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Machine learning-enabled discovery of ionic
liquid–solvent electrolytes exhibiting high ionic
conductivity
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Ionic liquids (ILs), which are a class of materials with versatile nature and growing popularity, are facing

impediments toward widespread usage as electrolytes due to various factors such as low ionic conductivity,

high viscosity, high market price etc. One of the ways these limitations can be addressed is by mixing ILs with

a molecular solvent. In a combinatorial sense, there exists an immense number of specific IL–solvent

combinations. An exhaustive experimental or even simulation-based investigation of the chemical space

spanned by such combinations can be extremely time-consuming, expensive, and nearly impossible. An

alternative approach is to employ machine learning-based models developed from available databases.

Although there exists prior literature that integrates machine learning to investigate mixtures of specific

solvents with ILs, these models lack generalization necessitating development of a large number of ML

models to handle various solvents. To remedy this shortcoming, as a part of designing green electrolytes with

high ionic conductivity that can have potential applications in next-generation batteries and solar cells, this

work aims to develop a unified machine learning model to predict ionic conductivity of any IL–solvent mixture

system. In this regard, three models, namely, Random Forest, extreme gradient boosting (XGBoost), and

artificial neural network (ANN) were formulated using the NIST ILThermo database. The

dataset contained 549 unique ionic liquids from 16 cation families and 81 unique solvents,

representing a total of 23712 datapoints. SHAPLEY additive explanation (SHAP) method was used to assess

the impact of various features on model prediction and their significance was compared with literature to gain

physical insight about the model behavior. Finally, using the developed models, approximately 2.5 million IL–

solvent mixtures at five different compositions were screened at room temperature. The high-throughput

screening yielded nearly 19000 IL–solvent mixtures for which ionic conductivity was found to exceed the

ionic conductivity of conventional Li-ion battery electrolyte.

Introduction

The development of novel molecules and materials is critical
for scientific, technological, and societal growth. Ionic liquids

(ILs) are a specific type of material that are comprised
entirely of cations and anions and can be designed to exist in
a liquid state below 100 °C.1 A large number of ILs exhibit
favorable characteristics such as high thermal and
electrochemical stability, negligible volatility, low melting
point, etc. which are appealing for their usage as green
solvents in applications such as battery electrolytes,
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Design, System, Application

The article focuses on the design of ionic liquid (IL)–solvent mixtures with high ionic conductivity. To realize the objective, the approach adopted here
involves developing a machine learning model that correlates the experimental ionic conductivity data for a large number of IL–solvent mixtures extracted
from NIST ILThermo database. We considered ∼23 000 data points covering 549 ILs represented by 308 cations, 96 unique anions and approximately 80
solvents. After testing the accuracy of the model on the test data set, we leveraged the machine learning approach to predict ionic conductivity of unique
combinations of cation, anion, and solvent mixtures as a function of IL mole fractions. The approach resulted into roughly 2.5 million unique IL–solvent
systems and 12.5 million data points at room temperature. Out of these data points, close to ∼19 000 IL–solvent mixtures were found to exhibit ionic
conductivity greater than 2.0 S m−1 (threshold based on the ionic conductivity for current electrolytes containing LiPF6 as the salt in 1 : 1 mixture of
ethylene carbonate and dimethyl carbonate) in comparison to only 88 IL–solvent mixtures showcasing ionic conductivity greater than 2.0 S m−1,
considerably expanding the design space as potential electrolytes for the next-generation Li-ion batteries and energy storage devices.
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atmospheric carbon dioxide absorption, chemical separation,
catalysis etc.2–4 Additionally, the ability of tuning their
structures by changing the cation and/or anion type, and
functional groups on cation and anion to tailor properties for
a desired application imply that the ILs are designer solvents.

However, despite these attractive properties, the industry-
wide adoption of IL is still lagging behind. One of the key
challenges is that a large number of ILs tend to be highly
viscous due to strong electrostatic and hydrogen bonding
interactions.5 The high viscosity is a hindrance for the charge
transport resulting into low ionic conductivity.6 Additional
impediments toward the widespread industrial usage of ILs
are their limited biodegradability,7 high cytotoxicity, and
relatively high market price.3

One of the viable ways some of these limitations can be
addressed is by formulating IL–IL mixtures, which significantly
expands the available chemical space for the discovery of new
ILs. Over the last few years, several researchers have shown that
the interaction such as hydrogen bonding dynamics,8

structure,9–11 transport properties,12 and phase-equilibria13,14

can be tuned by adopting such a strategy. Our research
group has previously leveraged ionic conductivity of pure ILs
and linear combination of molecular descriptors to estimate the
ionic conductivity of IL–IL mixtures.15,16 Experimental data for
IL–IL mixtures is still scarce, making it challenging to perform
and evaluate data-driven discoveries. A possible alternative is to
add organic solvents which can potentially break the hydrogen
bonding network and reduce electrostatic interaction in ILs,
facilitating an enhancement in transport properties.5 In almost
all instances, there is a significant decrease in viscosity while a
maximum in ionic conductivity can be obtained using an
appropriate concentration of an IL and organic solvent such as
ethylene glycol.17 acetonitrile,18 and ethanol.19 Additionally,
there exist a large amount of data for properties of IL–solvent
mixtures in the literature enabling us to perform a data-driven
study by creating machine learning models. Furthermore, such
mixtures open up a new dimension for tuning additional
properties, resulting in a larger chemical space to explore.

