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In recent years, deep generative models have been successfully applied to various molecular design tasks,
particularly in the life and materials sciences. One critical challenge for pre-trained generative molecular
design (GMD) models is to fine-tune them to be better suited for downstream design tasks that aim at
optimizing specific molecular properties. However, redesigning and training an existing effective generative
model from scratch for each new design task are impractical. Furthermore, the black-box nature of typical
downstream tasks that involve property prediction makes it nontrivial to optimize the generative model in a
task-specific manner. In this work, we propose an uncertainty-guided fine-tuning strategy that can
effectively enhance a pre-trained variational autoencoder (VAE) for GMD through performance feedback in
an active learning setting. The strategy begins by quantifying the model uncertainty of the generative
model using an efficient active subspace-based UQ (uncertainty quantification) scheme. Next, the decoder
diversity within the characterized model uncertainty class is explored to expand the viable space of

Received 8th May 2025,
Accepted 14th October 2025

molecular generation. The low-dimensionality of the active subspace makes this exploration tractable using
a black-box optimization scheme, which in turn enables us to identify and leverage a diverse set of high-

DOI: 10.1039/d5me00081e performing models to generate enhanced molecules. Empirical results across six target molecular

properties using multiple VAE-based generative models demonstrate that our uncertainty-guided fine-

rsc.li/molecular-engineering tuning strategy consistently leads to improved models that outperform the original pre-trained models.

Design, System, Application

Variational autoencoders (VAEs), a particular class of generative models widely applied in diverse molecular design tasks, learn a continuous latent
representation of their input (molecules in this case) that is leveraged in the search for molecules with optimized properties. This work proposed a black-
box optimization strategy for finding VAE model parameters that can outperform the pre-trained VAE parameters in constructing molecules with better
properties from a set of latent points. Specifically, our strategy takes the latent points found by any latent space optimization approach and explores the
uncertainty classes of VAEs through their low-dimensional active subspace to find the diverse models that improve the properties of the molecules
corresponding to those latent points. Due to the model-agnostic nature, our approach can be applied in complement to any latent space optimization
algorithm with VAEs to go beyond the pre-trained model's performance. This can assist computational designers to retain most of the pre-trained model's
capability before adopting a new generative model for the application of interest.

1 Introduction using optimization algorithms in a low-dimensional latent
space derived from high-dimensional chemical data.

Machine learning has evolved significantly in the field of However, the effectiveness of these generative models in

drug discovery, with an early focus on quantitative structure-
activity relationships (QSARs)" for high-throughput screening
(HTS),>* and is now attracting research interest in de novo
molecule design, driven by the rise of deep generative
models. Such models*™” allow exploration of molecular space
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creating target molecules is constrained by their training
datasets, as is the case with any data-driven approach.
Depending on downstream tasks-such as generating valid
molecules with optimum properties using specific reactants-
research efforts have focused on either the optimization
algorithm®"" with minimal model changes or complete
redesign of the generative model."*"”  Improving
performance for new downstream tasks often requires
rethinking generative model design. However, finding a
universally effective design remains challenging, as evidenced
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by the aforementioned studies. By building upon existing
pre-trained models, we aim to leverage insights embedded
within those models from the collective experience of the
research community to enhance their performance in various
downstream design tasks of interest.

Fine-tuning a generative model for a quantity of interest
in a molecular design task can be challenging, especially with
limited data."® We address this challenge by efficiently
quantifying the model uncertainty by employing active
subspace reduction of a generative model,'® which constructs
a low-dimensional subspace of the generative model
parameters capturing most of the variability in the model's
output. Incorporating model uncertainty leads to diversity in
VAE model parameters (specifically the decoder in our
problem setting), which expands the space of viable
molecules compared to the pre-trained model. First, we
assume that optimization over the latent space of a pre-
trained variational autoencoder (VAE) model yields a list of
candidate designs. These candidates, which can result from
multiple runs of some optimization procedure with different
hyperparameters, are decoded to generate molecules that
determine the model's downstream performance. For these
candidates within latent space, we adapt the generative
model in its low-dimensional active subspace to enhance its
performance beyond that of the pre-trained model, ie. to
learn a better decoding strategy than the pre-trained model
to obtain decoded molecules with better properties from the
candidates. We achieve this through black-box optimization,
guided by performance feedback from downstream tasks.
This optimization tunes the distribution of active subspace
parameters to generate diverse models that outperform the
pre-trained model for those candidate latent points. The
black-box nature of our optimization for improving model
performance in downstream molecular design tasks
simplifies its integration with existing optimization methods
in latent space of VAE-based generative models.

