.1 Dynamic catalysis minimal model

Several theoretical/simulation studies model the resonance
catalysts by inducing periodic fluctuations in the energies of
reaction species.184,189,190 These studies have considered exter-
nally induced surface or temperature modifications. However,
in the case of fluxional catalysts, the transitions between
potential energy surfaces happen passively spontaneously and
stochastically, which are governed by the intrinsic kinetics of
chemical reactions.203 A minimal model using a discrete-state
stochastic approach was presented in a recent study by Jangid
et al. to investigate dynamic catalysis.96 The schematic picture
of the model is shown in Fig. 8(d) along with the reaction
mechanisms on the different surfaces. This is a minimal model
where the catalytic surface can fluctuate between two surfaces A
and B, where two different reactions can take place. At any
instant of time, every active site can be found in one of the four
microstates: free A site, free B site, A site occupied by the CS
complex, and B site occupied by the CS* complex. Fig. 8(e)
shows the effective model described in Section 5.2, for the
dynamic catalyst with two active sites, which consist of all
physical–chemical processes of the catalyst. This model was
solved analytically for the steady-state probabilities using the
CME to obtain relevant quantities for N = 2 active sites.96 The
idea was to use the simplest theoretical model to obtain a
microscopic picture of underlying processes and answer some
fundamental questions regarding such catalytic systems. For
example, can the dynamic catalyst always provide a high turn-
over rate, and what is the microscopic reason? If so, what is the
driving force behind the possible enhancements in catalytic
performance in dynamic catalysis? Using this theoretical form-
alism, the mean reaction times for static catalysts (written as
htis) and dynamic catalysts (written as htid) were calculated and
a dimensionless parameter known as the efficiency function
EF, which is the ratio of these reaction times, was evaluated.96

EF ¼ htishtid
(17)

EF 4 1 indicates that dynamic catalysis is more efficient than
static catalysis. Similarly, EF o 1 denotes that the static catalyst
is more efficient and EF = 1 indicates that the static and
dynamic catalysts have the same efficiency. EF can be easily
measured in experiments, as it is the ratio of turnover rates. We
now demonstrate how the efficiency of dynamic catalysis can be
improved. Consider a scenario in which the transition S - CS
is faster compared to CS - P, for a type-A surface, see Fig. 8(f).
Here, the product formation step is rate-limiting. If there is a
dynamic fluctuation to additional surface, type-B, and the
energy barriers of type-B are asymmetric (left panel of
Fig. 8(f)), then S - CS - CS* - P becomes a minimum
energy pathway, due to dynamic transition CS - CS*. Thus
binding of the substrate on a type-A surface and formation of a
product from a type-B surface lead to kinetic asymmetry that
can be utilized to obtain a high turnover rate. Conversely, if the
barriers of type-A and type-B surfaces are symmetric (the right
panel of Fig. 8(f)), then product formation always remains a
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Fig. 8 Dynamic restructuring in catalysis. (a) Different energy pathways for reaction A(g) - B(g) via intermediates A* and B* (b) Sabatier volcano plot
(orange) and dynamic catalyst turnover rate (purple) for different fluctuation energies. (c) Activity map of different surface reconstructions, along with
their turnover frequencies. (d) Schematic representation of a nanocatalyst transitioning between two surface states with different active sites. The
mechanisms of chemical reactions on the active sites are illustrated below. (e) An effective kinetic model for a catalyst with two sites. (f) Energy diagram
for two cases for the dynamic catalyst. (g), (h) The efficiency of the dynamic catalyst compared to the static catalyst. (i), (j) The rate of energy dissipation in
the dynamic catalysis. (k) Effect of temperature on surface energies of different faces of a nanocatalyst. (l) A schematic diagram illustrating the effect of
temperature on the rates of the dynamic catalyst. (m) shows that the efficiency of the dynamic catalyst varies with temperature. (a) and (b) are reproduced
with permission from ref. 168. Copyright 2025 American Chemical Society. (c) is adapted from ref. 169 licensed under CC-BY-NC-ND 4.0 Copyright
(2024) The Authors, published by American Chemical Society. (d)–(j) are reproduced with permission from ref. 96. Copyright 2024 American Chemical
Society. (k) is adapted from ref. 170, Copyright (2020), with permission from Elsevier. (l) and (m) are reproduced with permission from ref. 171. Copyright
2025 American Chemical Society.
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rate-limiting step. In that case, dynamic transitions offer no
advantage and even reduce the catalytic efficiency due to
additional unproductive steps. Fig. 8(g) shows the efficiency
function relative to the static catalyst, where it achieves greater
than one value for a certain range of parameter values. In
addition, the fluctuation rate increases the efficiency, as shown
in Fig. 8(h). These results indicated that the enhancement in
efficiency in dynamic catalysis is conditional, which is only true
for some specific ranges of kinetic parameters.

