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frameworks: progress and challenges from a data
efficiency perspective
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This review critically examines work at the intersection of machine learning (ML) and metal–organic

frameworks (MOFs). The modular nature of MOFs enables immense design flexibility and applicability

to a wide range of applications. However, the combinatorially large design space also stresses the

resource-intensive nature of traditional high-throughput screening approaches. Due to the increasing

availability of data in the form of experimental and hypothetical MOF structures and their properties,

ML methods have emerged as a promising solution to accelerate MOF discovery, yet successful

application of these methods will require strategies that maximize data and resource efficiency. This

work surveys approaches to reduce data and resource burdens for MOF property prediction and

design through feature engineering, model architecture choices, transfer learning, active learning, and

generative models. We also discuss challenges related to data quality and scalability, as well as future

opportunities for ML-empowered methods that, up to this point, have primarily focused on MOF

adsorption properties. By focusing on efficiency at every stage (from data generation to model

inference), we identify future pathways for making ML-aided MOF design more robust and accessible

to both theorists and experimentalists alike.

Wider impact
Metal–organic frameworks (MOFs) are materials with the potential to revolutionize numerous areas of research and technology. MOFs are modular materials
combining inorganic and organic building blocks. The premise in MOF research is that there are specific building block combinations that can yield
breakthrough-enabling properties. The challenge is thus to identify these combinations out of a vast ‘‘design space’’ spanning trillions of possibilities. Since
the early days of high throughput computational screening, artificial intelligence and machine learning (AI/ML) have helped explore this vast MOF design
space. However, with the recent explosion of all things AI/ML, there is a lot of excitement about the prospect of AI/ML touching nearly all aspects of MOF design
and development, but there are also important questions about where or how AI/ML can make the biggest impact. Aiming to help provide such perspective, this
review discusses how AI/ML involvement in MOF research has evolved, but with data efficiency as the guiding underlying theme. Data efficiency is an aspect of
ML research in MOFs that has not received much attention and only been implicitly discussed in the past, but that now is coming to the forefront due to the
increasingly complex AI/ML models/methods at one’s disposal, more ambitious tasks for AI/ML, and the desire to explore new aspects/properties of MOFs.

1. Introduction

Metal–organic frameworks (MOFs) are some of the most fasci-
nating materials under development in the 21st century.1 MOFs
were originally studied for their potential use in hydrogen2 and

methane storage3 but are now broadly studied for their potential
in diverse applications, such as in electronics,4 catalysis,5

sensors,6 medicine,7 and molecular separations,8 among others.
Conceptually, MOFs can be thought of as porous, ordered,
modular materials where each MOF arises from a specific combi-
nation of organic linkers and metal-based nodes interconnected
into a network that follows a specific pattern or ‘‘topology9’’. With
hundreds of nodes, thousands of topologies, and billions of
linkers to choose from, MOFs have almost unlimited tunability
potential. However, the latter comes at the expense of an over-
whelmingly large ‘‘design space’’ that comprises (at least) trillions
of MOFs.10
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For more than a decade, computation has sought to help
experimentalists navigate the design space of MOFs by predict-
ing relevant properties for as many ‘‘prototypes’’ as possible, so
that lab efforts and resources are only directed towards the
most promising ones.11 This paradigm is now pervasive in
materials science and is known as high throughput computa-
tional screening (HTCS). The early vision for HTCS was to
exploit the ‘‘boom’’ in computational power to simply automate
the prediction of MOF properties using ‘‘standard’’ prediction
methods underpinned by classical, quantum, and statistical
mechanics (e.g., molecular simulation). However, with so many
prototypes, candidate applications, and operating conditions
for each application to consider, it became clear that inherently
faster prediction methods were needed. Not surprisingly,
efforts to predict MOF properties via machine learning (ML)
started to emerge soon after the first prominent efforts in MOF
HTCS came to light.12–14

Along with other developments in artificial intelligence
(AI), the success of AI/ML tools such as ChatGPT is arguably
reshaping society, increasing awareness about AI/ML among
the broader public, and creating a sense that maybe ‘‘any-
thing’’ is possible with AI/ML. This ‘‘hope’’ surrounding
AI/ML has also extended to the field of computational devel-
opment of materials in general, and MOFs in particular.
However, it is important to recognize the ‘‘special’’ circum-
stances around the development of ChatGPT. For instance,
GPT-3 and GPT-4, i.e., the large language models (LLMs)
under ChatGPT’s ‘‘hood,’’ are believed to have been trained
on (at least) 300B tokens (i.e., text-based ‘‘data points’’) using
a large cluster of GPUs and costing over millions of US
dollars. This is a scale of data and resources that academic
research labs do not routinely have access to. For instance,
the most ambitious property prediction efforts in MOFs have
usually hit a ‘‘wall’’ at around one million structures, even for
relatively inexpensive properties to predict, such as methane
adsorption or void fraction.15 In other words, while the
development of AI/ML is ‘‘hungry’’ for data and resources,
academic research labs in the MOF field (and across materi-
als science in general) must adapt to circumstances of data
and resource ‘‘scarcity.’’

With the above in mind, let us note that this review does not
aim for an exhaustive listing of the numerous ML efforts that
have been reported to date in the MOF field. Rather, this critical
review aims to highlight ML efforts in a way that showcases the
lead up to current strategies to maximize data and resource
utilization efficiency for MOF development. Broadly speaking,
these strategies tend to impact one or more of three phases of
the ML-based discovery pipeline: (i) the data processing phase,
which pertains to the acquisition and preparation of data to be
fed to the ML model, (ii) the model training phase, which
pertains to the selection of model architecture and the training
approach, and (iii) the materials discovery phase, which per-
tains to the utilization of the ML model to explore the MOF
design space. Accordingly, Fig. 1 provides an overview of how
the topics discussed in different sections in this review relate to
these phases.

2. Data efficiency through feature or
model architecture engineering

Two of the most important decisions affecting the learning
efficiency of an ML model that predicts MOF properties are
choosing features (or model inputs) and the model architecture
(or model functional form). To rationalize this fact, imagine a
MOF property given by a scalar y (the intended model output)
that happens to depend on MOF feature x1 in the form f (x):

y = a1x1
2 = f (x) (1)

where a1 is the linear combination of feature x1. In the usual
scenario where one does not actually know f (x), one would
aspire to approximate f (x) using a vector of n proposed input
features x 2 Rn transformed by a set of basis functions, e.g.:

f xð Þ �
Pn

i¼1

P1

m¼0
bi;mx

m
i (2)

representing an infinite polynomial basis. If one had infinite
basis functions and infinite training data, this approximation
of f (x) would be exact. But outside of this unrealistic scenario,
one must leverage known aspects of f (x) to limit the space of
solutions that need to be investigated, hoping to reduce the
amount of training data required to sufficiently approximate f (x).

In the case where f (x) is given by eqn (1), knowledge that f (x)
only depends on x1 – and what x1 looks like – is an example of
feature engineering. On the other hand, knowledge that the
functional form of f (x) depends on x2 is analogous to model
architecture engineering. Either case is an example of inductive
bias that narrows the range of possible ML model solutions,
requiring domain knowledge to impose useful assumptions.

Over the last two decades, researchers have investigated how
to design ML models for efficient screening of MOFs mostly
based on property predictions related to gas storage (e.g., CH4,
CO2, H2) and separations (e.g., CO2/H2, CO2/N2); interested
readers can refer to in-depth reviews16,17 on this topic. As our
focus is on the data efficiency gained through feature and
model architecture engineering, we will limit our discussion
to the context of CO2 adsorption predictions for MOFs, which is

Fig. 1 Overview of some possible paths in a ML-based pipeline seeking
the discovery of a promising MOF. The colored dots indicate which
sections in this review (see color code bottom-left) discuss different
aspects of the pipeline.
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one of the prediction tasks that has remained active since the
early MOF days until now. Since features and model architec-
tures are inherently coupled, we distinguish ML models that
focus on global statistics from those that focus on local (usually
microscopic) statistics.

2.1. Model learning efficiency using global statistics

We define global statistics as those that characterize attributes
of the MOF in an inherently low-dimensional space, i.e., with-
out focusing on individual atomic or linker/node properties.
Borrowing from experimental MOF studies, common sets of
descriptors include those that focus on geometric aspects
(Fig. 2a) of the MOF (e.g., largest pore diameter, specific surface
area, void fraction, topology, etc.) and processing conditions
(e.g., temperature, pressure, etc.). There are also physicochem-
ical aspects of the MOF (e.g., maximum/minimum charges,
populations of specific elements, etc.) that have been intro-
duced. Froudakis and coworkers18,19 have shown that augment-
ing five to six simple geometric features with either 20 chemical

descriptors describing the presence of atom types or four
energetic descriptors describing the probabilities that generic
probe particles would be adsorbed results in improved ML
model performance with R2 = 0.93 compared to R2 = 0.84
(hMOFs at 298 K and 2.5 bar) and R2 = 0.87 compared to R2 =
0.69 (CoREMOFs at 300 K and 2 bar), respectively; in both
cases, random forests (RFs) were used as the ML model and the
augmented features required an order of magnitude reduction
in data to achieve comparable performance to geometric-only
features. Energetic descriptors,19–22 especially those that focus
on electrostatics, have been shown to be particularly effective at
CO2 adsorption and selectivity predictions, which can be
explained by the polarization of CO2 and its attractive inter-
action with metal sites. It is not enough to simply add more
descriptors to the model – those that have a mechanistic
connection to the output property of interest will impose the
most useful inductive bias.