To discover particular IL–solvent systems for specific use
cases, it is necessary to understand the interaction between
various ILs and solvents. Also, in industrial applications, ILs are
often accompanied by a molecular solvent and the property of
those mixtures are significantly different than pure IL or pure
solvent.6 Therefore the necessity of a study dedicated to
predicting and understanding the properties of IL–solvent
mixture is substantial. However, so far the studies in this field
have been limited to specific IL–solvent combinations,6,20–22

resulting in the vast potential of IL–solvent mixtures relatively
underdeveloped. Experimentally exploring this large
combination space is nearly impossible. Physics-based
computations such as molecular dynamics simulation and
density functional theory calculations have good accuracy, but
their high computational cost is prohibitive for large scale
screening tasks. Thermodynamic models such as statistical
associating fluid theory (SAFT) and conductor-like screening
model for real solvents (COSMO-RS) can be leveraged to study

complex fluids like ionic liquids and their mixtures. However,
they require a separate transport model (such as Nernst Einstein
or Einstein model) to calculate ionic conductivity, and these
models are dependent on ion-specific parameter tuning.23

Hence, the developed model will be relevant to certain ion
families, but may lack generalizability. An alternative approach
is to exploit machine learning, which has wide application as a
screening tool across various fields of science and engineering.24

Machine learning models rely on the data to detect complex
patterns associated between property output and structural
information encoded as inputs. Once a model is developed,
predictions of properties of novel combinations are several
orders of magnitude faster than experiments or computational
approaches, as long as the structural space is, at least partly,
learned when the model is trained. The performance of machine
learning models may depend on various factors, i.e.
algorithm type (parametric or non-parametric, tree-based or
kernel based or neutral network based etc.), featurization type
(group-contribution based, descriptor-based, sigma-profile
based, fingerprint-based, graph-based etc.), and last but not
least the size and diversity of the dataset.25

Many works in the literature have employed machine
learning to predict properties of pure ILs.15,16,26 Datta et al.
created an artificial neural network (ANN) using RDKit
descriptors as features to predict the ionic conductivity of pure
ILs.26 Their dataset was obtained from the NIST ILThermo
Database and was comprised of 406 unique ILs and a total of
4259 datapoints. They also compared two types of splitting
methods namely, random split and IL-split and showed how
conventionally used random split can overestimate the results.
Venkatraman et al. created a virtual library of over 8 million
synthetically feasible ILs with 12 predicted properties.27 Abdullah
et al. presented the effect of featurization toward prediction of
ionic conductivity by comparing graph convolution and RDKit
descriptors.28 They showed that graph convolution outperformed
RDKit features, but it was only by a small margin. Dhakal et al.
developed support vector machine (SVM) and ANN models to
predict the ionic conductivity of imidazolium-based ILs,15 and
showed how learning from pure ILs could be translated to
generate a large number of IL–IL mixtures exhibiting non-ideal
behavior; mixtures for which the ionic conductivity was
enhanced (suppressed) relative to those for the pure
counterparts. In their subsequent paper, they developed a
generalized model with 10 different cation families using
multiple linear regression, Random Forest, and extreme gradient
boosting (XGBoost) algorithms.16 In both of these papers they
employed RDKit descriptors as featurization technique and
random split as their splitting technique. Chen et al. generated
COSMO-RS driven quantitative structure property relationship
(QSPR) models to predict conductivity and then leveraged
Random Forest and XGBoost models to correlate QSPR
prediction to actual conductivity.29 This two-step methodology
significantly improved their initial QSPR results. Recently,
Mohan et al. optimized four machine learning models
(polynomial regression, support vector regression, feed-forward
neural network and categorical boosting) to predict the viscosity
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of pure ILs.30 They used a combination of COSMO-RS and RDkit-
derived features and showed an improvement in the prediction
capability over the models trained only on RDkit features.

Although an impressive amount of work has been carried
out with respect to developing machine learning models for
predicting the ionic conductivity of pure ILs, a research gap
and the necessity of machine learning models capable of
predicting properties of IL–solvent mixtures still remain. As
many ILs are hygroscopic in nature, absorption of water will
modify their properties, which the models developed on pure
IL properties would not be able to capture. Furthermore, due
to the relatively high cost of ILs compared to conventional
molecular solvents, it is likely that ILs will be deployed as
mixtures. Unfortunately, studies involving IL mixtures are
limited in comparison to those that focus on pure ILs. In
fact, among the very few studies that report properties of IL
mixtures, most of them are limited to one or two common
molecular solvents.31–34 Hezave et al. used ANN to predict the
electrical conductivity of the ternary mixtures involving IL,
water and another organic solvent.31 Their dataset only had
104 datapoints with single IL and two solvents, making it
difficult to generalize for other solvents of ILs. Lashkarblooki
et al. developed ANN model to predict the viscosity of ternary
mixtures comprised of IL, water and an organic solvent.32

