Open Access Article. Published on 05 December 2025. Downloaded on 1/6/2026 10:58:50 PM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Materials
Horizons

COMMUNICATION

’ W) Check for updates ‘

Cite this: DOI: 10.1039/d5mh01404b

Received 22nd July 2025,

Accepted 1st December 2025 Matthew Walker

DOI: 10.1039/d5mh01404b

rsc.li/materials-horizons

Computational screening has become a powerful complement to
experimental efforts in the discovery of high-performance photo-
voltaic (PV) materials. Most workflows rely on density functional
theory (DFT) to estimate electronic and optical properties
relevant to solar energy conversion. Although more efficient than
laboratory-based methods, DFT calculations still entail substantial
computational and environmental costs. Machine learning (ML)
models have recently gained attention as surrogates for DFT,
offering drastic reductions in resource use with competitive pre-
dictive performance. In this study, we reproduce a canonical DFT-
based workflow to estimate the maximum efficiency limit and
progressively replace its components with ML surrogates. By quan-
tifying the CO, emissions associated with each computational
strategy, we evaluate the trade-offs between predictive efficacy
and environmental cost. Our results reveal multiple hybrid ML/DFT
strategies that optimize different points along the accuracy—emis-
sions front. We find that direct prediction of scalar quantities, such
as maximum efficiency, is significantly more tractable than using
predicted absorption spectra as an intermediate step. Interestingly,
ML models trained on DFT data can outperform DFT workflows
using alternative exchange—correlation functionals in screening
applications, highlighting the consistency and utility of data-
driven approaches. We also assess strategies to improve ML-
driven screening through expanded datasets and improved model
architectures tailored to PV-relevant features. This work provides a
quantitative framework for building low-emission, high-throughput
discovery pipelines.

|. Introduction

The development of new material functionalities has histori-
cally been a time-consuming process, with new materials or
materials’ applications often discovered serendipitously or
taking many decades of careful synthesis and characterization
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New concepts

This work introduces a novel framework for evaluating materials dis-
covery strategies that explicitly balances predictive performance with
environmental impact—specifically carbon emissions. While machine
learning (ML) has been widely heralded as a route to accelerate computa-
tional screening, our approach is the first to rigorously benchmark the
carbon cost of ML-augmented workflows against traditional density
functional theory (DFT) pipelines. By treating emissions as a quantifiable
design parameter, we reveal trade-offs and ‘“‘sweet spots” along an
accuracy-emissions Pareto front, challenging the prevailing assumption
that model accuracy alone should guide methodological choice. Our
framework enables materials scientists to make evidence-based decisions
about when and how to incorporate ML into discovery campaigns. This
concept represents a shift in how computational efficiency is defi-
ned—from a purely time- or resource-based metric to one that incorpo-
rates sustainability. The additional insight is twofold: (1) we show that
certain ML surrogates not only reduce emissions but also outperform
higher-fidelity DFT calculations in screening contexts, and (2) we identify
clear priorities for future model and dataset development to maximize
impact per carbon emitted. As Al becomes increasingly integrated into
materials research, our contribution lays the groundwork for responsible,
low-emission innovation in computational materials science.

before realizing a real-world application.” In recent years, with
the increase in computing power and the sophistication of
materials modelling software, computational chemistry has
promised to accelerate this process by providing qualitative
insight and design rules as well as quantitative predictions
allowing virtual screening of new materials for given applica-
tions. However, atomistic modelling has known limitations for
the discovery of new materials. In recent years, the emergence
of data-driven approaches, notably machine learning (ML), and
the availability of large, high-quality annotated datasets of
material properties have been predicted to be a route to
accelerate computational materials design. But there are many
open questions for applying ML to PV discovery: Are these
methods really reliable? Which methods are best suited to the
task? How does the quality of the underlying data affect model
performance? Finally, what should we actually model? In this
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paper, we set out to address some of these questions in the
context of photovoltaic (PV) materials discovery and provide
some concrete guidelines on how effective ML is for PV dis-
covery currently by estimating the carbon cost of both ML-
based and density functional theory (DFT)-based materials
discovery. We also provide suggestions on how to advance in
the future.

Global PV capacity reached approximately 1.6 TW in 2023,
and a future push toward 30-70 TW by 2050 could see PVs
meeting most of the world’s energy requirements.” Achieving
this target requires the development of new materials as well as
the optimization of existing ones.* While crystalline and multi-
crystalline Si modules remain the industrial standard,’ alter-
native materials such as amorphous Si,® CIGS,” CdTe,® organic
photovoltaics,” and dye-sensitized solar cells'® have been com-
mercialized to varying degrees of success. A number of per-
ovskites have also emerged as promising candidates in the last
decade." However, established technologies often rely on
critical raw materials, toxic elements, or suffer from long-
term stability issues, conversion efficiency limitations, or low
technological flexibility; overcoming these challenges is essen-
tial for reaching TW-level production of PV energy."