Across many studies,20,21,23 one common theme has been
that the relationship between adsorption properties and global
statistics is expectedly nonlinear, as evident by improved pre-
dictions using support vector regressors, decision trees (and
related methods), and artificial neural networks (ANNs) com-
pared to linear regression. However, while the fidelity of CO2

adsorption predictions tends to be high at the upper end of
tested pressures (0.86 o R2 o 0.96 at pressures greater than
2 bar),18,19 predictions at lower pressures have had room for
improvement (0.69 o R2 o 0.84 at pressures below 0.1 bar).19,22

One direction to improve ML performance is to focus on
descriptors that characterize higher-resolution information
about MOFs, which we describe next. Nonetheless, we empha-
size that one benefit of global statistics features is for inter-
pretability, which ultimately informs design principles (e.g.,
defining structure–property relationships) for MOFs.19,22

2.2. Model learning efficiency using local statistics

We refer to descriptors that represent higher fidelity aspects of
MOFs, often at molecular or atomic scale, as local statistics.
These features can also be thought of as higher-dimensional
representations of global statistics. One of the earliest examples
of local statistics is the atomic property weighted radial dis-
tribution function (AP-RDF) as demonstrated by Woo and
coworkers,13,27,28 which represents the pairwise correlation of
atomic properties of interest (e.g., electronegativity or polariz-
ability) over a wide range of discretized distances (e.g., from 0.2
to 3.0 nm). These features significantly increase the input
feature space by at least an order of magnitude compared to
global statistics and were shown to outperform CO2 working
capacity predictions (using multilayer perceptrons (MLPs))
compared to using global geometric features alone with R2 =
0.94 and R2 = 0.71, respectively.27 The revised autocorrelation
functions (RACs) introduced by Kulik and coworkers29 can be
thought of as a discretized version of AP-RDFs, instead focusing
on atomic property correlations between close atoms (those
within a specified depth of a connectivity graph where edges
represent bonds) (Fig. 2a). These authors showed that RAC
features combined with geometric features improved the

Fig. 2 (a) Examples of local and global features. The depicted local
feature is the revised autocorrelation (RAC for start

scopeZdepth) function that
quantifies the discrete correlation of Z (electronegativity, nuclear charge,
topology, covalent atomic radius, and identity for w, Z, T, S, and I,
respectively) between atoms separated up to depth l. The start index
(ligand-centered, metal-centered, and full for lc, mc, and f, respectively)
refers to the reference of the RAC summation and the scope index (axial,
equatorial, and all for ax, eq, and all, respectively) refers to which neigh-
boring ligand atoms are included in the summation. Reprinted with
permission from ref. 24. Copyright 2017, American Chemical Society.
The depicted global features show commonly used geometric descriptors.
Adapted with permission from ref. 25. Copyright 2020, American Chemical
Society. (b) Comparison of machine learning model performance using
different architectures and features for CO2 adsorption using the (left)
CoREMOF and (right) hMOF datasets. In general, increasingly complex
models (from MLPs trained on geometric features (GEO_MLP) to trans-
formers trained on chemical and positional encodings (Matformer)) that
learn ‘‘long-range’’ spatial correlations between local features tend to
improve model performance. Adapted from ref. 26.
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prediction of CO2 uptake in MOFs (both under low and high
pressures) compared to using geometric features alone.

Along these lines, several researchers have aimed to leverage
the molecular structure of MOFs in other ways to improve
model performance, leading to the adoption of higher-
dimensional features and more varied model architectures.
The three-dimensional structure (and atomic properties) of
MOFs can be voxelized into a three-dimensional (3D) discrete
space, with local nonlinear correlations learned through a 3D
convolutional neural network (3D-CNN). Froudakis and
coworkers30 demonstrated this approach using a voxelized
potential energy surface describing the Lennard-Jones inter-
action between a probe atom and the framework, also showing
that the 3D-CNN required two orders of magnitude less data
compared to a RF model with geometric features to achieve
comparable performance. Relatedly, Lin and coworkers31

showed that 3D-CNNs trained using voxelized features contain-
ing Lennard-Jones parameters and partial charges are useful
for CO2 adsorption screening.

Alternate model architectures have been proposed that still
aim to leverage the structure of MOFs with reduced memory
requirements. One approach32 is to featurize the MOF as an
unstructured point cloud described by Cartesian coordinates
and any atomic properties of interest (e.g., atomic number,
electronegativity, van der Waals radius, etc.). Predictions
are trained through the permutation-invariant PointNet
architecture,33 which extracts point-wise features through
MLPs before applying global pooling, and this approach has
been shown to improve CO2 uptake predictions at low pressure
compared to conventional geometric features. Others have
opted to directly enforce local structural correlations by repre-
senting MOFs as graphs with atoms as nodes and bonds as
edges. Reported graph neural networks, such as the crystal
graph convolutional neural network (CGCNN)26 and the ato-
mistic line graph neural network (ALIGNN),34 use atomic
properties (e.g., electronegativity, valence electrons, covalent
radius, etc.) as node features and bond distances as edge
features, then learn how to predict properties via message
passing along the graph topology. However, as shown by Cui
et al.,26 GNN model learning is biased toward local structural
characteristics and CO2 adsorption predictions can be
enhanced through learning from global structural awareness
(Fig. 2b), e.g., using the attention mechanism popularized by
the transformer model35 (discussed further later). In summary,
while increasing the input space dimensionality through local
statistics is a promising strategy, it is important to also identify
the proper model architectures that bias learning towards the
types of feature relationships (e.g., spatial correlations) one
believes is most relevant for the prediction task of interest.

2.3. Preventing overfitting during model training

In the previous two subsections, we discuss the benefit of
introducing more complex features or model architectures to
aid training, which is productive when the additional complex-
ity aligns with an inductive bias related to the task of interest.
However, it should also be noted that increasing the number of

features or increasing the capacity of the model can increase
the risk of overfitting, which is when the model learns to
‘‘memorize’’ patterns in your training data and fails to general-
ize to new ‘‘unseen’’ data. When using high-dimensional
features, the model must learn over a large and potentially
sparse input space, making it more prone to fitting irregular or
coincidental patterns rather than fundamental underlaying
trends. Likewise, models with large capacity can eventually
become powerful enough to fit to nearly any training data
point, including noise. The broader ML community has
adopted several mitigation strategies, including the use of rigor-
ously separated training, validation, and test splits (for early
stopping assessment of generalizability),36 hyperparameter
tuning37 via cross-validation to control model complexity,
regularization,38 and feature down-selection or dimensionality
reduction39 to reduce the noise or redundancy in the input
space. Despite the routine use of these methods in ML applica-
tions, their use, to our knowledge, is rarely the focus of dedicated
studies in the MOF literature. In particular, the common train-
ing/validation/test splits paradigm requires having a sufficiently
large and diverse enough dataset that all three are statistically
representative of the scientific task of interest. Therefore, a
systematic investigation into how model capacity and feature
design interact with data availability and model generalizability
remains an open opportunity.

3. Data burden reduction exploiting
previously trained models

An alternative to human-based engineering of MOF features is
to let the computer engineer MOF features itself, which then
can be used as input to train a ML model for a target prediction
task. Computer-engineered features usually emerge as a bypro-
duct of training deep learning models. As these models usually
involve ANNs (also called MLPs), the desired computer-
engineered features are taken to be the output from one of
the (wisely chosen) model internal layers. In principle, these
features encode (in the form of a vector, matrix, or tensor) the
pieces of information (e.g., MOF traits) that were most critical
to make a prediction. Although these features are not easily
interpretable by humans, their numerical form allows them to
be easily reused ‘‘as is’’ by humans as input to other ML
models.

3.1. Transfer learning from specialized models

The act of borrowing computer-engineered features emerging
from the training of one model (to perform a source task) to
use as input for the training of another model (to perform a
target task) is the most common example of transfer learning
(TL). To successfully perform this kind of transfer learning
(i.e., so that limited data is enough to train the model for the
target task), one must first identify a source task that facil-
itates the emergence of computer-engineered features that
are highly significant to the target task. It stands to reason
that this scenario is more likely to occur when the source task
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and target task share some degree of similarity, as they are
more likely to depend on similar MOF traits and/or governing
equations. Additionally, as computer-engineered features
emerge from deep-learning, the ideal source task is one
for which training data can be easily and inexpensively
generated.

In 2017, the first exploration of transfer learning for MOFs
was reported by Ma et al.40 These authors studied to what extent
transfer learning was possible with the prediction of H2 adsorp-
tion loadings at high pressure/temperature as the source task,
and prediction of H2 adsorption loadings at high pressure/low
temperature, CH4 adsorption loadings, and Xe/Kr selectivity as
the target tasks. Five simple MOF textural traits were used as
model inputs, and target task datasets were about ten times
smaller than the source task dataset. All models shared the
same MLP architecture, which consisted of two hidden layers.
Transfer learning was formally done by keeping the parameters
up to the first hidden layer of the target task model the same as
in the source task model and optimizing the parameters of the
second hidden layer and output layer (Fig. 3a). Indicative of the
importance that the source and target prediction tasks are
governed by similar MOF traits, the computer-engineered
features emerging from the source task proved useful for the
H2 and CH4 adsorption prediction target tasks, which aver-
aged R2 values of 0.991 and 0.980, respectively, but not so for
Xe/Kr selectivity prediction, for which R2 values averaged
around �0.092.

In 2023, Cooper and Colón41 further examined the efficacy
of transfer learning between H2 and CH4 adsorption predic-
tion tasks from the perspective of the similarity (based on
either textural properties or topologies) between the MOFs in
the source and target task datasets. Not surprisingly, transfer
learning worked better (i.e., higher accuracy, smaller dataset
size requirements) when the MOF datasets used for the source
and target tasks were more similar, e.g., as measured by
distance in principal component space. But more interest-
ingly, these authors found CH4 adsorption (and some MOF
datasets) to work better as the source task (and as the source
MOF dataset) compared to that of H2 adsorption. Thus, their
work underlines the importance of choosing source tasks and
MOF datasets that are informative for the target tasks,
although guidelines to accomplish this goal are not well-
established.

Although in the previous examples, the ‘‘transfer of knowl-
edge’’ was done sequentially and explicitly, this transfer can
also occur simultaneously and implicitly through multitask
learning (MTL). In MTL, which is usually done with neural
networks, a single model is trained on various tasks. The first n
layers of the model are shared by all the tasks, resulting in
internally generated ‘‘shared’’ features that feed into subse-
quent independent layers, which take each prediction task to
completion. In one recent example, Zhang et al.44 showed MTL
to result in a more accurate CGCNN to predict various MOF
stability metrics (e.g., water and thermal stability, among
others) compared to any CGCNN (or any other model) trained
on a single stability metric.