Similar to the work by Hezave et al.,31 the model development
relied on rather a small dataset containing only 729
datapoints for five ILs. Chen et al. developed ANN using
group contribution method as features to predict the viscosity
of IL and water mixtures.34 Duong et al. used variants of
multiple linear regression and ANN to predict the ionic
conductivity of protic ILs that can account for water
content upto 5 wt%.33 Among the very few studies that aimed
at developing generalized models to predict the properties of
IL–solvent mixtures, Liu et al. focused on heat capacity and
density35 while Lei et al. studied surface tension and
viscosity.35,36 In both of the works, three machine learning
models (ANN, XGBoost and light gradient boosting) with
group contribution methods were employed.

To address the gaps identified above in the literature, our
objective in this work was to develop a generalized machine
learning model capable of predicting the ionic conductivity
of any IL–solvent mixture. To achieve this target, we
formulated a diverse dataset of 549 unique ILs from 16 cation
families, 81 unique molecular solvents and 7123 unique IL–
solvent mixtures resulting in a total of 23 712 datapoints.
Using this dataset, three machine learning models, namely
Random Forest, XGBoost and ANN were trained. A schematic
of our workflow is presented in Fig. 1. We used RDKit
descriptors as our featurization technique. We used two
splitting techniques, stratified-IL split and random split, the
detail behind these selections is presented in the Methods
section. To the best of our knowledge as of writing this
paper, this is the first study that addresses the development
of a generalized data-driven model for the prediction of ionic
conductivity of IL–solvent mixtures. Based on this work, a
web tool was developed that can be found in https://
ionicliquid.streamlit.app.

Method
Parsing, cleaning and formulating an ionic conductivity
dataset

The dataset was created by downloading the ionic conductivity
data from the NIST ILThermo database37,38 using a modified
version of the pyILT2 library.39 A schematic of data collection,
cleaning and dataset formulation process can be found in
Fig. 2. The downloaded data for IL–solvent mixture was from a
total of 1079 publications. Then we acquired the simplified
molecular input line entry system (SMILES) strings40 for ILs and
solvents using two python wrappers: PubChemPy41 and CIRpy.42

PubChemPy uses the Pubchem database,43 and CIRpy uses the
Chemical Identifier Resolver (CIR)44 web service provided by the
NCI/CADD group at the National Institute of Health. We only
retained datapoints for which the SMILES of the components
could be found in the either of the two databases. Following
this step, all the SMILES were canonicalized using the RDkit to

Fig. 1 General workflow of our work.
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ensure uniformity. We observed that the ionic conductivity was
reported either in terms of either electrical conductivity or
molar conductivity. Similarly, the concentration was expressed
in a number of ways: mole fraction, weight fraction, volume
fraction, molar ratio, mass ratio, molarity, and molality of either
the IL or the solvent. We found that the mixtures included not
only IL–solvent but also IL–IL, IL–salt, and IL–gas mixtures. In
the NIST ILThermo database, ionic conductivities collected
from various papers are termed as electrical conductivity. It is
not apparent to us the reasoning why the developers of the NIST
ILThermo Database preferred to use electrical conductivity;
however, we ensured that the original publications list these
conductivities as ionic conductivity. In our dataset, we elected to
use ionic conductivity (reported as electrical conductivity (S m−1)
in the NIST ILThermo database) for IL–solvent mixtures
excluding those in which the composition was provided either in
terms of molarity or volume fraction due to the absence of
density or molar volume data for IL–solvent mixtures. For the
same reason, we removed datapoints for which molar
conductivity was reported instead of ionic conductivity. We
further enhanced the diversity of our dataset by adding the ionic
conductivity data for pure ILs reported in the NIST ILThermo
database. We represented pure ILs as “mixtures” by pairing each
IL with two randomly selected solvents. For these mixtures, the
mole fraction of the IL was set to unity. This was adopted to
make our models agnostic of solvent identity while predicting
ionic conductivity for pure ILs. This procedure of augmenting
the dataset resulted in a significant increase in the number of
datapoints (from 17535 to 27910) and in the number of unique
cation families (from 10 to 16). For multiple data entries for a
given IL or IL–solvent mixtures, we retained the datapoint with
the smallest uncertainty, which is reported as the δ parameter in
the NIST database. We also eliminated datapoints for which the

δ parameter was higher than 0.5. As our primary objective was to
identify IL–solvent mixtures exhibiting high ionic conductivity,
we set the lower bound for ionic conductivity to 0.001 S m−1.
The final dataset contained a total of 23712 datapoints that
represented 16 cation families, 549 unique ILs, 308 unique
cations, 96 unique anions and 81 unique solvents. The
temperature ranged from 233 K to 528.55 K. The distributions
of ionic conductivity and temperature of the dataset is
presented in Fig. S1 and S2.