New inorganic materials offer significant promise as future
PV absorbers due to their potential for low-cost fabrication,
defect tolerance, earth abundance, and facile synthesis via
various techniques such as sol-gel processing or sputtering."* ¢
These materials exhibit stability across a wide range of thermal,
chemical, and mechanical conditions and are compatible with
device architectures that may offer lower capital costs, enabling
rapid scale-up.”?

Computational modelling has played an important role in
the development of new inorganic photovoltaic materials such
as CZTS,"”"'® snS," BiSI,*® Sb,Se;,>" CdTe*” and many others.
Typically, these studies have been DFT calculations allowing
accurate estimation of optical absorption, carrier transport and
defect properties.® Although these DFT calculations are more
efficient than experimental synthesis and characterisaton, they
nonetheless have a non-negligible energy cost. In recent years
there has been a trend to replace some of the costly DFT
calculations with ML surrogate models. However, the questions
previously raised about the veracity of these models remain
largely unanswered.

To address these questions, we have developed a framework
that enables the joint assessment of both predictive accuracy
and carbon emissions associated with different computational
approaches for estimating PV performance in novel inorganic
crystalline materials. These approaches span from hybrid-
functional DFT (the most computationally expensive) to direct
ML estimation of maximum PV efficiency (the least expensive),
and include intermediate strategies such as predicting optical
absorption profiles or applying corrections to low-fidelity DFT
calculations based on the generalized gradient approximation
(GGA).>* The paper begins with a detailed outline of our
evaluation methodology, covering both PV property estimation
and carbon emission quantification. We then compare these
approaches in terms of predictive efficacy and environmental
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cost. Our analysis allows us to propose optimal trade-offs,
highlight important limitations, and suggest promising direc-
tions for future research aimed at improving the effectiveness
and sustainability of computational PV screening. More
broadly, our framework offers a template for evaluating com-
putational discovery pipelines in which resource intensity is
considered alongside predictive performance—a consideration
we believe will be increasingly important across many areas of
energy research.

ll. Evaluation methodology

We provide details of the different design choices in our
evaluation protocol. Covering approaches to obtain the carbon
emissions of calculations, the optical absorption spectra and
the maximum PV efficiency.

A. The carbon cost of discovery

Ultimately, we are interested in developing new photovoltaic
materials as a renewable energy technology. Therefore, it is
important to consider the energy cost of a discovery campaign.
While computational discovery is less resource intensive than
experimental programmes, it is not carbon neutral. One pro-
mise of ML is that it can reduce the computational cost and
ultimately the resource required for discovery. To assess the
trade-off between prediction accuracy and carbon cost of the
calculations involved, we have used the CodeCarbon package,”
which integrates into computational workflows to estimate the
CO, emissions associated with running a given job by monitor-
ing total energy usage across all processing units. This enables
facile comparison of computational chemistry calculations,
typically CPU-based, and ML inferences, which mostly use
GPUs. CO, emissions are then estimated based on the sources
of energy for the grid in the location of the computer, in our
case the UK. The specific numbers for these emissions are thus
very sensitive to change, so we mostly give relative emissions.
However, we provide some raw numbers to give context for the
scale of the CO, emissions associated with the calculations in
this work.

B. Calculating maximum efficiencies

The computational design of materials typically relies on the
availability of a readily computable figure of merit (FoM), which
provides a measure of how good a given material is for an
application. In photovoltaics, the detailed balance limit*® gives
the maximum achievable power conversion efficiency of a
single-junction PV cell as a function of the band gap. This
simple FoM assumes a step-function absorptance (A(E)), which
is particularly inaccurate for indirect band-gap absorbers,
which typically show a more gradual onset of absorption.
Instead, the efficiency of potential PV absorber materials can
be estimated using the spectroscopic limited maximum effi-
ciency (SLME).”” The theory and practical details of calculating
SLMEs are discussed in the following section. To distinguish
between these methods (since both use detailed balance), we

This journal is © The Royal Society of Chemistry 2025
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shall henceforth refer to methods using a step-function
approximation of the absorptance spectrum as ‘step-function
methods’ and those that use the calculated/predicted spectrum
as ‘SLME methods’.