3.2. Transfer learning and fine-tuning from foundation
models

To mitigate the sensitivity of TL to source datasets and tasks,
the MOF field has seen a rise in the development of pre-trained
foundation models, which are large models trained using huge
and diverse datasets to internally learn (usually in a self-
supervised fashion) general representations useful for broad
tasks. Foundation models can be used as a common starting
point to train new models for a variety of prediction tasks using
a small task-specific dataset or limited training steps (or both),
making model training more data-efficient. As in many other
fields, the pursuit of foundation MOF models has been pro-
pelled by the advent of transformer models (the underlying
model behind GPT-4), which started in 2017 with the work of
Vaswani et al.35 The first transformer model for MOFs was the
2022 MOFnet,45 which was followed in 2023 by MOFormer42

and MOF transformer,46 and in 2024 by Uni-MOF.47 Transfor-
mers are a neural network architecture that includes (trainable)

Fig. 3 (a) Schematic representation of transfer learning. First (left), an
artificial neural network is trained on a source task with a source dataset.
Then (right), the parameters of the hidden layers are frozen except for the
final hidden layer, which is trained using a target task and target dataset.
Adapted with permission from ref. 40. Copyright 2020, American
Chemical Society. (b) The pipeline of the self-supervised MOFormer model
for representation learning. The tokenized MOFid representation is
embedded and augmented with a positional encoding before entering
the transformer encoder layers (see right for a schematic of these layers).
The learned embedding of the first token is to be used in downstream
prediction tasks. Adapted from ref. 42. (c) Pretrained models (here, MOF
transformer and ChemBERT) are used as inputs to downstream prediction
tasks. For the prediction of proton conductivity using neural networks,
input pretrained representations are augmented with embeddings for
temperature and relative humidity and only the neural network and
embeddings are trained (the pretrained models are frozen). Adapted with
permission from ref. 43. Copyright 2024, American Chemical Society.

Materials Horizons Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

4 
D

ec
em

be
r 

20
25

. D
ow

nl
oa

de
d 

on
 2

/1
5/

20
26

 5
:0

3:
11

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5mh01467k


Mater. Horiz. This journal is © The Royal Society of Chemistry 2025

matrix operations that embody the concept of attention. In
MOF transformers, the attention mechanism enhances or
attenuates features (e.g., atom or bond encodings) critical to
the prediction task in a way that is influenced by other features
(e.g., other atom or bond encodings) unrestricted by ‘‘proxi-
mity’’. In the context of MOFs, this spatially unrestricted nature
could be useful to simultaneously learn from aspects such as
local chemistry and long-range structure (e.g., pore size dis-
tributions). Typically, a MLP is trained to aggregate this
attention-weighted ‘‘transformation’’ into the final prediction.

MOF atoms and bonds have been originally presented to
transformers based on graph-like representations of the whole
MOF (MOF transformer, Uni-MOF) or a representative MOF
unit (MOFnet). Atom identities and bond topologies are also
present in string representations, such as the SMILES of MOF
secondary building units used in MOFid (MOFormer). Addi-
tionally, complementary global features meant to summarize
pore structure have been added to the transformer either
directly (e.g., MOFnet with void fraction, surface area, largest
pore diameter, and other textural properties) or indirectly (e.g.,
MOF transformer with flattened representations of adsorption
energy grids created via molecular mechanics calculations
within the MOF unit cell).

Transformers are well-suited to create foundation models
because they easily allow the creation of ‘‘data-abundant’’ self-
supervised learning tasks that allow each MOF atom and/or
bond feature, through the trainable attention operations, to
focus on understanding the ‘‘context’’ in which they exist
within the MOF. For example, the attention mechanism in
the transformer could be trained to predict the identity and/
or properties of a masked (i.e., hidden) atom given the identity
and/or properties of other atoms in the MOF (as in MOFormer,
see Fig. 3b). Nevertheless, supervised learning tasks can also be
added to further influence what aspects of their environment
atoms and bonds pay more attention. For instance, looking for
the influence of MOF global structural aspects, MOF transfor-
mer used predictions of topology and void fraction as part of
the transformer training, where the prediction of multiple
properties by the model indicates the exploitation of the MLT
approach discussed at the end of Section 3.1.

All the above transformers have shown promise as a starting
point for new tasks. In 2024, Han et al.43 kept MOF transformer
as-is in a new model (i.e., transfer learning), enabling predic-
tions of proton conductivity about 8% more accurate than
training standard ML models from scratch (Fig. 3c). This work
additionally suggests a transfer learning strategy with a lot of
potential but not much explored up to date. Namely, the
transfer of knowledge from models trained on simulation data
to those trained on experimental data. The premise here is that
models trained on experimental data are much more appealing,
but that generating a data point from experiments is generally
more costly and time-consuming than generating one from
simulation.

Transformer parameters can all undergo optimization (initi-
alized with the original parameters) for a new task in what is
referred to as fine-tuning. In 2024, the Uni-MOF transformer

was used as part of a ML model to predict adsorption in
multiple molecules. The authors showed that fine-tuning the
Uni-MOF part (as opposed to training the whole ML model
from scratch), led to about 18% increase in accuracy. None-
theless, fine-tuning of the current MOF transformers can still be
outperformed by training of standard ML models using wisely
chosen input features, as recently shown by Mao et al.48 for
predicting free energy in a set of polymorphic sulfur-based
MOFs. This suggests there is still room for developing MOF
transformers that generalize better upon fine-tuning. Addition-
ally, some of the current MOF transformers require significant
work/expertise/preprocessing to generate their inputs, which
hinders their widespread use as a foundation model.

4. Efficient construction of training
datasets

In ML, a data efficiency test consists of subsampling the
training dataset at different fractions, training the best possible
model with each subsample, and then evaluating the ML model
prediction error against training dataset size. Usually, after an
early rapid error drop with an increase in training dataset size,
error plateaus after a critical dataset size. As prominently
discussed by Moosavi et al.29 in 2020 in the context of diversity
in MOF databases, this critical size occurs when additional data
points do not provide the model with ‘‘new’’ information. The
above trends suggest that the training dataset size can be
minimized without significant model accuracy loss, as long
as each sample point in the dataset is as informative as
possible. This minimization becomes more important the more
computationally expensive it is to obtain training data points.
Finding the most informative points and progressively adding
them to the training dataset is the essence of active
learning (AL).

4.1. Active learning based on Gaussian processes

AL starts with the training of an initial ML model (or models) to
predict the MOF property of interest, using a purposely small
initial training dataset. An acquisition function calculated on
each potential training point is used to decide which are (likely)
the most informative points to add to the extant training
dataset. With the expanded training dataset, a new ML model
(or models) is (are) trained, the acquisition function is recalcu-
lated, the training dataset is expanded again, and so on
iteratively until a predetermined stopping criterion is met.
For AL in MOFs, the most common acquisition function has
simply been the uncertainty of the ML prediction, which simply
results in adding to the training set the points for which model
is ‘‘less sure.’’ There are acquisition functions that focus on
diversity (important when there are numerous similar points in
the training set) or on maximizing the impact on ML model
parameters, but neither kind has been really explored in MOFs.

Thus, in 2022, Mukherjee et al.51 reported the first explora-
tion of AL in MOFs, focusing on predicting CO2 and CH4

adsorption, respectively, in Cu-BTC. Then, in 2023, these
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authors expanded their efforts to the prediction of CO2/CH4,
Xe/Kr and H2S/CO2 mixture adsorption, respectively, in the
above MOF.52 One of the points made in these works was the
influence of the initial dataset on final data savings. Interest-
ingly, these authors reported boundary-informed sampling as
the best way to choose the initial data points, which is a strategy
where heuristics and human expertise can have a significant
impact.

The potential data savings AL can achieve are apparent in
the 2024 work by Osaro et al.,49 which was directed to the
prediction of adsorption isotherms for multiple molecules in
MOFs using a single ML model (Fig. 4a). These authors
examined the data requirements to train a ML model that uses
pressure along with MOF and molecule features to make the
relevant adsorption predictions. These authors reduced the
training dataset size by a factor of about 2 when using AL to
select the most informative (pressure, adsorbate) combinations
for each MOF. A further reduction by a factor of about 500 was
reported when AL was used to select the most informative
(pressure, adsorbate, MOF) combinations, albeit with some
loss in prediction accuracy.

In all the above-mentioned works, the AL cycle (i.e., selection
of training points) was driven by Gaussian processes (GPs),

even if in some cases the final trained ML model was not itself a
GP. Because GP predictions are inherently accompanied by a
measure of uncertainty, GPs are a natural choice for AL in many
fields. However, GP training becomes computationally intract-
able after a few thousand data points, which probably means
that widespread application of AL in MOF research will require
the exploration of GP alternatives that scale better with the
number of training points.

4.2 Active learning based on Gaussian process alternatives

In 2024, several AL efforts with GP alternatives were reported.
An obvious alternative to GPs are Bayesian neural networks
(BNNs), which can provide uncertainty because every time
inference is made (even for the same input values), the predic-
tion can change. The reason is that, in contrast to regular NNs,
in BNNs each node–node connection is described by a prob-
ability distribution of weight values instead of by a specific
weight value. BNNs scale similar to regular NNs, making them
appealing for AL work with large datasets and complex inputs.
Still, obtaining the true probability distribution is computer-
intensive, so approximations to the distribution are
necessary.53 For instance, Thaler et al.54 used a BNN approxi-
mation to perform AL towards the prediction of MOF partial
charges using a GNN as the core ML model, with the uncer-
tainty of the prediction measured by having the GNN making
predictions multiple times, each time randomly turning off
neurons in a procedure known as dropout Monte Carlo. These
authors found AL to be twice as efficient in terms of training
point selection compared to random selection and showed that
only about 13% of the MOFs (for which partial charges from
density functional theory (DFT) calculations were available
from databases) were needed for the GNN to reach desirable
prediction accuracy.

The quantification of uncertainty by repeating predictions
with the same input can be extended beyond NNs. Thus,
Leverant et al.55 used AL towards the prediction of MD-
calculated diffusion coefficients using RFs as the core ML
model, and the variance of the predictions from the different
trees as the measure of uncertainty. These authors observed the
usual improvement in accuracy as training points were added.
However, as a reminder that training datasets can be too small
even for an AL framework, these authors ran out of training
data before desirable accuracies were reached.