To this end, our contributions are as follows:

e We explore the model uncertainty class of VAE-based
generative models, effectively represented by their low-
dimensional active subspace parameters, using black-box
optimization algorithms: Bayesian optimization (BO) and
REINFORCE. The proposed fine-tuning approach yields
diverse high-performing models which improve the
generative model's performance in downstream design tasks
of interest.

e We demonstrate the effectiveness of our uncertainty-
guided fine-tuning approach in leveraging model uncertainty
to enhance downstream performance across six target
molecular properties. Our method consistently improves
design performance of multiple pre-trained VAE-based
models through the proposed -closed-loop optimization
scheme.

e We empirically analyze the impact of the active subspace
parameter-based optimization of the acquisition function in
latent space Bayesian optimization for three high-
dimensional optimization problems.
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2 Background
2.1 VAE-based generative models for molecular design

Across VAE-based generative models for molecular design
tasks,”® the encoder embeds molecular representations into a
low-dimensional continuous latent space, while the decoder
converts the latent space embeddings back to the chemical
space. For inverse molecular design, various optimization
approaches can be applied on the learned latent space of a
trained VAE. For example, Gomez-Bombarelli et al.* trained a
VAE jointly with a property predictor network using SMILES
representation of molecules. Subsequently, a Gaussian
process (GP) was trained to predict target properties from the
latent representation, leading to some latent points
corresponding to high-scoring molecules. Similarly, Jin et al.®
used Bayesian optimization on the latent space of their
junction tree VAE (JT-VAE) model to generate molecules with
optimized properties.

2.2 Optimization over latent space of VAEs

Given a trained VAE model with parameters 6 encoder and
Op,decoder, the optimization over the latent space of the
model solves the problem in eqn (1) by reformulating it as
in eqn (2):

max f(x) (1)

;g@f(DeCOde(Z, 90,decoder)) (2)

Here, & is the input space for which the latent space of the
VAE is learned. f(-) represents a black-box function which
quantifies the quantity of interest for sample x. Instead of
the high-dimensional discrete input space, this
reformulation searches the continuous latent space %
learned by the VAE model. Decode(z, 6 decoder) Uses the
learned parameter @ gecoder t0 reconstruct a sample in &
from its corresponding latent point z. Different optimization
strategies can find the optimum latent point z. Under the
Bayesian optimization framework, the process is as follows.
Starting from a collection of observations, i.e. {x(i),
FxD)n,, a surrogate model (e.g. Gaussian process) Sourrogate:
% — R is learned to predict the objective value from the
latent space representation. In this step, each sample x¥ is
embedded to the corresponding latent point z) through the
encoder with 6 cncoder- At €ach BO iteration, a new candidate
Z" € o is selected to query its objective value given by f(-).
This selection is done by optimizing the acquisition function
(e.g. expected improvement,* upper confidence bound,*
etc.), which is a function on z through the surrogate model

fsu rrogate-

(n+1)

z = arg max acq(z)

z (3)

The corresponding sample x"*V is obtained by decoding
2" and f(x") is evaluated. (x"*Y, f(x"*V)) is added to
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the existing collection of datapoints, and the BO iteration -
updating the surrogate model and optimizing the acquisition
function for a new candidate query - is repeated.

2.3 Focus of our work

The efficiency of the optimization strategy over latent space
strongly depends on the VAE model's latent space through its
learned parameters: 6y cncoder aNAd 6y gecoder- TO improve the
sample efficiency of the optimization process, different
strategies®® > are proposed to update the VAE model
parameters utilizing the samples suggested by the latent
space optimization process. In this work, we investigated
whether better samples (e.g. molecules with better properties)
could be found if the decoder was tuned to transform the
latent point z (found by the optimization process) into a
better reconstructed sample x.

The objective in eqn (2) consists of two functions, i.e. the
black-box function f and the decoder process parameterized
with #9°¢°9°" Existing studies on latent space optimization
only optimize for the latent point using a fixed decoder, i.e.
the pre-trained VAE model's decoder. In this work, we asked
whether this optimization could benefit from performing
optimization on the decoder parameters. Specifically, we
looked at two directions:

¢ (RQ1) can we improve the decoding process of the pre-
trained VAE to obtain better samples from the set of latent
points found by any latent space optimization algorithm?
Note that the latent points are obtained by solving eqn (2)
with pre-trained model parameters. Hence, the goal here is to
see whether we can do better than the pre-trained model by
tuning its decoding process, ie. optimizing the decoder
parameters.

e (RQ2) can we find a better solution for eqn (1) by
optimizing both the latent point z and decoder parameter
69°°d°" in f(Decode(z, #°***"))? This direction focuses on
incorporating the optimization of decoder parameters inside
the latent space optimization iteration.