The SLME of a material requires an absorption profile «(E),
usually in units of cm ™, and an ‘offset’ (our taxonomy):

A= E§" — Ey,

where Ega is the minimum direct, dipole-allowed band gap and
E, is the fundamental band gap which, in contrast, may be
indirect and dipole-forbidden. The absorptance, A(E), for a
material of thickness d is calculated from the absorption,
o(E), using a Lambert-Beer approximation:

A(E) =1 — exp(—2d-a(E)).
This is used to calculate the short-circuit current (density):
Jsc = C)JO A(E)pam1s6(E)AE,

where ¢am1.56(E) is the spectrum of solar radiation received at
ground level on Earth when the Sun is perpendicular and e is
the charge on an electron. The internal quantum efficiency is
assumed to be one: that is, all photons absorbed contribute to
the current.

Detailed balance says that the rate of radiative emission
must equal that of photon absorption from the surroundings,
which can be quantified using the black-body spectrum at the
temperature, 7T, of the solar device. This gives the reverse
saturation current density (or recombination current density)
as

I = 7"[0 A(E) by (E)E,

with the black-body spectrum given by

2en r A(E)E? dE,

Ppe(E) =52 oo £
DT

and

—A4
Jr=exp (kB—T)

which uses the offset defined above and represents the fraction
of recombination due to radiative processes.

The voltage-dependent total current density is then multi-
plied by the voltage to give the power:

1 eV
P=VJ= V{Jsc - J; d{exp(kB—T) - 1} }

The maximum value of this power, P,.., will be found at
some balance of V and J, giving the optimal efficiency as

Pmax

= Pin
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where the denominator is given by integrating over the AM1.5G
spectrum, which has by convention been normalised to

integrate to approximately 1000 W m ™2,

C. Optical absorption calculations

The SLME is calculated using the absorption profile of the
material, which is directly accessed from electronic structure
calculations, such as DFT. The reliability of the calculated
SLME thus depends on the reliability of the underlying absorp-
tion profile. In general, more accurate DFT (or other electronic
structure methods) calculations of the absorption profile
require more computational resource to calculate. A simple
hierarchy of electronic structure methods could include, in
increasing accuracy and cost, the generalised gradient approxi-
mation** (GGA) to DFT, hybrid methods such as the Heyd-
Scuseria-Ernzerhof*® (HSE) functional, and GW routines.
However, intermediate methods exist: particularly relevant to
this study is the process of applying a scissor correction to a
low-fidelity (e.g. GGA) spectrum using the difference in band
gaps calculated at the low-fidelity and a higher-fidelity
(e.g- HSE) level. We can consider applying a GGA — HSE scissor
correction,

_ pHSE GA
AE = ES® — EJM

to a GGA absorption spectrum as an approximation to an HSE-
level absorption spectrum:

tse X OggalE — AE),

which has the effect of shifting the spectrum to the right in
most cases, since hybrid band gaps are usually larger than their
GGA equivalents. This approach to approximating HSE spectra
has been shown to be reasonable by Yang et al,*® who also
showed that the independent particle approximation (IPA) to
optics calculations produces spectra that generally agree well
with those calculated using the more rigorous (and expensive)
random-phase approximation (RPA). The fundamental band
gaps needed for the scissor correction and offset are typically
calculated using band structure calculations, while optics cal-
culations provide both the dielectric tensor and the transition
dipole matrix required for «(E) and Eg*, respectively.

I1l. Results

In order to accelerate the identification of new materials with
promising SLME values, one can propose replacing computa-
tionally demanding electronic structure calculations with sur-
rogate models trained on existing data and capable of making
predictions at a fraction of the cost; indeed, this is done quite
routinely.>**> We have trained surrogate models for each of the
electronic structure steps in the SLME calculation workflow and
now assess (i) how accurate these models are and (ii) how the
errors in the model predictions propagate and affect the final
ranking of new materials in the calculated SLME and (iii) the
relative carbon cost of the different approaches.
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Table 1 Table outlining the methods considered for estimating SLMEs,
either directly or via the properties required to calculate SLMEs, with
properties originating from DFT calculations at GGA and HSE level or ML
predictions

Method  E, Eg° «(E) A(E) AE 4 SLME
I — — — — — — ML

i — — ML Py — ML Py

il GGA GGA GGA Py ML Py Py

v ML — — Py — — Py

\% HSE  — — Py — — Py

VI GGA  — — Py ML  — Py
VIl GGA GGA GGA Py — Py Py
VIII HSE GGA GGA Py Py Py Py

In Table 1 we provide a list of potential workflows where
electronic structure calculations are replaced with ML surro-
gates, where DFT calculations are indicated by their functional
class, GGA or HSE. We have also provided a number of work-
flows that include step-function approaches and purely GGA-
level properties to provide context for the accuracies and costs
of the ML-based approaches. Note that in method II the model
has been trained on scissor-corrected spectra, so a subsequent
calculated or predicted scissor correction is not necessary.
Those properties that are calculated using straightforward
and negligibly expensive operations, in our case executed
in Python, are represented as ‘Py’ in the table. For instance,
step-function approaches use Python to estimate an absorp-
tance profile from the material’s band gap.