An alternative method coined regression tree AL (RT-AL)
uses a regressor tree (as the core model) that divides the
putative feature space into regions, each one associated with
a tree leaf (Fig. 4b). The prediction uncertainty for (potential
and extant) training points in a given region corresponds to the
variance associated with the corresponding leaf. The acquisi-
tion function selects a region based on its associated uncer-
tainty and proportion of unexplored points and then randomly
draws points from it. As shown by Jose et al.,50 an advantage of
RT-AL is that one can use the regressor tree to select training
points, but then train a more powerful ML model (RFs for these
authors) for the actual MOF property prediction task. Working
on the prediction of band gaps and CO2 and H2 adsorption,

Fig. 4 (a) Schematic of an active learning workflow for alchemical adsor-
bates. A Gaussian process (GP) regression model is trained on an initial
dataset to predict adsorption loading from five input features. The data
point from the test set with the largest predicted GPR uncertainty is
selected for adsorption calculation then added to the training dataset.
The model is retrained and the loop continues until the uncertainty is
below 0.05 mol kg�1. Adapted from ref. 49. Copyright Royal Society of
Chemistry. (b) Schematic of the regression tree active learning (RT-AL)
workflow. During each cycle of training, new samples are selected via
regression tree leaves with high uncertainty (based on variance) and the
ratio of unexplored data points. A separate random forest is trained using
the tailored training set for MOF property prediction. Reprinted with
permission from ref. 50. Copyright 2024, American Chemical Society.
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these authors found RT-AL to usually outperform GPs and other
AL methods to efficiently construct the training set. An inter-
esting byproduct of this work was a clear demonstration that
the most efficient features for AL (and ML model training) can
depend not only on the property to be predicted but also on the
size of the training set. This work serves as an important
reminder that AL selects training points by navigating a feature
space with an efficacy that (at this point) is still contingent on
the chosen input features.

5. Efficient exploration of the MOF
design space

ML predictions (i.e., inference), while (almost) instantaneous,
still have a non-zero cost that may become relevant if these
predictions were to be done trillions of times. On the other
hand, a trained ML model is not guaranteed to be accurate
across the whole MOF design space (increasingly so the farther
one extrapolates beyond the regions covered by the training
data). Additionally, training a ML model at all may not be
possible if there is not enough accurate training data for it.
Therefore, efficient ways to probe the MOF design space are
needed, even if not relying on ML evaluation of MOF properties.

5.1. Evolutionary algorithms

The first methods to improve the efficiency of MOF exploration
consisted of evolutionary algorithms (EAs). In this family of
methods, a small subset of MOFs is initially evaluated, and
then progressively ‘‘evolved’’ through rules that mimic biologi-
cal evolution. These rules are known as genetic operations and
are used to create new generations of MOFs, tending to favor
traits that appear in the high-performance MOFs from preced-
ing generations (i.e., exploitation), while allowing new (lost)
traits to spontaneously appear (or reappear) randomly (i.e.,
exploration). An essential genetic operation is selection, which
mimics evolutionary pressure by biasing MOF selection for
subsequent operations based on MOF performance, as embo-
died by a fitness function f (to be maximized). A common
genetic operation is crossover, which mixes the traits of two
selected (usually high-fitness) MOFs. To perform these genetic
operations, the MOF must be represented by a chromosome
(vector), which encodes MOF traits as values of its genes (vector
components).

In 2015, Bao et al.59 introduced an EA to MOFs by evolving
MOF linkers toward high CH4 adsorption, using reaction-
mimicking genetic operations. In 2016, Collins et al.60 evolved
MOF functionalization towards high CO2 adsorption, while
Chung et al.61 evolved MOFs toward high CO2/H2 separation.
The latter authors experimentally validated the high predicted
performance of an EA-identified MOF, which was found by
exploring less than 1% of the target search space. In all of the
above studies, the fitness function was assessed using grand
canonical Monte Carlo (GCMC) simulations, which can be a
rate-limiting step that restricts the total number of generations
explored. However, easily computed surrogate models that

approximate fitness can dramatically improve throughput. To
this end, in 2021, Lee et al.10 combined EA and ANN predictions
(as a surrogate for fitness) to explore a presumed search space
of 247 trillion MOFs towards high CH4 adsorption. Note that
while EAs have hyperparameters, the above studies did not
focus on their optimization, but rather on finding incremen-
tally better MOFs than those reported at the time for the
application of interest. Thus, there is significant room to
improve the efficacy of EAs for MOFs.

Recently, exploring EA efficacy, Pham and Snurr56 studied
hyperparameter effects on the search of MOFs for CO2/N2

separation (Fig. 5a). Indicative of the importance of balancing
exploitation and exploration in EAs, these authors found the
probability of mutation to drastically impact search efficiency.
Additionally, supported by a 25-fold reduction in computa-
tional cost, these authors proposed the execution of parallel
EA runs, each with different initial MOF populations, as a way
to improve EA efficiency. Nevertheless, an unsolved issue in EAs
for MOF search is the restrictive rules needed to avoid attempt-
ing to make nonsensical structures, which hinders pairing EA
with on-the-fly MOF construction. A common source of ‘‘non-
sense’’ is the incompatibility of EA-proposed building blocks
and topology combinations. Thus, a common solution is to
restrict EA runs to a particular topology10,56 or base structure.62

This creates inefficiency as MOF topology (a critical MOF trait)
is not optimized by the EA, and also precludes the discovery of
new MOF topologies.

5.2. Bayesian optimization

EAs are intuitive (partly due to the modular structures of MOFs)
and trivially adaptable to optimization of any MOF property as
the means to evaluate the fitness f has no bearing on the EA.
However, EAs are not as sample-efficient as other popular
methods in the ML community, such as Bayesian optimization
(BO).63 This fact is important in MOF search, especially if
evaluation of f requires quantum mechanical methods, long
and involved MD simulations, or even experiments. Thus,
recent years have seen the rise of BO in MOF search. BO shares
a lot of similarities with AL (Section 4), differing in its goal of
finding the x with the best f, as opposed to training a model
that predicts f the best for any x (Fig. 5b). However, in both
cases an iteratively trained surrogate ML model still predicts f
for all x along with a corresponding uncertainty. The prediction
and uncertainty still inform the acquisition function to select
the next x to properly evaluate f. The new (f, x) pairs are still
used to update the ML model.

In 2022, Taw and Neaton64 presented the first BO example in
MOFs, showing that BO would have found the best MOFs for
CH4 adsorption evaluating fewer than 1% of the target search
space. However, standard BO (and standard EAs for that
matter) may not account for all aspects relevant to MOF
development. For instance, various (potentially conflicting)
MOF properties may be important for a MOF application. Thus,
in 2023 Comlek et al.65 presented a multiobjective BO frame-
work for MOFs, looking to improve the Pareto front that high-
lights the tradeoff between CO2 uptake and selectivity. Their
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key modification was to use the expected maximin improve-
ment (EMMI) acquisition function, which chose MOFs for
evaluations seeking to improve one of the two objectives doing
worse at decision time. Another consideration is that experi-
mental testing of a presumed best MOF design can fail due to
unaccounted for factors, e.g., the structure may not be stable or
the prediction may be wrong. Thus, in 2024, Liu et al.66

developed Vendi BO, aiming to find MOFs with similar (pre-
sumed) optimal performance but with different structure and
chemistry. Their key modification was to use the Vendi score (a
measure of diversity)66 to iteratively eliminate parts of the
search space that were too similar to the set of MOFs already
evaluated.

As with EAs, there is significant room to improve the effi-
ciency of BO in MOFs through hyperparameter choices53,67,68

(e.g., which acquisition function is used) or making the predic-
tive ML framework (i.e., surrogate model) more accurate. Due to
its robustness, a common acquisition function in MOF search is
the upper confidence boundary (UCB), which balances uncer-
tainty with the improvement of the predicted property by adding
some of the (positive) uncertainty to the property prediction for a
given MOF. But as the impact of acquisition function choice is
underexplored, other functions may be more efficient. For
instance, Aqib et al.53 showed expected improvement (EI) to
outperform UCB. EI is a function that focuses more directly on
improving the property as fast as possible, with the caveat of
needing a highly reliable surrogate model. On the other hand,
functions such as the previously mentioned EMMI and expected
hypervolume improvement (EHVI)—which consider the pareto
front of MOF properties—may facilitate multi-objective MOF
optimization despite their higher computational cost.

As for the accuracy of the surrogate model, it is inherently
tied to MOF feature choices but can also be improved by
exploiting similar ideas to hierarchical screening, allowing
the ML model to see more data. For instance, Gantzlet et al.69

applied multifidelity BO to the search of MOFs for Xe/Kr
separation, training the ML framework with many cheaply
acquired selectivities based on Henry’s constants and fewer
expensive selectivities based on adsorption loadings.

5.3. Other alternatives

Aiming to efficiently find MOFs for NH3 permeable membranes
leveraging MOF expertise, Liu et al.70 proposed a search frame-
work that boosts expertise-driven hierarchical screening with
an iteratively trained standard ML model. Briefly, the presumed
top n set from hierarchical screening is used to initialize an ML
model, which is applied to the whole search space to identify m
presumed better MOFs than in the current top n set. In each
iteration, the m MOFs are fully evaluated and used to improve
the ML model and (if possible) update the top n set. Exploring
less than 10% of the search space, this approach improved 80%
of the top-200 predictions, improving MOF performance
metrics by a factor of two for NH3 adsorption loading and by
an order of magnitude for selectivity-weighted NH3 adsorption.

Leaning more into the ML side, reward-based methods such
as Monte Carlo tree search (MCTS) and reinforcement learning
(RL) are also emerging as alternatives to search MOFs. These
methods seek sequences of MOF modifications that lead to
optimal MOFs, with modifications that tend to result in higher
‘‘rewards’’ tending to be favored (some randomness is allowed
to balance exploitation with exploration). Zhang et al.71 used
MCTS to find hydrophobic MOFs for CO2 capture. In MCTS,
each path through a tree represents a sequence of MOF

Fig. 5 (a) Schematic of a genetic algorithm (a form of evolutionary
algorithm) workflow. A series of candidate MOFs are constructed, each
represented as a chromosome with labels for topology, edges, and
inorganic/organic nodes. After each generation, new candidates are
proposed using evolutionary rules (i.e., mutation, crossover, and tourna-
ment selection). The process is repeated until the specified objective (e.g.,
MOF performance) is achieved. Reprinted with permission from ref. 56.
Copyright 2025, American Chemical Society. (b) Overview of Bayesian
optimization strategy to maximize adsorption property f (x) of nanoporous
materials. After evaluation of f (x) for the current candidate, a surrogate
model with uncertainty (e.g., Gaussian process) is updated and the next
candidate material is selected via an acquisition function, e.g., the candi-
date that maximizes the upper confidence bound of the surrogate model.
Used with permission of Royal Society of Chemistry, from ref. 57. (c)
Reinforcement learning framework for property-guided MOF generation
using MOFGPT and MOFormer. The reward function assesses the quality
of the generated MOF via validity, novelty, diversity, and proximity to the
target property. The reward is also used to update the policy model, which
then selects the next MOF candidate. Reprinted from ref. 58.
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modification decisions. To construct the trees (i.e., sequence of
decisions), these authors predicted the reward (essentially a
MOF performance metric) using a recurrent neural network
(RNN) to process the SMILES strings used to define MOF
linkers.