Featurization

After creating the dataset, we calculated RDkit descriptors45

separately for cations, anions, and solvents using their
SMILES strings. These descriptors include physical properties
such as molecular weight, topological properties (e.g., Kappa,
VSA_Estate, Balabanj), molecular fingerprints densities
(FpDensityMorgan), presence of fragment groups and specific
structures (fr_AL_OH, fr_imidazole, NumAromaticRings) etc.
Initially, we obtained 209 descriptors for each of the cations,
anions and solvents for a total of 627 features. As a large
number of features can result in over-fitting and degrade
predictive capability of the model, we trimmed the number
of features using a number of techniques. Any feature
containing less than five unique values was removed.
Additionally, we kept only one of the two features that
showed high correlation for which we set the correlation
coefficient threshold to 0.8. These strategies led to a
considerable decrease in the number of features for each of
the species: 46 features for cations, 43 features for anions,
and 53 features for solvents. As we used temperature and
mole fraction as additional features, there were a total of 144
features for the machine learning model development.

Fig. 2 A brief illustration of the dataset formulation pipeline.
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Scaling

The ionic conductivity values in the dataset spanned six orders
of magnitude ranging from 0.001 S m−1 to 140.6 S m−1 (Fig. S1).
Such a wide range of ionic conductivity values necessitated that
the prediction range be narrowed for which we log-transformed
the values using base 10. For improved training accuracy, we
applied standard scaling to each feature while developing
neural network-based model. However, tree based models are
non-parametric which operate by simple if-else logic and do not
require any weight matrix. For those models, scaling is not
necessary, and hence we did not perform any feature scaling for
Random Forest and XGBoost models.

Splitting

For data splitting, we used random split and a modified
version of the stratified split. For both split types, 10% of the
original data (IL–solvent mixtures without augmentation) was
set aside for final testing while the remaining data was used
for training and validation. Random split is most commonly
seen in literature, but it carries a significant caveat. As this
type of split is carried out without regard to the identity of IL
(or chemical structures), it is possible that the split results
into the same IL structure being present in both training and
test datasets, for example, at a different temperature(s) or
mole fraction(s). This may result in a model primarily
learning to capture the temperature and/or composition
dependence rather than the impact of inherent structural
diversity on the target property. Therefore, the accuracy of
the predictions for the test dataset may be overly optimistic.
A possible remedy is to split the dataset ensuring that a given
IL structure is present exclusively either in the train or the
test dataset; the split is referred as IL-split in the literature.26

A key feature of this type of splitting method is that it
evaluates the ability of the model to capture the structural
dependence as well as the system variable (temperature and
pressure) dependence.

Our modification of the IL-split stems from diversity of
the dataset, which contains 16 cation families and a
significant imbalance in the number of datapoints for each
family (Fig. 3). An exact stratified split would have ensured
the retainment of the 90–10 split in specific cation families
as well (for example, 90% of imidazolium in training set,
10% of imidazolium in the test set, 90% of ammonium in
the train set, 10% of ammonium in the test set and so forth).
However, the stratified-IL split that we used in this work
combines both IL-split and stratified split. As different ILs in
each cation family have unequal number of datapoints, an
exact 90–10 split for all the cation families was not possible.
For that reason, cation families (piperidinium, triazolium,
guanidium, pyrazolium, thiophenium) that have only a few
datapoints are not included in the test dataset. By performing
a startified-IL split, we guarantee that both the train and the
test set correctly represents the distribution of the overall
dataset (Fig. 3) and a specific cation is present in either train
or test set. A similar imbalance in the anions and solvents
can be seen (Fig. 4). However, there are a large number of
structurally unique anions compared to cation families.
Therefore, the stratified-IL split was carried out based solely
on the cation family.

Model development

We developed two separate sets of three models (Random
Forest, XGBoost and ANN) for the two different splitting
types. For the Random Forest and XGBoost models
optimization of the hyperparameters was carried out using a
grid-search method and five-fold cross validation. The final
sets of hyperparameters for the models are reported in SI.
ANN was manually tuned to determine the optimum number
of hidden layers and number of nodes in each of the hidden
layers. The procedure led to six hidden layers for each of the
models developed using the random and stratified-IL splits.
However, the number of nodes in each of the hidden layers

Fig. 3 Percentage of cation families present in the train and test set after stratified-IL split. Cations that have small presence in the dataset (<2%)
are not included in the test set. Stratified-IL split ensures that the train and test sets maintain almost similar distribution of families and they do not
possess the same cation.
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differed for the two splits such that 1000 units were required
for the random split while only 100 units were necessary to
correlate the data using stratified-IL split. Ridge regression
(L2) and dropout of 0.2 was used as regularization
parameters. Detailed architecture along with improvement of
train and validation scores with respect to epochs can be
seen in SI. After that, the performances of the models were
evaluated in 10 random validation sets. Finally the models
were evaluated on the held out test sets. The learning and
predicting capability of the three models were tested using
two performance metrics: correlation coefficient (R2) and
mean absolute error (MAE).