We use GGA-level band gaps for the offset calculation
because this requires an optics calculation that inherently
produces the data required for a GGA absorption spectrum,
making it inefficient to predict one without the other. GGA
offsets will introduce some error, though both gaps in the
equation will be wrong by similar amounts, cancelling out
some of this error. However, the test dataset used GGA-level
offsets, so this source of error was not examined in this work.

Fig. 1 shows the relative cost of the calculations and predic-
tions used in this work. Note that the area of a circle is
proportional to the natural logarithm of its relative carbon
cost, so the difference is even more stark than it appears. The
negligible Python calculations are given as crosses to empha-
sise their low cost. ML inferences are also extremely inexpen-
sive, though can be more meaningfully quantified as incurring
a carbon cost around 1/2000x that of a static GGA calculation,
which is itself around an order of magnitude cheaper than a
similar HSE calculation. In terms of energy, this single ML
inference used around 1.9 x 10° Wh (around 7 J), which
CodeCarbon®® estimates as producing 4.5 x 10~ g of CO,:
equivalent to driving a typical diesel transit bus 0.3 mm.**

Finally, optics and band structure calculations are more
expensive than static calculations, making an accurate absorp-
tion spectrum predicting model all the more promising. The
figure does in some ways under-represent the cost of machine
learning approaches, since training (and hyperparameter tun-
ing, though this was not performed in this work) is not
included. Training model 1 on the 4.8k dataset for 300 epochs
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was equivalent to 1.7 x 10° times that of a single inference. This
is more indicative of how small the inference costs are than
how large the training costs are. Moreover, these are one-off
costs that would become negligible when considering the
application of these models on vast datasets, and would not
be incurred by future users of these models.

A. We haven’t reached data saturation

Before analysing the effects of different ML interventions in the
estimation of SLMEs, we first look at how accurate the various
ML models are and how their performance scales with training
data. It is a well-known phenomenon that the performance of
deep learning models generally scales very well with data®~®
and therefore we investigate how the models we use scale with
the available data.

Fig. 2(a) shows how the performance of the various ML
models on a held-out test set evolves as the size of the training
data increases. The dataset size is truncated at just under 5000:
the number of materials in both the band gap and absorption
spectra datasets (after a test/training split), since both are
required to calculate a scissor-corrected SLME. From this plot,
it is quite clear that all of the property models are still improv-
ing with more training data, and we have not reached data
saturation. In the SI we show how the predicted absorption
spectrum of GaAs (not in the training set) improves with
more training data: in particular, point-to-point correlation is
achieved at around 1k training data points, with the curve
becoming smooth.

This journal is © The Royal Society of Chemistry 2025
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Fig. 2 Learning curves for each property, looking at (a) relative errors for the given property and (b) the resultant error when this learned property is used
to calculate the SLME. For all but the full dataset, the values are averaged over three random sub-samples of the dataset. The errors are calculated using

the test dataset used throughout the paper.

In the context of the final target (accurate SLMEs for PV
screening), we show the effect of dataset size in Fig. 2(b). Here,
the abscissa is the error in the final estimated SLME when a
particular ML model is used in the workflow. The dotted red
line shows a null hypothesis, where our “model” simply pre-
dicts the mean SLME of the training data. Clearly, with a few
training data (<100) all models exceed this baseline, even the
model that predicts the high-dimensional absorption spec-
trum. The plot also demonstrates how with ~100 data points
all workflows incorporating ML perform favourably when com-
pared to calculating an SLME from a low-cost, low-fidelity DFT
optical absorption profile obtained from a GGA calculation
(without a scissor correction).

Perhaps more important than the absolute values in
Fig. 2(b) are the gradients. The gradients give us an indication
of how the predictions may be improved with additional data
collection. The gradient of the direct prediction of SLME (with
no DFT intermediates) shows the steepest gradient and extra-
polation at the current rate of model improvement suggests
that, with several tens of thousands of high-quality estimates of
SLME, a model with negligible errors is possible.

If the absorption spectrum is known but the offset is not,
Fig. 2 suggests that the inclusion of an ML-predicted offset is
worthwhile (rather than a semi-SLME approach with f; = 0),
provided that the training dataset size exceeds ~10°.