For the first direction, we focus on VAE-based generative
models for molecular design with an arbitrary latent space
optimization algorithm. Here, the decoding process is
optimized after the completion of latent space optimization.
For joint optimization of the latent point and decoder (RQ2),
we consider optimizing the decoder within the latent space
Bayesian optimization that is adopted to suggest new
samples in each weighted retraining iteration (PG-LBO,** a
recently proposed variant of Tripp et al.*’). Sections 4.1 and
4.2 provides a formal description of these two directions.

3 Related work

Different application areas in materials and chemical
engineering have adopted VAEs as one of the generative
models®® to explore the design space. The architecture of
VAEs in these applications varies depending on the specific
design choices and problem settings. Specifically, specialized
data and design settings often necessitate custom VAE (or

This journal is © The Royal Society of Chemistry and IChemE 2025
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other generative model) architectures that are suitable for the
specific goal at hand. For example, Yao et al.>’ developed a
supramolecular variational autoencoder (SmVAE) for metal-
organic framework (MOF) structures for the inverse design of
novel MOF structures with improved CO, gas separation
capacity. For the design space of porous organic cages
(POCs), the Cage-VAE®® is introduced for representing the
cages constrained to a specific topology, which learns a latent
space from the building blocks, ie., molecules and the
reaction type. The authors also performed latent space
optimization to generate shape-persistent POCs utilizing the
shape persistence predictor, trained jointly with the VAE, as
the objective function. Vogel and Weber*® adopted a graph-
to-string VAE, where a graph neural network (GNN) encodes
the polymer graph to a latent embedding, which can be
decoded by a transformer-based decoder to a polymer string
consisting of the monomers' SMILES, stoichiometry, and
connectivity (between monomers) information. The learned
latent space is later used to design polymer photocatalysts in
photocatalytic water splitting for hydrogen production.

In some cases, it is not necessary to design a specific VAE
architecture specifically designed for the problem. For
example, Lopez et al.>® utilized the attention VAE model from
Dollar et al®' to generate SMILES strings of corrosion
inhibitor candidates. Nevertheless, given the substantial
effort and expertise required to design and train such
models, we believe it is essential to maximize the utility of
existing  pre-trained  architectures. = Our  work is
complementary to other approaches, e.g., Paddy,*® which
focus on improving optimization strategies in the latent
space of these pre-trained models, enabling more effective
downstream performance without the need for designing
new architectures from scratch.

MacKay*® introduced the concept of data-dependent
effective dimensionality of neural network parameter space
in the Bayesian framework. The experiments of Maddox
et al.** demonstrated the existence of many directions within
the neighborhood of trained neural network weights where
predictions remain unchanged. Several studies®*° utilized
this concept to compress over-parameterized neural networks
by pruning. Furthermore, this low dimensionality in
parameter space enables scalable uncertainty quantification
through various subspace inference techniques.*** In our
work, we chose the active subspace approach®® over other
methods since it allows learning the subspace without
retraining or modifying the architecture of the pre-trained
model.

Previous efforts to fine-tune GMD models have been
limited to using small, select molecule sets that fit specific
design criteria. For example, Blaschke and Bajorath'® fine-
tuned the REINVENT model”® to improve its ability to
recognize molecules with multi-target attributes via transfer
learning, i.e. retraining the pre-trained model with a pool of
multi-target molecules. In contrast, our approach adapts the
generative model based on downstream task performance.
This problem is conceptually similar to the work by Krupnik
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et al,** who updated the pre-trained generative model
parameters to generate samples matching the observed data
from a robotics task simulator.

4 Problem setting

4.1 Downstream performance improvement of pre-trained
models (RQ1)

Given a pre-trained VAE model, we want to use it for a
downstream task of generating molecules with desired
properties. Let's denote the pre-trained model by .#, where
0, is the pre-trained model parameter. For the downstream
task of interest - 7, algorithm .«Z (e.g. Bayesian optimization
in the work of Gémez-Bombarelli et al® and Jin et al®) is
applied in conjunction with the pre-trained model #4, to
look for candidate points within the latent space of .#4, so
that properties of the molecules corresponding to those
candidates are optimized. Specifically, for a given pre-trained
model (PTM), the algorithm .« finds a set of candidate
design points, Q = {z}, which Al g, decodes to generate
corresponding molecules {x}. The properties of these
molecules define the quantity of interest (Qol) of the pre-
trained model Qolpry, €.g. average property value of top 10%
molecules out of {x}. For design goals involving a specific
target value, Qol can be defined as the top 10% of the
differences between a target property value and the
properties of the molecules {x'}.