Kim et al.72 used RL to search MOFs for CO2 capture from
air. In their RL framework, the MOFs were represented as a
sequence of categorical variables (metal node and topology)
and linker SMILES. Candidate MOF representations were gen-
erated by a transformer model, which along with a policy-
gradient algorithm, acted as the decision-making agent. During
the process, the agent decided on the strings to add to the MOF
representation to maximize the corresponding predicted
reward (either proportional to CO2 heat of adsorption or to
CO2/H2O selectivity). During RL (Fig. 5c), through policy
updates, the agent learns to make ‘‘good decisions.’’ The
rewards were predicted by corresponding neural networks, each
using as input the embedding of the MOF representation
learned by the transformer. Promising MOF representations
found to be ‘‘valid’’ were turned into actual MOF computational
prototypes for which properties were calculated by molecular
simulation. RL was clearly shown to propose increasingly better
MOFs, with the caveat that the requirement of simulated
property data for B30k MOFs (stated by the authors as neces-
sary to have the predictor ready to initialize RL) may pose
challenges for some properties.

6. Data generation and utilization

The quality and diversity in MOFs datasets impact how effi-
ciently a model can learn to predict MOF properties. Briefly,
low-quality data points can blur the true relationship between
MOF features x and property y, slowing down learning, and/or
potentially yielding a model that predicts incorrect property
values. Meanwhile, low-diversity datasets can slow down learn-
ing as well (see Section 4) while potentially producing models
that may seem to work well but only for MOFs in some specific
dataset. On the other hand, the efficient advancement of ML in
MOFs requires well-curated, standardized, and easily shareable
datasets that facilitate benchmarking. This so that efforts by the
wider pool of researchers starting to contribute to ML develop-
ment in MOFs are focused, concerted, complementary and
synergistic, as opposed to unfocused, overlapping, and redun-
dant. Therefore, with the importance of datasets in mind, this
section provides an overview of the data landscape in MOFs,
revealing data-related strengths, weaknesses and opportunities.

6.1. Structural data overview

MOFs in datasets are either hypothetical (i.e., yet-to-be-
synthesized) or experimental (i.e., already synthesized).
Hypothetical MOFs are important to push the boundaries of
MOF development into experimentally unexplored design
space, opening the door to dramatically different properties.
The first source of hypothetical MOFs was the 2011 hMOF
database by Wilmer et al.,73 which contained 137k+ computer-

generated structures, but only featuring six out of 2k+ possible
topologies. The latter limitation spurred efforts to generate
more diverse hypothetical MOF datasets in terms of topologies
and inorganic nodes. These efforts usually use codes such as
ToBaCCo74 and ToBasCCo,75 which map MOF building blocks
onto topological templates. In one of the most recent efforts,
Rubungo et al.76 used ToBaCCo to create around one million
MOFs (MOFMinE dataset) in 1393 topologies. But templates
prevent diversification beyond known topologies. AI/ML meth-
ods could open the door to new topologies. For instance,
MOFFlow by Kim et al.77 uses conditional flow matching, where
a learned vector field rotates and translates rigid MOF building
blocks and transforms the lattice vectors simultaneously into
MOF unit cells without a predetermined topology template. But
topology considerations aside, inorganic node diversification in
MOF generation is also needed.78 Notably, Gibaldi et al.79

recently created the HEALED SBU Library, which collects
approximately 952 manually selected inorganic nodes, opening
new possibilities for more diverse MOF generation, even with
existing templates.

As for experimental MOFs, a popular source are the CoRE
MOFs, first reported by Chung et al. in 2014,80 and featuring
B40k structures in a recent update.81 CoRE MOFs are pro-
cessed versions of MOFs extracted from the more general CSD
database82 (which includes its own subset of B10k
computation-ready MOFs).83 CoRE MOFs are relatively diverse
in topologies and inorganic nodes but are not systematically
modified (e.g., in functionalization), which may result in ‘‘lots
of classes but few examples per class,’’ hindering ML model
generalizability. Still, experimental MOFs are appealing
because of the (presumed) barrierless transition between com-
putational screening and experimental testing, despite practi-
cal concerns such as their general instability (e.g., some authors
estimate only 384 of the original CoRE MOFs are stable).84

Perhaps, ‘‘best-of-both-worlds’’ efforts aggregating hypothetical
and experimental MOFs, such as in the ARCMOF database
(Fig. 6a), are a wise strategy going forward.

6.2. Property data overview

Property data for hypothetical MOFs must come from computa-
tion. Currently, most of it corresponds to adsorption data
obtained via GCMC simulations. Aggregation efforts to create
larger datasets of hypothetical MOFs from different
databases42,46 must consider the ‘‘patchwork’’ of properties
available across the aggregated structures. Nevertheless, the
most common property data for hypothetical MOFs are adsorp-
tion loadings at specific thermodynamic conditions for CH4,73

H2, Xe/Kr,85 CO2/CH4 and CO2/N2 mixtures.86 Whereas, mostly
driven by their relevance for GCMC simulations involving CO2,
DFT-calculated MOF partial charges are also common.87

Although property data for experimental MOFs can come
from computation or experiment, most of it is also computa-
tional adsorption data and DFT-calculated partial charges.88,89

Some efforts breaking with this common trend are the B20k
QMOFs by Rosen et al.,90 which include DFT-calculated band
gaps (among other electronic properties), and the NIST/ARPA-E
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database for experimental adsorption data.91 As typical with
experimental data, the latter is less systematically varied but
has a much wider diversity of ‘‘classes’’ covered than usually
done by simulation, such as for more adsorbates, pressures,
and temperatures.92 The NIST/ARPA-E effort is, however, an
example of imminent low-cost opportunities to create reposi-
tories for other experimentally measured MOF properties by
mining reported data from the MOF literature.

6.3. Data from literature extraction

Indeed, with tens of thousands of MOF publications available,
the prospect of extracting literature data to create low-cost
datasets has been recognized for at least a decade. While earlier
efforts required significant manual intervention—e.g., the
NIST-ARPA-E database for experimental adsorption isotherms
and the WS14 dataset by Burtch et al.94 for water stability of 207
MOFs—natural language processing (NLP) tools promise to
automatize these efforts. To be sure, some form of data may
still require manual intervention. For instance, the data used by
Han et al.43 in 2024 to predict proton conductivity via ML in 248
MOFs was typically reported in plots against temperature or
relative humidity, so the authors manually extracted the data
with the help of plot digitizers. Likewise, data to train a ML
model to predict MOF thermal decomposition temperature had
to be manually extracted by Nandy et al.95 Still, a lot of
important information exists as text, making it easier to mine,
since relevant articles can be identified using existing applica-
tion programming interfaces (APIs) and their text downloaded
and parsed from their XML format for scrutiny via NLP.

Earlier NLP efforts in MOFs were primarily rule- and pattern-
based. For instance, in 2017, Park et al.96 developed a rule-based
text mining algorithm that identified surface area and pore
volume values by scanning for associated units like ‘‘m2 g�1’’
and ‘‘cm3 g�1.’’ Despite the simplicity of the rule, the method
achieved B88% accuracy, with most errors stemming from
inconsistent formatting or ambiguous naming conventions.

A recurrent, primarily rule-based, NLP tool is
ChemDataExtractor,97 which was used recently to extract MOF
synthesis data for the DigiMOF database,98 water stability
information for the WS24 dataset,99 and synthesis procedures
for ZIF-8.100 However, Glasby et al.98 only managed to extract
synthesis data for 9705 MOFs out B15 000 MOF candidates,
whereas Manning and Sarkisov100 extracted data from only
B20% of the reports, despite their narrow focus on ZIF-8.
Relatedly, Terrones et al.99 used the tool to identify candidate
sentences in articles for 1092 MOFs out of 5489 articles tied to
the CoRE MOF 2019 database, but had to perform manual
review to assign water stability classifications to these 1092
MOFs. These cases collectively reflect the Achilles’ heel of rule-
based NLP methods: the lack of standardized language in
synthesis reporting.

Most recently, ML has been brought into NLP of MOF litera-
ture, recognizing the large variability in reporting language. The
ML model tends to be in the form of RNNs or transformers, whose
sequence-awareness and self-attention mechanisms, respectively,
allow them to create context-aware representation of words/
tokens. For instance, Nandy et al.93 used Stanza,101 an NLP toolkit
based on RNNs, to help analyze nuances in sentences previously
processed with ChemDataExtractor as containing information on

Fig. 6 (a) The diversity of MOFs in databases is varied. The top panel shows the probability density of accessible volume fraction and gravimetric surface
area across MOFs in each of the listed databases; the numbers indicate the size of each database. Adapted from ref. 89. The bottom panel shows the
diversity in organic ligands (green bars) and in metal-centered substructures (pink bars) present in the ARC-MOF dataset. Adapted with permission from
ref. 87. Copyright 2023, American Chemical Society. (b) Mining experimental data on solvent removal and thermal stability of MOFs from the literature, as
implemented in the MOFSimplify framework. Sanitized MOF structures from the literature and filtered for featurizability, and their associated manuscripts
are retrieved and prepared for natural language processing. Text mining is then used to extract mentions of solvent removal stability and
thermogravimetric analysis (TGA) data, including digitization of TGA traces from documents containing relevant keywords. Reprinted from ref. 93.
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stability to solvent removal, which was used to generate training
data for an ML model predicting this MOF quality (Fig. 6b). In
another instance, Park et al.102 complemented rule-based tools
with the training of a named entity recognition (NER) model
based on SciBERT,103 a transformer-based language model pre-
trained on scientific text, to mine data for some MOF synthesis
aspects from 28 565 publications. However, this effort required
extensive manual labeling of hundreds of literature paragraphs.

Literature extraction has heavily focused on MOF synthesis
data. The appeal is the quantity of data (after all, every
experimental MOF paper should report a synthesis procedure)
and the potential use of the data to train ML models to
anticipate synthesis outcomes,104 which is crucial to bridge
the gap between computation and experiment. But as language
variability is exacerbated in synthesis reporting, LLMs such as
GPT-4 are emerging as powerful literature extraction tools.
Thanks to their immense pre-training, LLMs are better posi-
tioned to recognize synthesis procedures with little or no fine-
tuning.