Predicting the absorption spectra and -calculating the
absorptance from them gives errors very similar to predicting
the absorptance directly. This is perhaps surprising as absorp-
tance spectra are naturally scaled to be between 0 and 1, and
are relatively featureless (all more or less sigmoid-shaped),
whereas absorption values may be anywhere between 0 and
107, and the overall profile is generally more irregular. One
possible explanation is that, when the absorptance is calculated
from the predicted absorption spectrum, small discrepancies
are smoothed out by the exponential function, thereby reducing

This journal is © The Royal Society of Chemistry 2025
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Fig. 3 Violin plot comparing the success of the methods outlined in
Table 1 in recreating the test set's SLMEs, in terms of raw accuracy (LH
axis) and ranking order when the materials are ranked by their SLME (RH
axis). Note that the numerical difference is #preq — ftrue SO @ pOsitive
difference is an overestimate.

the propagated error in the final SLME, whereas direct absorp-
tance prediction has no such advantage. Given the better
performance with the full training set, the methods that
included spectral prediction predicted absorption rather than
absorptance.

B. Some methods are more worth pursuing than others

Fig. 3 shows the performance of each method when predicting
the SLMEs of the materials in the test set. This performance is
quantified by the numerical difference between the target and
predicted SLME on the left-hand axis, and the resultant differ-
ence in the ranking of these materials when sorted by their
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SLMEs on the right. This latter distinction is arguably more
important when filtering large databases for candidate materi-
als. The difference between these performance quantifications
is discussed in more depth in the following section, but we first
consider the numerical accuracy.

Comparing the seven methods considered (method VIII is
how the test set is calculated), we see some common trends.
Scalar properties (SLME and scissor correction, methods I and
III) are easier to predict than high-dimensional properties (the
absorption spectrum as part of method II). Method II also
suffers from the combination of errors, using predictions for
the offset (by itself rather well predicted, see Fig. 2) and the
absorption spectrum. This inaccuracy leads the step function-
based approaches (methods IV-VI) to outperform method II.
Otherwise, these approaches struggle compared to direct SLME
prediction. Method V, wherein the band gap is calculated at the
HSE level, does the best of these approaches, but the cost of
this calculation is significantly higher than that of the ML
inference in method I, as discussed in Section III D.

Finally, method VII, based on all GGA-level calculations
(without any kind of scissor correction), is the poorest-
performing approach. Interestingly, this approach gives the
most clearly systematic error, with the vast majority being
overestimates. GGA is known to underestimate band gaps due
to the self-interaction error, so the absorption profiles will have
an earlier offset, and thus we would expect larger short-circuit
currents, but not necessarily larger efficiencies due to the
voltage-current trade-off: smaller band gaps mean each excited
carrier has less energy. We also see some systematic behaviour
in method II, where SLME overestimates are limited to around
5 percentage points, while underestimates can be much more
significant. The step function approaches also tend to over-
estimate SLMEs: this is likely because real absorptance spectra
have more gradual onsets than step functions, especially for
materials with indirect band gaps.

C. Better accuracy doesn’t always give better screening

The ultimate goal in terms of PV materials discovery might be
an accurate direct estimate of SLME from material structure
and our previous analysis makes it clear that there is still
significant room for improvement. We now consider how the
errors in prediction accuracy relate to ranking errors and how
this changes for different ML interventions.

We can see from Fig. 3 that different ML interventions
introduce errors with different degrees of systematicity. This
is a reminder that training objectives and benchmarks com-
monly used to compare ML models are not always appropriate
for a given task.>®> More specifically related to ML for PV
screening, this shows that trying to learn SLME directly is
probably preferable to prediction of an absorption profile and
using that to calculate the SLME. The direct SLME prediction is
both more likely to improve with more data and gives more
systematic errors. Any effort to generate more high-quality
absorption profiles could be trivially translated to SLMEs;
therefore, this is the most promising path for the screening
of PV materials.
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D. There will always be a cost-accuracy trade-off, but there are
some sweet spots

Fig. 4(a) shows the 8 methods compared by their cost and
accuracy, where the latter is measured as MAE from the held-
out test set, so an ideal technique would be close to the origin.
Three approaches (I, III, and VIII) stand out as significantly
better than the rest, forming a roughly straight line when the
cost is logarithmically scaled. Unsurprisingly, the machine
learning approaches that predict scalar quantities are similar
in cost but much more accurate than the approaches predicting
high-dimensional spectra. However, the plot demonstrates the
unsuitability of step-function approaches when there exist ML
models that can predict SLMEs cheaply and more accurately.
Method III, using a learned scissor correction alongside GGA-
level absorption spectra and offsets, emerges as a viable inter-
mediate method, nearly two orders of magnitude cheaper than
fully hybrid calculations with MAEs under 1.0 percentage
points. It should be emphasised that these errors are relative
to the fully hybrid approach, which is itself limited. In the SI,
we provide a plot of the method I model applied to a set of 29
high-efficiency materials, whose SLMEs were calculated using
GW routines by Yu and Zunger®” and were not in the training
set; emphasising the need for high fidelity and large volumes of
training data.