Our contention is that while the set Q may achieve the
best Qol for the pre-trained model, the algorithm .« can
perform better if the VAE model is fine-tuned for task - .
However, fine-tuned models are not always available for the
task at hand. In this work, we investigate whether we can
tune a given pre-trained model so that the molecules
generated from the set Q (found by .« using .#4) achieve a
Qol better than Qolpp,. Here, the set Q contains the
candidate latent points found by some optimization
procedure in the latent space of the pre-trained VAE, and
Qolpry is some target property statistics over the associated
molecules. Our goal is to bias the pre-trained model to
produce molecules with better Qol for the same design
points in Q.

To summarize our objective, as illustrated in Fig. 1, we
assume a set of design points - Q has been found using
a latent space optimization algorithm ./ applied to the
pre-trained VAE model. These design points can be
decoded by the model to reconstruct molecules. We aim
to further optimize the model parameters to generate
better molecules from Q than the pre-trained model does.
Denoting the Qol of the pre-trained model as Qolpry =
P(A 4,,Q), our goal is

max ¢(-4 9, Q) (4)

Note that the quantity of interest, ¢, is a summary
statistics about the properties of the molecules decoded
from Q. If this can be predicted with a separate predictor
network using the generative model's output, then
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gradient-based fine-tuning can approximately solve eqn (4).
However, the downstream task can be complex, making
the QoI or Qolrelated proxy prediction difficult and

requiring  separate  predictors for different tasks.
Alternatively, treating ¢ as a black-box function is
computationally  challenging due to the  high

dimensionality of the model's parameter space, ®, making
black-box optimization methods like Bayesian optimization
difficult to apply to the model parameters. Abeer et al'’
demonstrated that models sampled within the low
dimensional active subspace of the JT-VAE are diverse
enough to affect the molecule generation from the latent
space of the pre-trained model. In this work, we utilize
the active subspace within the VAE model parameter space
0O as design space for black-box optimization.

4.2 Integrating active subspace-based VAE decoder
optimization in latent space Bayesian optimization (RQ2)

The goal of this direction is to solve the black-box
optimization in eqn (1) by optimizing both the latent point z
and decoder parameter §9°°°%°", Specifically, we extend the
Bayesian optimization in section 2.2 to incorporate the
decoder parameter optimization into the latent space
optimization.

decoder
egelcaoéir ;rée% f(Decode(z,0 ) (5)

We perform the optimization for eqn (5) in two stages.
First, we find the latent point that maximizes acquisition
function acq(-). While this step (eqn (6)) is exactly the
same as in eqn (3), let's denote the corresponding
maximizer as zf for a simpler presentation of the next
stage. Next, we attempt to find whether a better solution
is available by optimizing the decoder parameters. The
intuition is that the optimized decoder may decode z% to
a sample whose encoded latent point z% shows a better
acquisition score. Finally, the candidate latent point (eqn
(9)) for query is selected from z} and z% based on their
acquisition scores. Like in section 4.1, we also use the
concept of active subspace to facilitate a black-box
optimization for eqn (7).

z} = arg max acq(z)

z (6)

09¢°4°" = arg max acq(Encode (Decode (z¥, 89°°U"), 0 encoder))
0decoder (7)

z§ = Encode(Decode (z}, 89°°°%"), 0 encoder) (8)

z™Y = arg max acq(z) (9)

ze{zf,z5}
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Fig. 1 Illustration of the model fine-tuning process for enhancing the quantity of interest (Qol). Using a pre-trained VAE-based generative model

(PTM), an algorithm .«Z finds a set of design points - Q in its latent space. As a downstream task, a property predictor is applied to the molecules
corresponding to Q to obtain the pre-trained model's Qol (Qolprm). Our objective is to fine-tune the model parameters to further enhance the Qol
for the same Q. We propose to leverage the active subspace of model parameters and perform black-box optimization over the subspace

parameters with Qol feedback.

5 Methods

5.1 Active subspace of neural network parameters

The active subspace (AS) of deep neural networks, as
described by Jantre et al,”” aims to identify a low-
dimensional subspace in the high-dimensional neural
network parameter space that has the most influence on the
network's output. Given a neural network fy(x) with input - x
and stochastic network parameters - # € R” following
probability distribution p(6), we can construct an uncentered
covariance matrix of the gradients: € = Eq[(Vofo(x))(Vafo(x))"].
If  admits the eigendecomposition: # = VAV' where V
includes the eigenvectors and A = diag(4, ..., ip) are the
eigenvalues with 4; >...Ap = 0. We then can extract k
dimensional active subspace by partitioning V into [Vy, V,]
where Vv, € R?”* and v, € RP* with k < n < D where n is
the number of gradient samples to estimate the covariant
matrix €. Accordingly, the active subspace is spanned by V;
corresponding to the largest k eigenvalues.