To this end, Zheng et al.105 focused on prompt engineering,
finding the ‘‘right way’’ to ask GPT-4, so that the LLM would
accurately extract and organize synthesis data. Although the
approach achieved high accuracy in extracting specific synth-
esis parameters (with F1 scores of 90–99%), it was intentionally
limited to a fixed set of details (such as solvents, temperatures,
and precursor amounts) formatted into tables, which con-
strained its ability to capture more nuanced or varied synthesis
descriptions. Building on this prompt-driven approach, the
L2M3 (large language model MOF miner) framework106 used
a series of GPT-based models to extract a broad range of
synthesis conditions and material properties from over 40 000
MOF articles. While it primarily relied on updating prompts to
adapt to new tasks, L2M3 also incorporates light fine-tuning for
specific tasks within its pipeline to improve performance. This
combination improves consistency and task-specific accuracy
across large-scale, multi-step extraction workflows, addressing
limitations in robustness that pure prompting can face.

Despite persistent challenges with inaccurate or inconsis-
tent reporting, NLP extraction has shown promise by producing
unified, large-scale MOF datasets that have been actively used
to train ML models predicting synthesis outcomes and material
properties.

6.4. Considerations on data quality

In describing MOF datasets and properties therein in the
preceding subsections, data diversity is implicitly discussed.
Thus, now we discuss quality aspects of the data itself. One
concern, particularly important for computed data, is MOF
structural errors. To be sure, not all structural errors are equally
significant for computation, and their impact ultimately
depends jointly on the structural error itself and the computed
property. For instance, a missing hydrogen on a Zr node would
hardly affect CH4 adsorption, but a missing linker can signifi-
cantly affect the calculation of partial charges or mechanical
stability. Regardless, recognizing the existence of structural
errors in MOFs, some authors have started to work on

understanding the impact of those errors,107,108 while others
are starting to focus more on the detection and correction of
those errors.109

Other concerns with respect to computed data stem from
the calculation method, whose choice is primarily driven by the
goal of facilitating large-scale data generation. For instance, for
adsorption data, the predominant use of generic force fields
(e.g., UFF for MOF atoms) to describe adsorption interactions
raises concerns, especially when the key adsorption interac-
tions involve chemisorption. It has been possible to derive DFT-
parameterized force fields to properly model particular MOF-
adsorbate combinations,110–112 but approaches to correctly
describe chemisorption interactions during HTCS are needed.
For electronic MOF properties, the concern is tied to the use of
DFT as the workhorse to generate data, because strictly speak-
ing, DFT is not adequate to model MOF metals. Still, DFT may
be acceptable for certain properties such as partial charges and
adsorbate binding energies, but more worrisome for properties
such as band gap, which DFT is well-known to underestimate
(although somewhat systematically across similar materials).90

The case of MOF electronic properties truly underscores the
data scarcity issue in MOFs. Accurate electronic calculations via
quantum mechanical calculations are so expensive in MOFs
that alternatives such as ML models are truly desired. Yet such
ML models are not easily trainable because the training data is
so expensive to obtain.

Relevant to literature extraction, experimental data is not
free from concerns, which primarily arise from the variability in
quality of both MOF samples and property measurement
methods across labs. For example, the variability in reported
Brunauer–Emmett–Teller (BET) surface areas for the same
MOF may be reflective of material quality variations.113 But
regardless of the reasons, variability in measured properties is
apparent, for instance, when examining differences across
experimentally measured isotherms for the same MOF.114 The
obvious question is then: ‘‘what is the correct measurement to
use for ML?’’ Empirical correction factors based on perceived
MOF quality (as those used by some authors to fairly compare
measured and simulated isotherms115,116) might be a first step
towards unifying experimental data for a given MOF. But given
the importance of mining experimental data from the literature
to create low-cost datasets, efforts to standardize reported
experimental measurements should be beneficial for the ML
endeavor in MOFs.

6.5. Exploiting potentially unreliable computational data as
synthetic datasets

If computed property data is inaccurate and the ML model uses
chemistry-based descriptors (e.g., counts of a given atom) as input,
resources will be wasted learning an incorrect chemistry-property
relationship. But this issue can be bypassed with chemistry-
agnostic models, turning potentially unreliable computational
data (from a chemistry perspective) into useful data (providing
payoff for their generation cost). Examples of chemistry-agnostic
models include models using energy histograms as input, as
those introduced by Snurr and coworkers.117–119 One of these
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histograms is built from a MOF-representative grid of adsorption
sites and their corresponding energies. While the histogram
implicitly corresponds to a certain MOF chemistry, what the
model learns is the relationship between the distribution of
adsorption energies and adsorption loading. Even if force field
refinement later shows that the histogram for a given MOF does
not really look as initially thought, the learned energy-loading
relationship remains valid and the model useful to predict
adsorption for the given MOF based on the new histogram.
Another chemistry agnostic model is the 3D-CNN introduced by
Lin and coworkers,31,120 which uses MOF-representative grids of
adsorption sites embedded with their force field parameters as
input. The latter approach echoes work in other areas that use ML
to solve complicated simulation models by using the simulation
model parameters as input.121

Chemistry-agnostic models are also compatible with syn-
thetic data generation, which can be used to bypass the data
generation bottleneck incurred when one must first find the
simulation model parameters that accurately describe a speci-
fic chemistry. For the adsorption case, instead of running
expensive DFT calculations to fit a force field, one may focus
on producing large simulation datasets with a variety of simu-
lation parameters. Moreover, the decoupling from specific
chemistry also allows one to choose parameters that are most
informative to let the ML model learn more efficiently. Ander-
son et al.25 used this strategy to create ‘‘alchemical’’ molecules
to train a ML model capable of predicting single adsorption
isotherms for a variety of real molecules. Fanourgakis et al.122

extended this idea to the creation of artificial MOFs to train a
ML model to predict CH4 adsorption. The accuracy achieved in
the above works can be partly explained by the synthetic data
boosting the interpolation capabilities of the ML models.
Nevertheless, the generation of synthetic data beyond MOF
adsorption properties is yet to be explored.

6.6. Scalability

Based on the evolution in the types of ML models used for MOF
research, one may be tempted to expect a smooth pathway
towards more accurate property predictions simply by generat-
ing more training data and using more complex ML architec-
tures. However, some caution must be exercised to this
expectation, as the computational resources needed to handle
datasets of a certain size or work with some architectures can
impose some seldom thought about constraints. For instance,
the training cost of the (now popular) GPs scales according to
O(N3), where N is the number of datapoints. This scaling seems
to impose a practical limit of 5k to 10k datapoints. On the other
hand, the large unit cells of MOFs and their correspondingly
high number of atoms can hinder straightforward translation
of architectures successful in other material development areas
to MOFs, specifically due to memory footprint.

For instance, for models that use voxelization of a cubic
MOF region as input to 3D-CNNs, this footprint increases as
O(L3), where L is the length of the cube. In practice,31,120 the
spatial resolution (i.e., voxel size) limits L up to around 3 nm as
atomic information intuitively requires B1 Å resolution; larger

unit cells (e.g., MOFs with lattice dimensions that can go up to
B170 Å)123 will likely require loss in resolution. For models
based on GNNs, this footprint increases as O(n,d2) where n is
the number of nodes and d is the size of the feature vector
embedded in each node. As nodes usually correspond to MOF
atoms, unit cells can reach up to tens of thousands of atoms
while embeddings usually have dimensionality on the order of
tens to thousands. A look into reducing training costs of GNNs
was given by Korolev and Mitrofanov,124 who trained coarse-
grained GNNs to predict various MOF properties with promis-
ing accuracy. These authors coarse-grained the model by basing
the MOF graph on the corresponding topological template and
using the pre-established mol2vec embeddings of molecules to
indicate which MOF building block was occupying a given
graph node or edge.

7. Frontiers

We now highlight frontiers in ML-aided MOF development,
noting their impact on data-efficiency aspects discussed so far
and/or highlighting their own data-efficiency challenges.

7.1. Generative inverse MOF design

In the first wave of computational MOF discovery, MOF data-
bases would be created and then the property of interest would
be predicted across all structures to find if one had a desirable
property value. In the second wave, MOFs started to be eval-
uated and/or modified sequentially (from a database or from a
‘‘virtual’’ design space), hoping to evolve towards a MOF design
that has a desirable property value.49,68,72 An ambitious emer-
ging paradigm is generative inverse design, in which one would
establish a desired property value and a generative model
would yield the design with the desired value. As a naı̈ve
approach, one could leverage any of the ML models that predict
MOF performance using a vector of features as input to
optimize these features to maximize performance.21 One issue
is that the specific ‘‘optimal’’ combination of features emerging
from such an exercise is usually unattainable in an actual MOF.
But in a generative model, the vectorial MOF representation is
meant to always correspond to realistic structures, ensuring
that an optimized vectorial MOF representation also corre-
sponds to a valid MOF design.

An example of a generative model is variational auto-
encoders (VAE), which are made of an encoder and a decoder.
VAEs usually use a neural network as the encoder to learn a
continuous representation of, say, MOFs as vectors in a so-
called latent space while the decoder (also usually a neural
network) is trained to reconstruct, in this case MOFs, from their
representation in latent space. A ML property predictor can
then be coupled with the encoder to learn the relationship
between the latent vectors and the property of interest. With
these elements in place, one can simply optimize the latent
vector based on the property of interest and use the decoder to
recover the corresponding optimal MOF. Yao et al.125 demon-
strated the use of VAEs to optimize MOFs to separate CO2/N2
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and CO2/CH4 mixtures. As input to the VAE, these authors used
a MOF representation based on categorical variables to con-
strain topology and modular building blocks and self-
referenced embedded strings (SELFIES) to represent connect-
ing building blocks.

Denoising diffusion probabilistic models (DDPMs) are also
generative models that learn to predict valid MOFs out of
‘‘noise.’’ To train DDPMs, one first iteratively adds (usually
Gaussian) noise to valid MOFs until the original representation
is reduced to pure noise. Then a neural network (SE(3)-
equivariant) learns to reverse the process (i.e., denoise) to
recover the valid MOFs. The trained DDPM can thus learn to
generate valid MOFs out of randomly sampled noise. Although
not used for inverse design, Park et al.126 used a DDPM to
generate new linkers but constrained to the isoreticular MOF
series, whereas Duan et al.127 expanded this approach to also
generate nodes (although constrained to four topologies) and
showed the validity of generated structures by synthesizing one
of them.