Another consideration when comparing the accuracy of
different machine learning approaches is interpretability: the
direct SLME prediction is rather a black box, where predicting
the absorption spectrum and offset gives us better insight into
why a given material is a good absorber. It also allows us to
calculate properties like the short-circuit current and photo-
voltage of a material, extending the applicability of this
approach beyond traditional solar cells. Moreover, calculated
SLMEs have the temperature, material thickness, and incoming
radiation profile (typically the AM1.5G spectrum) implicit in
their value, whereas predicting the spectra allows the user to
alter these parameters for their application. This could be
particularly useful when looking for materials for solar cells
used on satellites or in indoor lighting. However, the distance
of the Pareto front from the other 5 methods makes it hard to
justify this approach. Method III is perhaps the best compro-
mise between interpretability and accuracy.

There is also a large gulf in interpretability between all ML-
based approaches and computational chemistry calculations.
Even a static energy calculation provides a wealth of informa-
tion compared to a single scalar from an ML model. This is an
advantage of the computational methods that is difficult to
quantify, but should be considered when deciding between
methods. With this in mind, the scissor-correction approach,
method I1I, is even more powerful, providing additional infor-
mation (albeit at a GGA-level) compared to more ML-based
approaches, while leveraging the low-cost, high-accuracy ML
prediction of the scissor correction.

A final additional factor that could be considered is domain
expertise. For instance, comparing V and VIII, we see that if a
hybrid band gap is being calculated, it is only slightly more
expensive to calculate the GGA absorption spectrum and offset

This journal is © The Royal Society of Chemistry 2025
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when the test set and the predictions are sorted by their SLMEs.

to facilitate an SLME rather than just detailed balance calcu-
lation. However, it requires the user to have experience with
optics calculations in, for instance, DFT. Packages like
Atomate2,*® used for some example calculations in this report,
make this very straightforward, while ML models like the
atomistic line graph neural network (ALIGNN)*" used in this
work are increasingly easy to use out-of-the-box.

Fig. 4(b) tells a similar story, although the difference in
numerical accuracy and ranking accuracy is highlighted by
method VI becoming part of the Pareto front. This seems to
be a combination of method I being relatively poor at accurate
ranking and method VI relatively good. However, VI is only
narrowly better than I and is over 3 orders of magnitude more
expensive, while IIT is much more accurate at less than 10x the
expense, making VI difficult to justify in most instances.

E. Machine learning isn’t perfect — but neither is DFT

Next, we evaluate the performance of the direct SLME predic-
tion model (method I) on an external test set drawn from the
work of Fabini et al,** which applies the A-sol correction
scheme of Chan and Ceder** to GGA-level calculations. This
test set is entirely independent from the training data used in
this work, as it originates from a different set of DFT calcula-
tions and computational parameters. As such, it provides a
robust test of how well our ML model generalises beyond the
specific data distribution upon which it was trained (Fig. 5).
Unsurprisingly, the model’s performance on this external
dataset is somewhat worse than on the internal test set
sampled from the same DFT workflow as the training data.

This journal is © The Royal Society of Chemistry 2025
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Fig. 5 Violin plot comparing the successes of the SLME-predicting ML
model (method 1) and the Choudhary et al.*?> TB-mBJ dataset in reprodu-
cing the SLMEs of an external test set: the Fabini A-sol set.

This degradation is expected, as discrepancies between the DFT
methodologies used to generate training and test labels intro-
duce additional sources of error, which compound with those
from the ML model itself. Nevertheless, the model maintains a
reasonable ability to rank materials by predicted SLME, as
shown in the rank correlation plots (Fig. 4).

To contextualise these errors, we also compared SLME
values for the same materials computed using two different
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DFT approaches: A-sol-corrected GGA (from Fabini et al.**) and
the Tran-Blaha modified Becke-Johnson (TB-mBJ) potential*®
(dataset from Choudhary et al*?). Interestingly, the absolute
and ranking errors between these two DFT methods are com-
parable in magnitude to the errors observed between the ML
predictions and the A-sol data. For example, the mean absolute
error (MAE) in SLME values between TB-mB]J and A-sol is 7.2
percentage points, versus 6.8 percentage points for the ML
predictions; similarly, ranking errors are also of similar scale.

These results highlight two important conclusions. First,
they demonstrate that the predictive performance of ML
models trained on high-fidelity data can approach the level of
variability introduced by changes in the DFT methodology
itself. Second, they emphasise that the generation of consistent,
high-fidelity SLME datasets remains a major bottleneck in data-
driven PV discovery. For SLME prediction tasks, our findings
suggest that investing in better-quality training data may
yield greater improvements than simply expanding the size
of existing datasets. In contrast, for absorption spectrum
prediction—where model errors remain large even on consis-
tent data—improvements in model architecture and training
volume may be the more effective path forward.