5.2 Optimization over active subspace

Similar to Abeer et al,' we have considered two disjoint
partitions of the parameter space @: 5 - containing a set
of stochastic parameters, 0%, and @ - containing the rest
of the deterministic parameters, #°. In section 5.2.3, we
discuss how we can intuitively distribute the generative
model's components into these two partitions for solving

This journal is © The Royal Society of Chemistry and IChemE 2025

the optimization problem in eqn (4) and (7). Instead of
directly approximating the epistemic uncertainty of the
stochastic parameters °, we construct the active subspace
Q within ©° while keeping the parameters in @ fixed at
their pre-trained values, i.e. 8° = 0. Specifically, we learn
the projection matrix, P, which maps the active subspace
parameters, @ € Q, to their corresponding parameter space,
6%, as follows

0° =0 + Po (10)
To construct the active subspace, we compute the gradient
(only for the parameters in ©%) of the loss function that is
used to train the generative model #4. In this work, we
considered the combination of the reconstruction loss and
the KL divergence loss of the VAE models as the fy(x)
mentioned in section 5.1 while freezing the parameters in
P to 0. Next, we apply the variational inference method”’
to approximate the posterior distribution of @, ie. p(w|9)
using the training dataset of the pre-trained model.
Specifically, we learn the subspace posterior
distribution parameters by minimizing the sum of the
training loss of the VAE model and the KL divergence loss
between the approximated posterior distribution and the
prior distribution over the active subspace parameters.
Details of constructing the active subspace and posterior
approximation are given in section 6.2.

active
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During the inference stage, we draw M samples {o};
independently from approximated p(w|%), and using eqn
(10) we have an M number of model instances in parameter
space ©. Hence for the downstream task, we now have a
diverse pool of models instead of a single pre-trained model.
To quantify the uncertainty of the model's output, we can
perform the Bayesian model averaging with this collection of
models as in Abeer et al.'® Next, we use the distribution over
active subspace parameters @ as the design space for finding
a collection of models suitable for producing molecules with
better Qol over set Q (RQ1) and finding a latent point with a
better acquisition value (RQ2).

5.2.1 Producing molecules with better Qol (RQ1). Under
the variational inference, we learn the approximate posterior
distribution over active subspace parameters as an
uncorrelated multivariate normal distribution parameterized
by ftpost and 604 Our optimization goal is to fine-tune these
distribution parameters to improve the pre-trained model's
QoI on the fixed design set Q. Denoting the fine-tuned
distribution parameters as g¢ and o, we can rewrite the
optimization problem in eqn (4) as follows

max ¢({ s, 05}, Q) (11)

The Qol function ¢ in eqn (11) is evaluated using models
sampled from an active subspace parameter distribution with
corresponding distribution parameters being g and or. M
independent samples are drawn from p(e®, g, of) which lead
to a collection of models, {# 4}{*, using eqn (10). The design
points in Q are uniformly distributed among these M models
for decoding. The property of interest is predicted for the
reconstructed molecules and the predicted values are
summarized, e.g. the average property value as Qol for the
given distribution parameters.

5.2.2 Finding a latent point with a better acquisition value
(RQ2). Similar to the previous case, we can rewrite the
problem in eqn (7) to eqn (12) where we look for the best
decoder parameters by optimizing over active subspace
parameters. Specifically, M independent samples, drawn from
active subspace parameterized with g and e, construct M
instances of #9°°®%" and each of these decoders transforms
the latent point z} (found by optimizing the acquisition
function over the latent space) to a corresponding molecule.
These decoded M molecules are further encoded using the
pre-trained encoder network of the VAE, and their acquisition
scores are computed. We select the maximum acquisition
scores out of M encoded latent points and their acquisition

score is the optimization objective, ie.
acq(Encode(Decode(z%, 0de°°der), 0 encoder))-
0gecoder
= argmax  acq(Encode(Decode(z}, 89°°°U), 0 encoder))
gdccodcrzgﬂccodcr+Pw
o~p(wipp.op)
(12)

Denoting acq(.) in eqn (12) as @, ({ #r, 61}, 27), we have
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ngfaifx ¢acq({ﬂf> O'f}, ZT)

5.2.3 Choice of stochastic parameters. All sampled models
from p(e; py, o) share the pre-trained model's weights for the
parameters in @°. The distribution only affects the stochastic
parameters in @5. We can construct the active subspace over
the entire parameter space @, but there is no guarantee that
the learned subspace would focus on the generative-model
component closely related to the downstream task. It is more
intuitive to construct a subspace for only those parameters
we intend to modify in the model.