7.2 Energy dissipation in dynamic catalysis

The high turnover rate of the dynamic catalyst is obtained when
the system can escape or avoid large kinetic barriers. Such
situations are only possible when cyclic fluxes in the reaction
pathways lead to energy dissipation in the system. The concept
of energy dissipation from stochastic thermodynamics has
been useful in the study of small-scale systems such as colloidal
particles204 and molecular motors.205,206 Application of external
driving forces to these systems can lead to a non-equilibrium
steady state. Investigating energy dissipation is relevant as it
quantifies the cost of sustaining a system and provides a
quantitative tool for distinguishing between systems with dif-
ferent degrees of deviations from equilibrium. For a discrete-
state Markovian jump process, the energy dissipation is given
by206–208

DW ¼ 1

2

X
i;j

rijPj � rjiPi

	 

ln

rijPj

rjiPi

� �
(18)

where Pi is the steady-state probability of state i and rji is the
transition rate from state i to j. Using an effective kinetic model,
the theoretical method assessed energy dissipation and its
relation with the efficiency of dynamic catalysis. Due to a high
fluctuation rate g the cyclic fluxes in the catalytic system
(Fig. 8(e)) increase, leading to high energy dissipation, see
Fig. 8(i). Fig. 8(j) shows the energy dissipation as a function
of the parameter x (given by x = a0/u0), where the net energy
dissipation occurs in the system for x a 1. Note that x = 1
denotes the case of a static catalyst where the energy dissipa-
tion is zero. In addition, this approach has predicted net cyclic
flux, the direction of flux, and its role in the efficiency of
dynamic catalysts.

Peters did a similar study on fluxional dynamic catalysts,
where steady-state turnover frequencies, pathway fluxes, inter-
mediate abundances, and transient intermediate relaxation
rates were explicitly calculated.132 It was also suggested that
deviations from equilibrium might be an important aspect of
these catalysts; the same conclusion was also reached in other
studies.96,184

7.3 Effect of temperature on the dynamic catalysis efficiency

Temperature is one of the most commonly controlled para-
meters in the reactions. So, the natural question that arises is
how does temperature play a role in dynamic catalysis? The
metastable isomers of the nanoclusters show significant cata-
lytic activities that are accessible in catalysis due to thermal

fluctuations.43–45,209 Temperature has been shown to play a key
role in determining the relative fractions of the metastable
isomers and reaction species, the activation energies, and the
equilibrium constants.210,211 Xing et al. investigated the depen-
dence of temperature on the iron and iron carbide nanoparticle
morphology.170 They showed that bulk and surface free ener-
gies decrease parabolically with increasing temperature, due to
entropic effects, see Fig. 8(k). At low temperatures, nano-
particles are dominated by low Miller index facets, and above
a critical temperature, high Miller index surfaces begin to
dominate. Therefore, temperature and entropy govern mor-
phology evolution in nanocatalysts and can be utilized for
tailoring structures to enhance catalytic performance.