F. Ways forward: more data, better data, or better models?

We now consider how we could push the boundary of efficient
PV materials discovery. One promising avenue for improving
ML predictions is through the development of models that
more effectively capture the underlying structure-property
relationships in the data. In the field of machine-learned
interatomic potentials, for instance, the inclusion of physically
motivated inductive biases—such as equivariance—has enabled
models to achieve high accuracy with relatively modest training
datasets.**>* Meanwhile, recent attempts®* to optimise the con-
nectivity in the chemical graph used in a GNN have been shown to
improve performance relative to the ALIGNN model used herein.
Similar ideas are beginning to be explored in the prediction of
optical properties.

While these recent efforts show encouraging progress, there
are still important limitations. For example, two recent
studies®>*® have proposed neural network (NN) models for
predicting absorption spectra, both demonstrating reasonable
accuracy. However, these models were trained and tested on
more constrained datasets than those used in this work, and
their performance may degrade when applied to more chemi-
cally diverse materials such as those in the W-R dataset.
Grunert et al.”” limited their materials to main-group elements
from the first five rows of the periodic table, while Hung et al.®
allowed a broader range of elements but restricted their dataset
to structures with nine atoms or fewer per unit cell. Such
constraints significantly reduce the overlap with the datasets
used here, particularly where both band gap and spectrum data
are needed. When trained on the dataset used in this work, the
GNNOpt model from Hung et al., based on the equivariant
e3nn,** > predicts spectra that give better SLMEs than ALIGNN
(see SI), but not enough to become a viable strategy, especially
when the errors are confounded with those of the offsets.
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This suggests that developments in model architectures such
as these will continue to drive improved predictions of PV-
relevant properties.

Another key challenge lies in the availability of consistent,
high-quality training data. Both of the recently proposed neural
network models for spectral prediction were trained on data
generated using generalized gradient approximation (GGA)
functionals, which—as we have shown—can lead to suboptimal
screening performance. The reliance on GGA is largely driven
by its relative abundance compared to more accurate methods,
such as hybrid-DFT. However, progress in data infrastructure
and learning techniques offers promising ways forward. Initia-
tives such as the novel materials discovery (NOMAD) program®’
and MPContribs (the platform for contributing to the Materials
Project®®) are enabling the sharing of curated, high-quality
computational datasets in line with FAIR data principles.>®

At the same time, recent advances in multi-fidelity machine
learning®®®* allow models to be trained on datasets that
combine varying levels of theoretical accuracy. By leveraging
correlations between low- and high-fidelity data, these methods
enable the use of larger training sets without sacrificing pre-
dictive reliability, thereby offering a practical route to more
robust and generalizable ML models for materials discovery.

For traditional computational chemistry calculations, we
note that plane-wave codes such as VASP®*"® are not the most
efficient approach to hybrid DFT calculations. Atom-centred
basis sets, such as those used in CRYSTAL®® and CP2K,*” are
more efficient because many of the 4-electron Hartree-Fock
integrals over real space decay rapidly, whereas the reciprocal
space equivalents (used in plane-wave DFT) do not.®® VASP was
used in this study due to its widespread use in materials
science (including for the generation of large datasets) and its
ease of use via workflow managers like Atomate2*® - we aim to
replicate the most common workflows rather than necessarily
the most efficient. However, we advise future hybrid DFT-based
studies on photovoltaic materials to consider the more efficient
atom-centred methods.

Another efficiency improvement could come from inter-
mediate methods between GGA and HSE, such as those con-
sidered in a recent review by Janesko:*® DFT+U, self-interaction
corrections, localized orbital scaling corrections, local hybrid
functionals, real-space nondynamical correlation, and their
Rung-3.5 approach. Several of these approaches can approach
hybrid accuracy at a fraction of the cost and are routinely used
for systems where a full hybrid treatment would be prohibi-
tively expensive.”®”* These methods have limitations of their
own: DFT+U, for instance, requires optimisation on a case-by-
case basis. The comparison between A-sol-corrected GGA and
TB-mBJ in Section III E highlights the inconsistencies in these
approaches.

Closely tied to the development of better data and models is
the need for high-quality community benchmarks. As our
results demonstrate, benchmarking efforts should not only
assess predictive performance, but also account for the envir-
onmental cost of computation—such as carbon emis-
sions—which can meaningfully influence the practicality of

This journal is © The Royal Society of Chemistry 2025
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different approaches. Evaluation choices fundamentally shape
not only our measurements but also research priorities and
scientific progress. Ensuring transparency and reproducibility
in benchmarking is therefore critical. Recent proposals, such as
evaluation cards, offer a structured means of documenting the
assumptions, metrics, and limitations that underpin model
assessments.*>”> By adopting such practices in the context of
materials discovery, the community can move toward more robust,
equitable, and environmentally conscious progress in the develop-
ment of machine learning for photovoltaics and beyond.