Crucially, Fu et al.128 and Park et al.129 demonstrated the
amenability of DDPMs for inverse design by conditioning the

learning of the denoising process on a property of interest,
which was leveraged to have DDPM generate MOFs with
optimal values for said property. Fu et al.128 focused on CO2

adsorption (a numerical property), while Park et al.,129 by
jointly training the diffusion model on conditional and uncon-
ditional tasks, showed that conditioning can also be done on
categorical properties or text-input without training an external
classifier (Fig. 7a). The inverse design of Park et al. was focused
on ‘‘pore surfaces,’’ which were matched (and thus con-
strained) to pre-existing building blocks and topologies. On
the other hand, Fu et al.128 used a coarse-grained representa-
tion of the MOF, in principle generating positions for building
block centers unconstrained by topological templates, but still
indirectly constrained by the validity of the structure once
actual building blocks are denoised and mapped onto the
building block center positions.

Seeking higher data-efficiency by eliminating the large-scale
pre-training phase of VAEs and DDPMs, Cleeton and
Sarkisov,130 in what seems an evolution of the naı̈ve approach
of optimizing inputs in a property-predictive ML model,
proposed deep dreaming (DD). Thus, these authors first trained

Fig. 7 (a) Inverse design of MOF via conditional diffusion model. Schematic of a general diffusion architecture that uses single and/or multi-modal
conditioning to guide structure generation. The pair encoder–decoder learns to denoise MOF structures guided by the conditioning criteria while an
external model transforms the MOF representation to a material structure. Adapted from ref. 129. (b) Machine learning force fields (MLFFs) bridge the
accuracy of ab initio methods with the efficiency provided by classical force fields. This combination enables fast and reliable approximations of potential
energy surfaces (PESs) to unlock the study of multiple phenomena (e.g., electronic effects, thermodynamics, and reactions). Adapted from ref. 131. (c) The
prediction of MOF heat capacities using machine learning models. The left panel compares DFT-computed heat capacities (circles) to those from the
classical universal force field (UFF, lines); the dashed lines are results from the metal-linker force constants in UFF scaled by the listed factors. The
inconsistent heat capacities computed from the classical model motivate a machine learned model (middle panel) based on the contribution of each
atom to the total heat capacity. The correlation between the machine learned model predictions and DFT calculations are shown in the right panel.
Adapted from ref. 132. Copyright 2022, Springer Nature.
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transformer-inspired ML models to predict target properties.
Then DD was applied by freezing the model parameters, rever-
sing the propagation direction, and using gradient ascent to
modify the input vector to maximize the target property, with
their use of SELFIES-based inputs helping maintain the validity
of the proposed input. Nonetheless, this effort was restricted to
linker generation.

7.2. Machine learning force fields

Machine learning force fields (MLFFs) can have a huge impact
on the kind and quality of data that can be affordably generated
at large-scale. Briefly, simulation data for numerous MOF
properties depend on statistical sampling of the underlying
potential energy surface (PES). As discussed in Section 6.5,
some concerns on computed data quality stem from the use
of generic classical force fields to approximate the PES.
MLFFs131,133 can be trained on quantum mechanics (QM) data
to reproduce (ideally) the entire PES of a MOF system, yielding
QM accuracy-level energies and forces at low-cost, to guide MC
or MD sampling (Fig. 7b).134,135 One key factor is the ‘‘flex-
ibility’’ of the MLFFs, which allows them to capture features of
the PES (e.g., directionality) in ways that the functional forms of
classical potentials (even ReaxFF)136 may not capture without
fortuitous error cancellation.

The key to MLFF training is to assign a force and a
contribution to total energy to each atom in the system based
on their atomic environment. To do so, most MLFFs decom-
pose total energy into atom-centered contributions based on
descriptors of each atom’s surrounding environment, ensuring
additivity and size extensivity, as initially demonstrated by
Behler et al.133 in 2007 and later refined by DeepMD. Early
models like DeepMD use local descriptors that are invariant to
permutation, rotation, and translation (local symmetry func-
tions or descriptor-based encodings) as shown in Zhang
et al.,137 while more recent architectures such as NequIP and
MACE employ message passing and equivariant neural net-
works to capture directional interactions and preserve these
physical symmetries, as shown by Vandenhaute et al.138 and
Elena et al.139 These architectures contribute to data efficiency,
having demonstrated strong learning performance from rela-
tively small training sets.

Indeed, while MLFF can address generation challenges for
MOF property data, MLFF development can face data chal-
lenges itself. For instance, the large unit cells, structural flex-
ibility, and hybrid metal–organic bonding in MOFs introduce
challenges for both data generation and model transferability,
as noted by Eckhoff et al.140 For instance, flexible MOFs with
rotating linkers, as discussed by Dürholt et al.141 and Zhao
et al.,142 or guest-induced transitions, as discussed by Bucior
et al.,117 demand potentials that respect rotational symmetries
and long-range interactions. Even with recent advances, apply-
ing MLFFs to MOFs still requires domain-specific strategies,
such as training on nodes and linkers separately,140 using
temperature-driven active learning to reduce DFT sampling,
as demonstrated by Sharma et al.,143 and hybrid force fields
that integrate classical physics with ML components, as

presented by Wieser et al.144 These techniques aim to make
MLFFs more than just DFT replacements, enabling them to
simulate MOF flexibility, guest diffusion, and even decomposi-
tion under real-world conditions, as recently discussed by
Castel et al.145

To overcome the scalability bottleneck of training MLFFs
directly on full MOF unit cells, fragment-based strategies have
emerged that treat chemically meaningful substructures, such
as linkers and nodes, as independent learning units.145 This
approach allows the development of transferable potentials
with reduced data requirements while maintaining fidelity to
periodic properties, as shown by Tayfuroglu et al.146 Recent
efforts further integrate active learning with fragment selection
to prioritize diverse and data-efficient training sets, as demon-
strated by Shi et al.147 Although fragment-based models may
underrepresent long-range coupling effects, they offer a prac-
tical route to generalizable and scalable MLFFs for large and
flexible MOFs.

Hybrid ML/classical approaches also enhance data efficiency
by embedding ML corrections, like learned charges or disper-
sion terms, into existing classical force fields to refine interac-
tions without retraining entire potentials, as demonstrated by
Thürlemann et al.148 This has been demonstrated in MOFs,
where ML models correct non-bonded terms to achieve better
electrostatics and van der Waals behavior, as shown by Korolev
et al.149 Additionally, hybrid MLFFs that combine neural short-
range potentials with classical electrostatics have been shown to
achieve near-DFT accuracy for MOF relaxations and phonons.144

Inspired by advances in foundation models for molecules
and materials, emerging efforts are exploring pretrained
machine learning potentials for MOFs.138 These models are
trained on diverse atomic environments to produce general-
izable force fields that can be fine-tuned with minimal new
data. For example, MACE MP MOF0, which combines pre-
trained MACE with targeted MOF fine-tuning, enables rapid
adaptation to new MOF fragments and accurate phonon and
thermomechanical predictions with very little data.139 Though
no universal MOF MLFF yet exists, the strategy of pretraining
on building blocks, such as nodes, linkers, or secondary build-
ing units (SBUs), followed by system-specific tuning has been
demonstrated for both porous and flexible frameworks.

The impact of ML potentials extends beyond accurate
potential energy predictions, as they can serve as core engines
for simulations of dynamic MOF behavior. For example, MLFF-
driven MD simulations have been used to explore guest diffu-
sion in MOFs: a NequIP-like neural potential accurately mod-
eled H2 binding and diffusion in open-metal-site frameworks,
predicting kinetics and isotherms previously inaccessible via
DFT, as recently reported by Liu et al.150 In flexible MOFs,
where linker motion and node distortion critically influence
framework behavior, MLFFs have been shown to reproduce
temperature-driven structural and vibrational changes that
classical force fields struggle to capture.138,143 As these models
mature and benchmark data improve, MLFF-powered simula-
tions could become indispensable for capturing the full com-
plexity of MOF behavior in real-world scenarios.
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7.3. Machine learning for properties beyond physisorption

As noted in Section 6.2, published MOF datasets (and hence ML
efforts in MOF) are dominated by simulated adsorption
data.91,151–153 This is a result of MOF development having been
primarily driven by adsorption applications. But even in adsorp-
tion applications, properties beyond adsorption are relevant to
choose a MOF for experimental testing, raising the need for ML to
predict properties beyond adsorption. For instance, thermal and
mechanical stability are important to know if the MOF can
withstand operating conditions.154–156 Heat capacity is important
to know the MOF tendency to suffer performance-degrading as
temperature increases upon adsorption.132,157 Thermal conduc-
tivity is important to inform heat dissipation strategies during
MOF utilization.158,159 Moreover, free energy is important to gauge
if a MOF computational prototype is even synthesizable.160

To develop MOFs for applications beyond adsorption, pre-
diction of properties beyond adsorption is obviously needed.
For instance, diffusion properties are relevant for drug delivery,
low thermal conductivity for thermoelectrics,161 high electrical
conductivity for electrocatalysis and energy storage,162 high
proton conductivity for fuel cells,163 and so on. One significant
barrier to generating data for properties beyond adsorption is
their usually higher simulation cost. This is obvious if quantum
mechanical methods are needed (e.g., electronic structure, bond
breaking/formation events), but it can also be the case with
classical simulations. For instance, computing diffusion coeffi-
cients may require MD coupled with enhanced sampling,164 free
energy may require coupling with thermodynamic integration,160

or thermal conductivity may require large supercells to mitigate
finite size effects or extended simulations for convergence (e.g., via
the Green–Kubo method159). For some MOF aspects, the adequate
simulation method may not even be clear (e.g., MOF decomposi-
tion or formation) or has not been fully developed.165,166

Based on the above, a combination of simulation advances,
literature extraction, and approaches for data-efficient training
is likely needed to develop reliable ML models beyond adsorp-
tion. Encouragingly, where enough data has been generated by
pushing simulation resources or through literature extrac-
tion, ML predictions beyond adsorption have emerged with
promising results. From simulation data, models to predict
mechanical stability,156 heat capacity,132 and diffusion
coefficients167–169 have emerged (Fig. 7c). Similarly, the pub-
lication of the QMOF database has spurred a number of ML
models trained to predict band gaps.42,90,170–172 Although in
this case the training data is not fully accurate (i.e., based on
DFT), these models could offer a starting point for transfer
learning or fine-tuning once more accurate but probably scar-
cer band gap data emerges. Related to this strategy, Rubungo
et al. showed that fine-tuning a ML model originally trained on
low-cost strain energy was key to achieving accurate ML pre-
dictions for high-cost free energy.76 On the other hand, litera-
ture extraction has enabled data to train ML models to predict
thermal93 and water stability,99,173 whereas a combination of
literature extraction and fine-tuning enabled ML predictions
for proton conductivity.43,174