Jangid et al. extended the minimal model of the dynamic
catalyst to account for the temperature and partial fluctuations
occurring at the active sites.171 This study showed that increas-
ing the temperature can disrupt the kinetic balance established
to maintain high efficiency, where at high temperature all
transitions become faster, see Fig. 8(l), and with increasing
temperature, the efficiency can decrease; see Fig. 8(m). This is a
significant result, as an increase in temperature leads to a faster
turnover rate; however, the increment can be slow relative to
the static catalyst.171

8 Theoretical modeling for
understanding and designing catalysts

By modeling Markov jump processes, discrete state stochastic
methods play an important role in understanding and design-
ing novel catalysts. These methods explicitly represent the
probabilistic jumps between well defined states, such as reac-
tants, intermediates and products at single site resolution,
therefore capturing spatial heterogeneity, fluctuations and rare
events. These models can link energies obtained from ab initio
DFT calculations for accurate prediction of catalytic activity and
selectivity under operating conditions. The distribution and
lifetime of discrete states can be utilized to identify which site
types and structural motifs dominate the reactivity. Knowledge
about individual discrete states can be used to suppress unde-
sirable states and can help optimize catalyst architecture, such
as size, shape, facet exposure, or even composition, to stabilize
most productive reaction states.

As we have discussed previously, discrete state stochastic
models can provide a rigorous framework to characterize
catalysis via approaches such as CME, FPT, KMC, and stochas-
tic fluctuations quantified by higher time moments and guide
catalyst design by providing quantitative and qualitative
insights at single site resolution. For example, the use of the
randomness parameter can uncover the possibility of hidden
intermediate states, multiple parallel pathways, the possibility
of inhibition and distinguish fast and selective pathways from
slow and nonselective pathways, therefore indicating which site
type, surface motifs, or mechanistic pathways are responsible
for observed reactivity,93,94,97,98,145 consequently enabling
desired modifications such as facet engineering, alloying, and
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ligand selectivity for high performance catalysts.212–214 These
models go beyond the assumption that all sites are equal,
showing that different local configurations of adsorbate mole-
cules can have different kinetics.215 The concept of microscopic
cooperative communication among catalytic sites allows one to
predict and design catalysts that can maximize this synergistic
effect, leading to enhanced reaction rates, higher selectivity,
and improved catalytic efficiency.60,143,158 By discretizing hole
dynamics into a discrete space, the spatial movement of charge
carriers can be easily quantified, helping in understanding the
spatial correlation length and temporal memory. Dynamic
catalysis has the potential to fundamentally shift the optimum
catalytic limit imposed by the Sabatier principle, where, by
actively modulating the binding energies or rates, one can
transiently decouple elementary reaction steps (adsorption,
reaction, and desorption) and surpass the classical volcano plot
maximum.96,172,193 In this way, stochastic modeling can trans-
form single-particle catalytic fluctuations into actionable
design principles, mapping the structure and mechanism to
performance.

9 Summary and outlook

Heterogeneous catalysts are highly complex and uncovering the
underlying microscopic mechanisms is crucial to advancing
catalytic science. This article provides a concise overview of
theoretical development in single-nanocatalyst characteriza-
tion, including recent experimental advances and computa-
tional methods. Single-molecule fluorescence spectroscopy
and operando characterization techniques have provided
remarkable insights into these tiny structures in experimental
studies, enabling the detection of heterogeneity, cooperativity,
and the dynamic evolution of catalysts in real time under
reaction conditions.71,155,216 We discussed a general and robust
framework of effective kinetic modeling based on discrete state
stochastic methods that can be used to account for all chemical
reactions on the nanocatalyst.150 The advantage of the stochas-
tic approach is that one can analytically evaluate physical–
chemical processes and the dynamic properties of single nano-
catalysts by accounting for stochastic fluctuations.95 We have
recalled recent theoretical studies that have uncovered the
molecular mechanisms of nanoparticle catalysis. We noted that
the underlying heterogeneity in the catalysis can be used as a
valuable quantitative tool to understand the microscopic
mechanisms of catalytic systems and can be used to quantify
the number of active sites.97,98 The theoretical model of
dynamic catalysis can help researchers identify the bottlenecks
for designing catalytic materials that may break the traditional
Sabatier limit and outperform traditional catalysts.96 The the-
ories of cooperative communications between different seg-
ments on the nanorod provide an effective quasiclassical
qualitative description of catalytic communication, which
might help to improve catalytic efficiency.143,158,167