In our work (RQ1), we consider VAE-based generative
models for molecular design, including the JT-VAE,®
SELFIES-VAE,*® and SMILES-VAE.? Given the design points
Q in the latent space of the pre-trained VAE model
suggested by some generic optimization algorithm .o,
decoders of the VAE models transform them into
molecules. To obtain molecules with better properties for
the same design points Q than the pre-trained model, we
learn the active subspace of the decoders of the SELFIES-
VAE and SMILES-VAE. For the JT-VAE, reconstruction of
molecules involves two types of decoders. First, the tree
decoder predicts a junction tree from a latent point.
Conditioned on this predicted junction tree, the graph
decoder constructs the molecular graph by selecting the
best arrangement in each node of the junction tree. Out of
these two components, the tree decoder plays the pivotal
role in deciding the molecular structure as the junction
tree contains all coarse information, i.e. which molecular
units will be present in the constructed molecule. The
graph decoder tracks the fine details of the interconnection
between the nodes of the junction tree. Consequently, the
tree decoder has broad control over the decision rules for
constructing molecules from latent space. Therefore, we
construct the active subspace over the JT-VAE's tree
decoder, effectively allowing us to control the decision rules
for constructing the junction tree from a latent point. Our
optimization process attempts to change those rules, i.e. by
changing decoder weights so that a latent point is decoded
to a different junction tree yielding a better molecular
graph than the pre-trained JT-VAE model.

In experiments for RQ2, we consider three high-
dimensional optimization tasks where latent space Bayesian
optimization is used with a weighted retraining framework.
We take the active subspace of the decoders of the
corresponding VAEs for all tasks except for Molecule where
we consider the JT-VAE tree decoder.

5.2.4 Design space. We are performing the optimization of
eqn (11) in terms of the active subspace distribution
parameters. Since the active subspace parameters drawn
from this distribution decide the model instances of the
generative model, any large deviation from the posterior may
cause the sampled models to behave erroneously on the
design points, ie. leading to invalid chemical structures. So
we constrict the design space of our optimization by selecting

This journal is © The Royal Society of Chemistry and IChemE 2025
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bounds of g and e within the neighborhood of the inferred
posterior parameters, L.e. fpose and G0 as follows:

Hpost ~ go'post =M = Hpost + 30'post (14)

0.750p0st < 6 < 1.256p05; (15)

We chose the 306y half-width around the posterior mean,
Hpost, to enable the fine-tuned distribution to navigate within
the subspace region aligned with the posterior. The bounds
for or are set to avoid significant variance changes, as this
could introduce excess noise in objective query evaluation,
potentially  hindering the optimization algorithm's
performance.

With the above uncertainty guided design space, we
impose the constraint in eqn (16) based on the KL divergence
between the fine-tuned and posterior distributions. By setting
threshold - 0Jx;, we control how far from the inferred
posterior we search for a better pool of models. If the design
space is already very narrow, this constraint can be dropped
for optimization.

KL[p(C(); ﬂfy O'f)”P(CU; ﬂposty Gpostn =< 5KL (16)

5.3 Optimization procedure

We employ two black-box optimization approaches -
Bayesian optimization and REINFORCE' - to fine-tune
distribution parameters for the optimization problem in eqn
(4). In the following sections, we discuss how these
approaches (details in the SI) improve the pre-trained
model's QoI (RQ1). The description also applies for finding a
better latent point (zf vs. z3 in eqn (13)) by the acquisition
score (RQ2), where the optimization goal is ¢..q (eqn (13))
instead of ¢ (eqn (11)).

5.3.1 Bayesian optimization. We formulate the
optimization problem of eqn (11) and (13) as a single
objective Bayesian optimization (SOBO) task with the KL
divergence constraint from eqn (16). To initialize the
Gaussian process*’-based surrogate model, a small number
of candidate solutions, ie. pairs of (g, o), are drawn by
applying Sobol's sampler*® within the design space defined
by eqn (14) and (15). Then we evaluate these candidates
using the QoI function ¢ as well as the KL divergence
constraint. We train the GP model with the evaluated Qols
and constraint slacks for the initial candidates and use it for
optimizing the acquisition function (expected improvement
in our main experiments) that suggests the next candidate
pair in the design space. The QoI and the constraint slack of
the suggested pair are similarly evaluated and used to update
the GP model. We then repeat the optimization of the
acquisition function using the updated surrogate model to
obtain the next candidate to evaluate. This iterative process —
optimization of the acquisition function and updating the GP
with new observation - is repeated until we reach the desired
region of Qol or the computational budget for QoI evaluation
is exhausted.
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5.3.2 REINFORCE. For applying REINFORCE' in our
problem, we consider p(®; p;, o7) as a policy for the active
subspace parameters . The parameters of the policy network