Results and discussion
Dataset diversity

The dataset that we gathered consisted of 308 unique cations
from 16 cation families, 96 unique anions and 81 solvents. Fig. 4
depicts the diversity of cations, anions, and solvents present in
the dataset. It is evident that, from the 16 cation families,
imidazolium was the most studied cation type in the NIST
ILThermo Database, which accounted for almost half of the
datapoints. Ammonium, pyridinium, aminium, pyrrolidinium,
phosphonium, and piperidinium families represented 15.3%,
11.2%, 8.8%, 5.3%, 4.4% and 1.3% datapoints, respectively.
Several other types of cations such as guanidinium, triazolium,
morpholinium, pyrazolium, thiophenium, piperazinium,
pyrrolidone and amidium were present in significantly smaller
numbers and together formed only 2.7% of the entire dataset.
For anions, the distribution was comparatively less skewed such
that bis(trifluoromethanesulfonyl)imide ([NTf2]

− also commonly
referred to as TFSI), Br− and tetrafluoroborate [BF4]

− accounted
for 17.8%, 13.7% and 13.6%, respectively. We observed a gradual
decline in the distribution starting from Cl− (5.5%) to [ClO4]

−

which was present only at 4 × 10−4%. To characterize the diversity
of solvents, we separated the solvents into various families based
on their structure and functional groups (Fig. 4(c)).46,47 For
structures containing multiple functional groups, we used the
priority list for IUPAC naming of compounds.48 For example, a
solvent containing both an amine group together with an alcohol
moiety would be classified as aminoalcohol. We observe that

approximately one third of the datapoints involved water as a
solvent. The remaining datapoints were for organic solvents with
alcohols, acids, and esters leading the list. A gradual decrease in
the fraction of datapoints containing amide to ether can be seen.
About 4% of the datapoints were for solvents such as nitro
compounds, diketones, amines, organosulfurs and diazoles.

Additionally, we performed Tanimoto similarity analysis to
gauge the extent of structural diversity of the chemical
constituents in our dataset.49 A Tanimoto similarity score of
1 denotes perfect similarity and 0 implies lowest similarity.50

Among a wide range of similarity fingerprints available,
extended connectivity fingerprints with diameter 4 and 6
(ECFP4, ECFP6) are the best performing fingerprints for
ranking diverse structures.51 In this work, we calculated the
Tanimoto similarity score of all possible pairs of cations,
anions, ionic liquids, and solvents using Morgan Fingerprint
with diameter 6 (radius = 3), which is an RDKit
implementation of ECFP6.52 As an example, for 81 solvents,
we calculated the Tanimoto similarity index for each pair of
solvents, resulting in an 81 × 81 matrix. As such a matrix is
symmetric, we removed the entries in the diagonal (self–self),
and only retained the upper triangle of the matrix. Results
from such a computation are presented for the cation, anion,
ILs, and solvents as a violin plot in Fig. 5. It can be seen that
the Tanimoto similarity index spans the entire range from 0
to 1. However, a large fraction of the similarity indexes fall
within 0 to 0.2 as evidenced by a width of the violin plots in
this range, suggesting structural diversity in cations, anions,
ILs, and solvents. For a given violin plot, the probability of
the Tanimoto similarity index exceeding 0.5 is significantly
diminished as indicated by a very narrow region above this
value. Also, anions and solvents exhibit even greater
dissimilarity with more than 25% of the pairs showing
similarity close to zero. Overall, a broad chemical diversity of
the dataset is apparent from our analyses.

Model performance

We evaluated the performance of the three models developed in
this work along with the influence of the type of data splitting
in terms of correlation coefficient (R2) and the mean absolute

Fig. 4 Diversity of (a) cation families, (b) anions and (c) solvents in the dataset.
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error (MAE) computed in terms of predictions expressed in log
values on a base-10 scale. The values for the two metrics for a
given model and the way data was split in the training and test
datasets are summarized in Table 1. Comparing three models,
we notice that the tree-based models (Random Forest and
XGBoost) yielded almost similar performance. The R2 values
and MAE obtained in this work are in line with those obtained
in our previous work on correlating ionic conductivity for pure
ionic liquids using Random Forest and XGBoost methods.16

The accuracy of the ANN model developed here is somewhat
lower than that of the tree-based models, which is consistent
with literature reports on IL property predictions comparing the
two models.30,36 Although both the tree-based and ANN models
attempt to capture nonlinear structure–property relationship,
neural network-based models tend to outperform other models
when a large amount of data is used so that the model can
discover complex relationships between features and target
variables. On the other hand, the if-then-else logic-based tree
models can be used with significantly less amount of data.
Despite the fact that our dataset is large and structurally diverse
compared to other works in the literature, it shows limitation
for the ANN model, but it appears adequate for the tree-based
models.