The disadvantage of stochastic approaches is that they are
difficult to solve analytically for a large and complex catalytic

system. As a result, some simplifications and assumptions are
made in the analysis, which may restrict the full quantitative
description. For example, in the heterogeneity model, Fig. 6,
the backward chemical transitions were ignored, the rates for a
mechanism were assumed to be the same, and only two types of
sites were considered.97 The model could provide valuable
qualitative insights, but the quantitative application to real
systems can be limited. The communication model in Fig. 7
assumes that the holes reach a steady state quickly after
creation. However, this assumption may not hold for all sys-
tems and requires further examination. The dynamic catalysis
model presented here, Fig. 8, used a simple chemical reaction,
but the impact of dynamic fluctuations remains poorly under-
stood for more complex catalytic mechanisms.96 These limita-
tions and simplifications pave the way for further investigation
of these systems and resolution of the limitations. One could
examine the role of two or more substrates in the reaction217,218

and the effect of external conditions such as temperature,219

pH,220 and the possibility of inhibition221 in heterogeneous and
dynamic catalysis models. In the communication model,158

only one hole (charge carrier) was considered in the commu-
nication mechanism; however, it would be interesting to con-
sider the interactions of multiple charge carriers working
together.222 The model for catalytic cooperativity holds good
only for intraparticle communication within the same nanorod.
Furthermore, experiments have also reported communication
between individual nanocatalysts with communication dis-
tances on the order of micrometers.60 It has been established
that such communications occur via molecular diffusion and
are limited to selected systems.

While the state-of-the-art techniques in theoretical and
computational catalysis have provided valuable mechanistic
understanding in catalysis, the challenge lies in bridging the
gap between idealized models and real catalytic complexity:
from ab initio calculations to detailed kinetic modeling.
Though developing simplified models can account for surface
reconstructions and spatiotemporal heterogeneities, these fac-
tors are still difficult to fully capture within current mesoscale
models. These models assume a well stirred reaction mixture
while ignoring intermediate spatiotemporal effects such as
transport and partial access of reactants to the active site.
These effects have been incorporated in some studies; however,
it still remains a challenge on a broader scale.118,139,223

Accounting for these factors in the models is computationally
challenging. Solvent effects introduce additional complexity
due to fluctuating local environments, long range electrostatic
interactions and entropic effects.224–227 Simplified models of
continuum or implicit solvation fail to capture solvent effects
that are crucial for predicting true catalytic behavior.226 Accu-
rate modeling of such systems will require a combination
of ab initio methods and sampling techniques with microki-
netic and stochastic modeling, which is a computationally
demanding task.

Machine learning has evolved from a niche research area to
a powerful tool in the field of catalysis. ML is effective at
extracting information from experimental or simulation data
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without detailed knowledge of physical or chemical processes.
The neural network potentials trained on DFT data can accu-
rately reproduce ab initio energies and enable simulation of
large systems.228–230 These approaches facilitate the fast screen-
ing of catalyst materials and the estimation of kinetic para-
meters and establish relationships between the structures of
catalysts and their physicochemical properties, catalytic perfor-
mance and selectivity. By encoding physical constraints directly
into neural network architectures, these models can achieve
improved accuracy. For example, physics-constrained loss func-
tions that incorporate mass and energy conservation laws can
ensure that predictions remain physically consistent.231,232

In conclusion, suitable modeling approaches can signifi-
cantly improve our understanding of the experimentally
observed data and even help us make predictions. The results
obtained from single-molecule studies, advanced spectroscopic
techniques, and atomistic simulations in stochastic frame-
works can complement and further refine our understanding
of catalytic dynamics.4,233 The accuracy of theoretical models
for catalytic reactions can be greatly improved by developing
state-of-the-art machine learning models.234,235 Physically rele-
vant models can help catalyst design and enable the develop-
ment of more sustainable and efficient catalytic materials to
meet industrial and environmental needs.
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