A final consideration for improvement is the SLME metric
itself. The Blank selection metric’”® has emerged as a more
accurate computational characterisation of photovoltaic effi-
ciency. However, it requires additional data such as the refrac-
tive index n(E), of which there are currently no large datasets.
A more rigorous computational study of a candidate photo-
voltaic would go even further, considering factors such as
defects, dopants, and stability under real operating conditions.
However, as a heuristic for filtering large areas of chemical
space for intrinsically good PV absorbers, the SLME should be
sufficient, hence its use in this work. As we have emphasised
with the ranking plots, exact numbers for efficiency are less
important than identifying the best materials.

V. Conclusion

ML has the potential to dramatically accelerate the discovery of
new PV materials. However, as we demonstrate here, it is not
(currently at least) a panacea. Current limitations mean that for
successful materials discovery campaigns for thin-film PV a
combination of ML surrogates and electronic structure calcula-
tions is required. Our findings suggest that direct prediction of
the SLME offers the most cost-effective approach to obtain
reliable estimates of photovoltaic performance. Similarly,
learned scissor corrections can substantially improve the accu-
racy of GGA absorption spectra at a fraction of the computa-
tional cost required for HSE band gap or optics calculations.
However, direct spectral prediction currently introduces too
much error to be practically useful for discovering novel
photovoltaic materials, despite the appeal of the flexibility of
this approach.

We have also identified clear pathways to improve ML
surrogate models. Enhanced performance will likely require
either substantially larger datasets of high-fidelity calculations
than are presently available, or the implementation of transfer
learning approaches that leverage extensive low-fidelity data-
sets alongside smaller, high-accuracy training sets.

More broadly, our study highlights the fundamental trade-
off between computational cost and the efficacy of data-driven
screening in materials design. We have outlined a blueprint for
jointly evaluating the carbon cost and discovery performance of
such campaigns. Embedding carbon cost reporting into com-
putational discovery workflows is, we argue, a vital step toward
ensuring that AI-, ML-, and simulation-driven approaches
deliver truly beneficial and socially responsible innovation.

This journal is © The Royal Society of Chemistry 2025
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V. Methods

The atomistic line graph neural network (ALIGNN) mode
used for ML predictions, with output dimensions of 1 or 100
for the scalar and spectral properties, respectively. Spectral
data were represented by binning into 100 dimensions using
the numpy.interpolate() function rather than compression
into latent dimensions using, for example, a variational auto-
encoder.”* This decision was largely based on a paper from
Kaundinya et al.”® that used ALIGNN to predict the electron
density of states of inorganic materials and found the binning
approach (into 300 bins in their case) to be the more successful
of the two.

Z-Score normalisation was used to scale labels for a more
stable gradient descent; spectral properties were normalised
per bin. Each model was trained for 300 epochs with a batch
size of 64 and the rest of the hyperparameters in line with the
model’s original paper for consistency across the various prop-
erties predicted. A batch size of 2 was used for the learning
curves as this enabled each dataset size to be trained with the
same batch size.

Datasets from Woods-Robinson et al.,** Kim et al.,”® Fabini
et al.,” Yu and Zunger,”” and Choudhary et al.**> were used, all
accessed from freely available sources. The main dataset
(the ~5.3k overlapping materials from W-R and Kim) was split
into an 80:10:10 ratio of training:validation:test data;
the test materials were kept the same for all models for fairer
comparison.

Some examples of DFT calculations at GGA and HSE levels
were performed using the projected augmented wave (PAW)
method””’® within the Vienna ab initio Simulation Package
(VASP),%*"®*> with CodeCarbon®® monitoring the energy (and
thus carbon) cost of each calculation. Atomate2*® was used to
generate the input files for these calculations, with structure
files from the Materials Project,”® to simulate a high-
throughput workflow rather than bespoke calculations for each
material. The raw numbers for these costs are available in the
SI. CodeCarbon was also used for some ML training and
inferences. Matplotlib was used for plotting.
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The data supporting this article have been included as part
of the supplementary information (SI). The supplementary
information contains additional data to support the arguments
made in the paper. These are, parity plots for Model I predic-
tions versus various out of distribution test sets; the effect
of training set size on predicted spectrum smoothness; full
information on calculations time and carbon cost of DFT
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calculations; a comparison of how even quite good predictions
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