For Random Forest and XGBoost models, the training
accuracy is similar for both the random split and stratified-IL
split approaches, while the training accuracy degrades when
stratified-IL split is employed in developing the ANN model.
On the other hand, the accuracy in predictions for all the
models is considerably lower for the test dataset in the case
of stratified-IL split. In terms of random split, it was found
that all the ILs (175 in total) present in the test set were also
included in the train set. Therefore, the models developed
using such a split have already learned IL structures, so
rather than capturing structural diversity, the models tend to
express the dependence of temperature, mole fraction or
pressure on ionic conductivity. This was the primary reason
underlining the high predictive capabilities of the models
when random split was used. Whereas in stratified-IL split,
structures included in the test dataset were unseen in the
model development. This feature enabled the models to take
into account structural dependence along with system
variable dependence, which is primarily the intent of
developing machine learning models for IL property
predictions. This variation in results for two different type of
splits agrees with the work of Datta et al. and Bilodeau
et al.26,53

Fig. 5 Tanimoto score distribution of cation, anions, ILs, and solvents in the dataset; the three dotted lines inside each of the violins represents
quartiles.

Table 1 Performances of the three models in train, validation and test set according to the two split types. Here, train and validation incorporate
average scores and standard deviations of that score after ten shuffles of train-validation (90 : 10) splits. There was only one test set, which was held out
from the beginning. Hence there is no standard deviation of test scores. The evaluation metrics used here are correlation coefficient (R2) and mean
absolute error (MAE)

Model Dataset

Random split IL stratified split

R2 MAE R2 MAE

Random forest Train 0.996 ± 0.0004 0.028 ± 0.00 0.995 ± 0.0004 0.028 ± 0.001
Validation 0.971 ± 0.004 0.073 ± 0.002 0.674 ± 0.137 0.295 ± 0.049
Test 0.98 0.051 0.857 0.259

XGBoost Train 0.991 ± 0.0003 0.053 ± 0.0006 0.992 ± 0.0006 0.049 ± 0.001
Validation 0.972 ± 0.003 0.079 ± 0.002 0.79 ± 0.055 0.273 ± 0.037
Test 0.98 0.067 0.875 0.252

ANN Train 0.889 ± 0.015 0.150 ± 0.01 0.78 ± 0.042 0.212 ± 0.016
Validation 0.89 ± 0.017 0.150 ± 0.011 0.196 ± 0.222 0.588 ± 0.259
Test 0.857 0.297 0.613 0.481
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Due to their higher prediction capability, hereafter, we
will discuss only the Random Forest and XGBoost models.
For better generalization capability, we will consider only
the stratified-IL split. The performances of Random Forest
and XGBoost models on stratified-IL split is visually
presented in Fig. 6 in logarithmic scale. Results in actual
scale can be found in Fig. S3. In Fig. 6a and c, we observe
that the models predict reasonably well the experimental
data on the training set. In addition, both the models
satisfactorily generalize on test sets with greater accuracy in
the high-conductivity region as compared to that for low
conductivity. Given that our interest is in discovering high
ionic conductivity IL–solvent mixtures, both models can be
used with good accuracy. Fig. 6e depicts the average error

in the ionic conductivity predictions on the test set for
different cation families while Fig. 6f presents the average
error as a function of solvent families. We observe that the
contribution of imidazolium-based ILs to the overall error is
the largest across all the IL families. This can be due to the
fact that the quantity and diversity of imidazolium cations
were much broader compared to other cation families. In
terms of solvents, mixtures containing water are the
primary contributors to the overall error, which can be
attributed to the fact that water is the only inorganic
solvent in the dataset while the rest are organic in nature.
Therefore, it is possible that significant structural disparity
between water and organic solvents gives rise to the high
average errors for water. As a significant fraction of the

Fig. 6 Performance analysis on stratified-IL split: (a) random Forest, training dataset; (b) Random Forest, test dataset; (c) and (d) XGboost on
training and test datasets, respectively. Figures (a)–(d) also include the information on the MAE for each of the quartiles. (e) and (f) depict MAE
calculated for representative cation and solvent families, respectively.
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dataset is due to imidazolium–water mixtures, developing
specific models instead of generalized models
encompassing all the ionic liquid families and solvent types
could improve the accuracy of predictions. Additionally, it
can be seen that different models can favor different
solvents. For example, average errors of diketone and nitro
compounds are much lower for XGBoost model compared
to those of the Random Forest model, whereas for nitriles
and amines exhibit an opposite (Fig. 6f) Hence, for future
work, multiple models could be combined so that their
strengths for accurately predicting ionic conductivities for
different solvents can be leveraged to develop an overall
model that performs much better than a single model.
Furthermore, we observed that data augmentation did not
have any beneficial effect in the model performance (Fig.
S4). This can be due to the fact that model did not properly
learn pure IL systems which is evident by the large
prediction spread observed for same IL coupled with
different solvents at mole fraction of IL set to unity (Fig.
S5). However, data augmentation improved the overall
diversity of the dataset, providing more cation families for
the high-throughput screening.