- u/é(uf,cf) are first initialized to the active subspace
posterior distribution parameters, ie. flpose and  Gposr
respectively. At each iteration of REINFORCE, we draw M
samples from the current policy network p(e; g of) and
compute the corresponding Qol, i.e. ¢(py, or, Q) following the
steps mentioned in section 6.1. Then we use the Adam
optimizer*® with a learning rate a = 0.005 to update the
policy parameters according to the following update rule:

=0

Ay = ad({ps 6¢}, Q) %(Zlogp(wi;ﬂf, Gf))

6 Results

In this section, we demonstrate the performance of our
approach (summarized in Algorithm 2) in improving Qol
(RQ1) using three VAE models - JT-VAE, SELFIES-VAE, and
SMILES-VAE with two optimization methods - Bayesian
optimization (BO) and REINFORCE. First, we detail
downstream design tasks in section 6.1 and describe the
procedure to construct active subspace in section 6.2, and
then present results in section 6.3 on improved molecular
properties using our uncertainty-guided fine-tuning approach
over pre-trained models. Section 6.4 offers further insights
into the active subspaces constructed for each VAE model.
Finally, we demonstrate the impact of active subspace-based
optimization in latent-space BO (RQ2) in section 6.5.

Algorithm 1: active subspace inference for the VAE-based generative
model
1: Input: loss function . used to train .#p,, pre-trained model
weights 89 = [63,05], training dataset 2 of pre-trained
model, number of gradient samples n, active subspace dimen-
sion k, perturbation standard deviation oy.
: for j=1,2,...,ndo
Sample an input molecule x; € &
Sample 6% ~ .4 (63, 31)
Compute gradients: Veif(%ej,xj‘) where 0 = [9?,901)]
6: end for
7: Uncentered covariance matrix of loss gradients approximated
by MC sampling:
¢=1yn, (Vg;'f(///e,-,xj))(ngf(%ej:xj))T
8: Eigendecomposition of %
9: Active subspace - spanned by the eigenvectors correspond-
ing to k largest eigenvalues of €
10: Approximate posterior distribution of subspace parameters @
using variational inference.
11: Draw M samples of active subspace parameters:
o, ~p(w|2) where, me {1,--- ,M}
12: Compute VAE model weights for each sample:
O = [0+ Py, 65

R

a

6.1 Simulation of downstream tasks

To demonstrate our approach for any set of design points Q,
we use a random selection strategy as the algorithm ./
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Algorithm 2: uncertainty-guided fine-tuning of the VAE-based

generative model for improving Qol

1: Input: VAE model .#p,, pre-trained model weights 6y =
[65,08], set of candidate latent points Q found by some arbi-
trary algorithm <.

2: Construct active subspace Q for stochastic parameters 65 € ®°
(Algorithm 1).

3: Approximate posterior distribution of : p(®; Upost: Opost) Via
variational inference.

4: Define the design space guided by model uncertainty param-
eters: Upogr; Opost- (Section 5.2.4)

5: Run BO/ REINFORCE to solve optimization problem in (11)
for improving Qol of the latent points in given Q set.

drawing 1000 points in the pre-trained VAE's latent space
according to .A(0, I). To simulate Qolpry, We convert this
random collection Q to corresponding molecules using the
pre-trained model and predict the property of interest for all
unique molecules. Qolpry is defined as the average property
value of the top 10% samples among those unique
molecules. For properties that need to be minimized, the top
10% samples are those with the lowest property values, and
the sign of their average is altered to maximize the Qol.

For the posterior and fine-tuned distributions over AS
parameters, we independently sample 10 models using the
AS parameter distribution and divide the 1000 latent points
of Q equally among them, giving each model 100 design
points to decode. This ensures up to 1000 unique molecules
for a fair comparison with the pre-trained model. We then
use the same property predictor on unique molecules that we
used for the pre-trained model and define the QoI as the
average of the top 10% properties for the given distribution
parameters. If the pre-trained model or any of the sampled
models cannot decode a latent point into a valid molecule,
we discard it in the QoI estimation.

6.1.1 Properties of interest. To investigate optimization
efficiency over different landscapes of Qols, we consider six
target molecular properties: water-octanol partition
coefficient (log P), synthetic accessibility score (SAS), natural
product-likeness score (NP score),”® and inhibition
probability against dopamine receptor D2 (DRD2),”! c-Jun N-
terminal kinase-3 (JNK3) and glycogen synthase kinase-3 beta
(GSK3B)."> We aim to maximize all properties except SAS,
where lower values indicate easier synthesizability. Details of
predictors for these six properties are provided in the SI
along with the computed cost for evaluating QoI for 1000
latent points.