On a final note, while MOF data has been dominated by
adsorption, it has been specifically dominated by physisorp-
tion, although chemisorption is likely relevant to numerous
target applications.175–177 Thus, efforts to extend data genera-
tion to chemisorption are needed. Since the simulation adsorp-
tion cost is usually not prohibitive for training data generation,
the challenge here is an accurate description of interactions.
Although accurate force fields have been parameterized for
specific adsorbate-MOF cases,178–180 HTCS-compatible (i.e.
transferable) accurate force fields to describe chemisorption
interactions are necessary. Force fields aside, an adsorption
case for which the simulation data generation is notoriously
challenging is water,181–185 which will require significant simu-
lation advances or reliance on experimental data as an alter-
native. Nonetheless, water is a case that merits special attention
due to its ubiquitous presence in many applications and its
direct relevance to applications such as water harvesting.186–188

7.4. Possibilities with LLMs

With the advent of the LLM era, it is natural to wonder what can
be accomplished with these types of models. With their
expected role in data generation via literature extraction already
noted in Section 6.3, it is worth noting that they can also play a
role in efficient MOF property predictions. Recently, Rubungo
et al.189 showed a LLM model (LLM-prop) to generally outper-
form GNN-based models (whose training is more computation-
ally demanding) in the prediction of a variety of crystal
properties. These authors posit that this efficiency is due to
the ‘‘expressiveness’’ of natural language in describing key
aspects of crystals that influence their properties. The potential
impact of frameworks such as LLM-prop in MOF research was
recently shown by prediction of MOF free energies using a
string-based MOF representation called MOFSeq as input.76

Similarly, Wu and Jiang190 fine-tuned Gemini-1.5 (Google’s
LLM) to predict MOF hydrophobic character simply using
SMILES/SELFIES as input with comparable or superior accuracy
compared to other models with highly engineered features.

Given the existence of SMILES/SELFIES, the string-based
representation used as input to LLMs is also particularly
amenable to MOF linker generation. For instance, by fine-
tuning GPT-3, Zheng et al.191 generated new candidate linkers
for water-harvesting. Other representations can facilitate other
tasks. For instance, by conveying MOF information into textual
document form, Zhang et al.192 used the unsupervised Doc2Vec
model to create a MOF representation that was used to develop
a MOF recommendation system. This recommendation strat-
egy, which was introduced earlier by Sturluson et al.,193 and
followed by Zhang et al.,194 was inspired by the Netflix movie
recommendation system, and suggests promising (extant)
MOFs for applications of interest by analyzing similarities to
user-endorsed MOFs.

LLMs have also been shown to work as assistants coordinat-
ing and streamlining computational work. For instance,
ChatMOF,195 which integrates GPT-3 and GPT-4 with more
specialized ML models (e.g., for property predictions, MOF
generation, etc.), has been shown capable of recommending
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MOF structures for properties of interest. Beyond predictive
modeling, and more on the synthesis side, LLMs are increas-
ingly being deployed as ‘‘interactive research assistants,’’ cap-
able of orchestrating and accelerating complex experimental
workflows. For instance, the GPT-4 Reticular Chemist196 inte-
grates GPT-4 into a cooperative loop with human researchers,
where the model proposes synthesis steps, receives outcome
feedback, and adapts its guidance through prompt-based in-
context learning. This iterative process allows GPT-4 to refine
its recommendations much like an experienced chemist. Simi-
larly, the ChatGPT Chemistry Assistant105 employed prompt
engineering to automate text mining of MOF synthesis condi-
tions across diverse literature formats, eventually leading to a
ML model predicting crystallization outcomes with 87% accu-
racy. Expanding on these capabilities, the ChatGPT Research
Group197 introduces a multi-agent framework comprising seven
specialized LLMs responsible for tasks ranging from literature
review and synthesis design to robotic control and data inter-
pretation. By combining these agents with BO, the system
rapidly identified optimal synthesis conditions, significantly
accelerating materials development. These assistant-type appli-
cations demonstrate how LLMs can bridge diverse aspects of
the scientific process, functioning not just as tools for analysis,
but as collaborators in experimental strategy and execution.

8. Conclusions and outlook

AI/ML is reshaping how researchers explore the vast design
space of MOFs. From early applications using geometric
descriptors and linear regressors to recent advances using
transformers, foundation models, and generative architectures,
ML tools now touch nearly every stage of the MOF characteriza-
tion and discovery pipeline. However, the high-dimensional,
modular, and (often) sparsely labeled nature of MOF data
imposes persistent challenges. As this review has highlighted,
progress in ML-aided MOF design has relied not only on
increasing model complexity but also on improving data and
resource efficiency through feature engineering, architectural
choices, transfer learning, active learning, and data curation
strategies.

A central theme observed throughout this review is the need
to match model sophistication with the quality and diversity of
available data. Models that incorporate inductive biases
grounded in chemistry and physics often outperform black-
box approaches in data-limited settings. For properties that are
expensive or difficult to compute, hybrid workflows leveraging
either literature mining or active learning combined with ML
offer a promising path forward. At the same time, large founda-
tion models and generative models are beginning to offer a
pathway for generalized representation learning and de novo
MOF prototype design. However, both of these approaches will
be constrained by the scope of training data and care should be
taken to expand the diversity of node/linker chemistries and
topologies within these datasets.

Despite these advances, several key challenges remain.
Currently, standardized benchmark datasets, similar to those
seen in the small molecule development community, do not
exist for MOFs, which makes it difficult to compare ML meth-
odologies and critically assess progress over time. In addition,
MOF property data and prediction tasks are dominated by gas
adsorption whereas the promise of MOFs extends to far more
application areas. Therefore, datasets containing transport
properties (e.g., diffusion, thermal conductivity), stabilities,
and free energies, to name a few, and methods to compute
these properties accurately and efficiently are still needed. None-
theless, for many MOF properties, the quality (accuracy) of the
datasets needs to be improved, which creates an opportunity
where ML force fields are called to make a significant impact. On
the other hand, as interest in MOFs expands to those with
increasing complexity (i.e., larger unit cells or flexible topolo-
gies), new strategies will be needed to address computational
challenges related to data representation and scaling.

Looking forward, the integration of ML models with aware-
ness of synthesis feasibility, simulation-informed priors, or
human-in-the-loop design will transform ML pipelines from
simply predictive tools into generative, decision-making part-
ners, especially for inverse design. While the true potential of
ML-aided MOF design has yet to be realized, the hope is that
future ML-mediated workflows will enable the creation of
MOFs that defy conventional human intuition, including those
with previously unseen topologies, properties, and function.
For instance, to our knowledge, only one MOF topology (nun)
not already present in the RCSR database has been discovered
in the past 20 years.123 Nonetheless, the foundation is now in
place for ML to become a critical driver of innovation in MOF
materials science.

While all the described methods enable more options to
unbiasing explore the MOF design space, a latent challenge
emerges strongly. These methods are not aware of the synthesis
accessibility of the proposed structures and/or building blocks.
Therefore, including efforts that guide the design along synthe-
sizable structures is a key to unlocking the spread of this AI/ML-
based inverse design approaches in MOFs.
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D. A. Gómez-Gualdrón, Chem. Mater., 2018, 30, 6325–6337.

22 I. B. Orhan, T. C. Le, R. Babarao and A. W. Thornton,
Commun. Chem., 2023, 6, 214.

23 T. Bailey, A. Jackson, R.-A. Berbece, K. Wu, N. Hondow and
E. Martin, J. Chem. Inf. Model., 2023, 63, 4545–4551.

24 J. P. Janet and H. J. Kulik, J. Phys. Chem. A, 2017, 121,
8939–8954.

25 R. Anderson, A. Biong and D. A. Gómez-Gualdrón, J. Chem.
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Gualdrón, A. J. Howarth, B. L. Mehdi, A. Dohnalkova,
N. D. Browning, M. O’Keeffe and O. K. Farha, Science,
2017, 356, 624–627.

124 V. Korolev and A. Mitrofanov, J. Chem. Inf. Model., 2024, 64,
1919–1931.

125 Z. Yao, B. Sánchez-Lengeling, N. S. Bobbitt, B. J. Bucior,
S. G. H. Kumar, S. P. Collins, T. Burns, T. K. Woo,
O. K. Farha, R. Q. Snurr and A. Aspuru-Guzik, Nat. Mach.
Intell., 2021, 3, 76–86.

126 H. Park, X. Yan, R. Zhu, E. A. Huerta, S. Chaudhuri,
D. Cooper, I. Foster and E. Tajkhorshid, Commun. Chem.,
2024, 7, 21.

127 C. Duan, A. Nandy, S. Liu, Y. Du, L. He, Y. Qu, H. Jia and J.-
H. Dou, arXiv, 2025, preprint, arXiv:2505.08531, DOI:
10.48550/arXiv.2505.08531.

128 X. Fu, T. Xie, A. S. Rosen, T. Jaakkola and J. Smith, arXiv,
2023, preprint, arXiv:2310.10732, DOI: 10.48550/arXiv.2310.
10732.

129 J. Park, Y. Lee and J. Kim, Nat. Commun., 2025, 16, 34.
130 C. Cleeton and L. Sarkisov, Nat. Commun., 2025, 16,

4806.
131 O. T. Unke, S. Chmiela, H. E. Sauceda, M. Gastegger,
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M. I. Papadaki, H. C. Zhou and Q. Wang, Ind. Eng. Chem.
Res., 2022, 61, 5853–5862.

156 P. Z. Moghadam, S. M. J. Rogge, A. Li, C.-M. Chow, J. Wieme,
N. Moharrami, M. Aragones-Anglada, G. Conduit,
D. A. Gomez-Gualdron, V. Van Speybroeck and D. Fairen-
Jimenez, Matter, 2019, 1, 219–234.

157 B. Mu and K. S. Walton, J. Phys. Chem. C, 2011, 115,
22748–22754.

158 J. Huang, X. Xia, X. Hu, S. Li and K. Liu, Int. J. Heat Mass
Transfer, 2019, 138, 11–16.

159 M. Islamov, H. Babaei, R. Anderson, K. B. Sezginel,
J. R. Long, A. J. H. McGaughey, D. A. Gomez-Gualdron
and C. E. Wilmer, npj Comput. Mater., 2023, 9, 11.

160 R. Anderson and D. A. Gómez-Gualdrón, Chem. Mater.,
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