Model interpretation

To interpret the effect of features and determine the important
features influencing model performance, we carried out Shapley
additive explanations (SHAP) analysis of the Random Forest and
XGBoost models. Fig. 7 displays the SHAP feature importance
for the two models. For each feature, a positive SHAP value
indicates that the contribution of the feature for the given
datapoint to ionic conductivity prediction is positive while
negative SHAP value indicates otherwise. The spread of the
SHAP values for a given feature also points to the extent to
which a given feature affects the prediction over the mean
prediction. Additional insight into the directionality of the effect
of a feature can be gleaned based on the color of the scale. In
the present case, blue denotes low values while red color is
indicative of the high value of the features. We see that
temperature is one of the most important features for both of
these models. Temperature is also predicted to be positively
correlated with ionic conductivity, which captures the well-
known trend that the ionic conductivity increases with an
increase in the temperature. The SHAP values of temperature
vary over a wide range, which implies strong influence

Fig. 7 SHAP feature importance for (a) Random Forest and (b) XGBoost model.
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of temperature on the ionic conductivity prediction. The mole
fraction of ILs is ranked very high in terms of feature
importance (second in the Random Forest model and the first
in the XGBoost model). Unlike other features that are either
positively or negatively correlated with ionic conductivities, the
influence of mole fraction is rather unique. For example, high
values of mole fractions result into decreasing ionic conductivity
trends, which can be understood from the observation that
these mixtures correspond to nearly pure ILs for which ionic
conductivities are low. On the other hand, intermediate mole
fractions are positively correlated while the low values lead to a
decreasing trend of ionic conductivities. A decreasing trend in
the ionic conductivity when the ionic liquid mole fraction is low
can be attributed to low concentrations of ions available in the
system. This behavior suggests that the ionic conductivity
passes through a maximum which agrees well with the findings
of Chauhan et al.17 The features Kappa3, Balabanj and Ipc
provide a measure of branching and structural complexity of
molecules.54–56 As branching tends to increase viscosity, these
three features are inversely correlated to ionic conductivity,
which is evident in Fig. 7. Similarly increasing molecular weight
increases the bulkiness of the molecule and decreases
conductivity. Quantitative estimation of drug likeness (QED)
gives a measure of hydrophobicity and non-polar nature.57 We
see that low values of cation QED negatively affect ionic
conductivity, meaning highly polar cations yield low ionic
conductivity. VSA_Estates are the sum of electrotopological state
indices in specific van der Waals surface domains.16,58 Anion
VSA_Estate2 shows positive correlation but estate 3 shows
negative correlation to model prediction. MaxAbsEstateIndex
and MinAbsEstateIndex are maximum and minimum absolute
estate index in the molecule and they show positive and
negative correlation respectively. The correlation that we
observed for XGBoost model agrees well with Dhakal et al.16

However, the priority of features changed due to the inclusion
of solvent features. For example, mole fraction of IL is the most
important feature in our model instead of temperature. Some
features such as cation Ipc, Chi0, BertzCT, anion
MaxAbsPartialCharge have too low of an impact in our model
and cannot be seen in the list of top 10 important features in
the SHAP plot. Another thing to observe from the SHAP plot is
that the composition of solvent is a much more important
feature compared to the type of solvent used or, more
specifically, the structure of solvent. This phenomenon for
mixture systems agrees with the findings of Seddon et al.59 that
the physicochemical properties of ionic liquids are influenced
greatly by the amount of a solvent rather than its type.

Screening

In an effort to expand into the unexplored chemical space
and discover novel IL–solvent mixtures for their applications
as electrolytes, we performed a high-throughput screening
using hyper parameters of the XGBoost model developed in
this work refitted with all the available datapoints. The
selection of XGBoost was motivated by the fact that the

model yielded the best performance on both validation and
test sets among the three models. First, we created a
screening dataset from all the possible combinations of
unique cations, anions, and solvents. Five intermediate mole
fractions [0.1, 0.3, 0.5, 0.7 and 0.9] were sampled for a given
IL–solvent combination, which resulted into approximately
2.5 M unique IL–solvent systems and 12.5 M data points; the
temperature for the screening was set to 298 K.

For an IL–solvent mixture to be considered as a potential
electrolyte, it has to exceed or at least match the ionic
conductivity of the conventional electrolyte used in practice.
The current conventional electrolyte in Li-ion batteries is
LP30, which is a mixture of 1 M LiPF6 in a 1 : 1 ethylene
carbonate and dimethylcarbonate.60,61 At room temperature
(298 K), LP30 has an ionic conductivity of 1.26 S m−1.
Therefore, for an IL–solvent system to be a potential for
replacement of LP30, it should exhibit ionic conductivity ∼2
S m−1, as the addition of of Li salt is expected to reduce the
conductivity by 30–50%.16 The original dataset used to
develop ML models contained only 88 unique IL–solvent
mixtures exceeding 2.0 S m−1 ionic conductivity at room
temperature. After carrying out the high-throughput
screening with our XGBoost model, the number of such IL–
solvent mixtures increased dramatically to ∼19 000. Fig. 8
depicts two heatmaps: one generated from the original
dataset (Fig. 8a) and the other obtained from the high-
throughput screening (Fig. 8b). Both the heatmaps show
cation and solvent families of IL–solvent mixtures exhibiting
ionic conductivities higher than 2.0 S m−1. For each pair of
cation family–solvent family, the maximum conductivity
found is reported in the corresponding heatmaps. All the
combinations presented in Fig. 8b are listed in the SI. We
observe that the screening leads to a considerable expansion
in the number of potential cation and solvent families that
can be combined to produce electrolytes with desired ionic
conductivities. In fact, the model predictions for some of the
cation–solvent families are almost an order of magnitude
higher than 2.0 S m−1 suggesting exciting opportunities for
further investigation.

We, however, note that the screening is only based on
predicted ionic conductivities of ionic liquid–solvent mixtures
at 298 K and does not necessarily represent the capability of
any of those mixtures to be used as a battery electrolyte. Apart
from ionic conductivity, the actual application as battery
electrolyte will depend on various factors such as battery type,
viscosity, electrochemical stability, reactivity, melting point
etc. For example, mixtures that contain water as molecular
solvent may cause stability issues in Li-ion batteries despite
their large ionic conductivities. Also, all the mixture systems
presented in Fig. 8 may not be liquid at the operating
conditions of the battery. For instance, the performance of a
particular combination needs to be tested over a range of
temperatures in which batteries are likely to be operated.
Therefore, to fully exploit the applicability of a mixture as
electrolytes, a multi-objective optimization approach or
multiple machine learning models targeting desired

MSDEPaper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 3

1 
O

ct
ob

er
 2

02
5.

 D
ow

nl
oa

de
d 

on
 1

/2
2/

20
26

 1
2:

25
:1

2 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5me00146c


Mol. Syst. Des. Eng.This journal is © The Royal Society of Chemistry and IChemE 2025

properties (e.g., viscosity, melting point, etc.) is required. As
our primarily objective in this work concerns only the ionic
conductivity, this is beyond the scope of this paper. Interested
readers are suggested to refer to the work of Chen et al. where
pure ionic liquids were screened with consideration for
multiple constraints such as melting point, viscosity, thermal
decomposition temperature, toxicity and heat capacity.62

Conclusion

This work aimed to address the lack of an all encompassing
general model to predict ionic conductivities of IL–solvent
mixtures. To address the research gap, a diverse dataset of IL–
solvent mixtures was developed based on the data extracted
from the NIST ILThermo Database. Pure ionic liquids were

Fig. 8 Heatmap of IL–solvent mixtures with ionic conductivity higher than 2.0 S m−1, from (a) original dataset, (b) high-throughput screening of all
possible combinations of cations, anion, solvents. Five mole fractions 0.1, 0.3, 0.5, 0.7, and 0.9 were used to represent IL–solvent mixtures.
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represented as “mixtures” with solvents with mole fraction of
the IL set to unity. Three machine learning models, viz.
Random Forest, XGBoost and ANN were developed based on
random split of the data and novel stratified-IL split that
partitioned a given ionic liquid exclusively into the training
dataset or test data set to handle imbalanced data and improve
generalization. The results showed that the evaluation metrics
for the random split were significantly higher than those for
the stratified-IL split, which was attributed to the models
capturing trends of temperature and mole fraction rather than
structural diversity. Out of the three models, Random Forest
and XGBoost outperformed the ANN model, which could be
due to the limited amount of data. Feature importance gleaned
from the SHAP analysis revealed that the models were capable
of capturing complex non-monotonic dependence of ionic
conductivity on IL–solvent mole fractions. The SHAP analysis
also correctly identified a positive correlation between
temperature and ionic conductivity.

In order to identify potential IL–solvent electrolytes
exceeding the ionic conductivity of the conventional electrolyte
LP30 for Li-ion batteries, a high-throughput screening of all the
possible combinations of cations, anions, and solvents at
various mole fractions was carried out. The approach yielded
approximately 19000 unique IL–solvent candidates with some
showing ionic conductivity as high as 70 S m−1 at 298 K.
Although promising and exciting, one limitation of our work is
the exclusive focus on ionic conductivity. For an IL–solvent
mixture to be considered as potential battery electrolyte, various
properties such as electrochemical stability, melting point,
chemical reactivity, etc. should also be considered in addition
to ionic conductivity. In future work, we plan to develop
additional models that can predict relevant properties for
electrochemical applications, providing multiple constraints to
the high-throughput screening, which will result in a narrower
list of potential candidates. These candidates can then be
subjected to experimentation.

As the primary objective of the present work was to obtain
a generalized machine learning model encompassing all
available solvents. Therefore, water, as the only inorganic
solvent, was included; however, these mixtures contribute
significantly to the overall error, which would suggest model
development without the inclusion of water. Although this
may reduce the overall error in the ionic conductivity
prediction, such an approach would also eliminate a large
number of data points. Additionally, the high-throughput
screening shows that a large number of IL–water systems
with high ionic conductivity can be envisioned, potentially
reducing the cost of battery electrolytes. There is also an
evidence that IL-based electrolytes can tolerate large amounts
of water without showing stability issues.63 So, inclusion or
exclusion of water will require a thorough inspection, which
will be a subject for a future study.
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