6.2 Learning active subspace

We randomly sampled 100 molecules from the training
dataset of each VAE model considered. For each sample -
consisting of one input molecule and a set of perturbed
model parameters — we followed Algorithm 1 to compute the
gradient of the training loss. These gradients were then used
to construct the active subspace over the stochastic
parameters: the tree decoder in the JT-VAE, and the decoders
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in the SELFIES-VAE and SMILES-VAE. During each forward
pass, we only perturbed the stochastic parameters and left
all others fixed. We constructed a 20-dimensional active
subspace using perturbation standard deviation ¢, = 0.1 for
the JT-VAE tree decoder (2756131 parameters) and o, =
0.01 for the SELFIES-VAE (4419177 parameters) and
SMILES-VAE (4281894 parameters) decoders. Although the
JT-VAE subspace showed a lower rank (see Fig. 3), its
smallest singular value remained sufficiently large, so we
retained 20 dimensions for our main experiments.
Additional results with a 5-dimensional active subspace are
provided in the SI.

We use the training dataset of the VAE model to perform
variational inference to approximate the posterior
distribution over active subspace parameters. We applied the
Adam optimizer’® with a learning rate of 0.001 to find the
approximate mean and standard deviation over 20-
dimensional AS parameters by minimizing the combined loss
of the VAE training loss (which includes the reconstruction
loss and KL divergence of the VAE) with the KL divergence
loss between approximated posterior distribution and prior
distribution over AS. We use a multivariate normal
distribution with a zero mean and 5 standard deviations as a
prior distribution over AS parameters.

6.3 Optimization over active subspace improves Qol (RQ1)

For each of the six properties, we applied Bayesian
optimization (BO) and REINFORCE separately to fine-tune
distribution parameters over the active subspaces of the JT-
VAE tree decoder, SELFIES-VAE decoder, and SMILES-VAE
decoder. For BO, we initialized the GP surrogate with 5
sample candidates from the design space described in
section 5.2.4 and used the expected improvement (EI)
acquisition function to optimize the Qol function ¢ over 25
BO iterations. For REINFORCE, the policy network was
initialized with the posterior distribution parameterized by
Hpost and 6,0 and updated over 30 iterations. Both
optimization strategies used the same budget of 30 Qol
evaluations per property. In BO, the Qol evaluations for 5
initial candidates and 25 BO-suggested candidates constitute
a total of 30 QoI evaluations.

For each property, we ran 3 trials of BO and REINFORCE
on 10 independently generated Q sets of design points (30
runs in total). Each boxplot in Fig. 2 shows Qol improvement
over the pre-trained JT-VAE model. The results indicate that
BO consistently outperforms the reward-based approach -
REINFORCE in achieving larger Qol improvements across all
six properties. Fig. S1 and S2 in the SI present analogous
results for the SELFIES-VAE and SMILES-VAE, where
REINFORCE matches BO. For a quantitative comparison,
Table 1 reports the Qol values for both the pre-trained model
and the fine-tuned distributions obtained by our approach,
confirming our method's consistent gains over the pre-
trained model in generating molecules with better properties.
We have also performed the Wilcoxon signed-rank test>” with

This journal is © The Royal Society of Chemistry and IChemE 2025


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5me00081e

Open Access Article. Published on 17 October 2025. Downloaded on 1/22/2026 5:04:32 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

View Article Online

MSDE Paper
logP SAS NP _score
0.20 4 —— 0.04 . [
0.06 L
3 1 ] :
§ o1 0.03 0.05
£ o 0.04 R
- 0.02 i
& 199 o 0.03 4 .
IS B ] e
g) 0.01 i
0.05 4
o™ : 0.01 4 f
o 0.00 i e
IS e
= 0001 0.00
—0.01 4
—0.01 .
Reinforce BO Reinforce BO Reinforce BO
DRD2 JNK3 GSK3p
. 0.014 . 90387 .
” oge®
5 0.015 4 . 0.012 4 ——% oo
€] " 0.010 . ’ .
£ o~
00101 " 0.008 4 .
S o 0.005 O
= 0.006 * c
c|>,) 0.005 4 e,
g- 0.004 4 3 G o
1 %
£ 00004 0002 s’
0.000 I —0.005 -
—0.005 — ~0.002 — —
Reinforce BO Reinforce BO Reinforce BO

Fig. 2 Qol improvement relative to the pre-trained JT-VAE model for two optimization methods: BO and REINFORCE. Positive values indicate
better Qol than Qolptym. Each boxplot shows individual Qol improvements for the best fine-tuned distributions found across 10 Q sets over 3 trials
per optimization method. Some individual observations are horizontally adjusted to avoid overlap.
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Fig. 3 Comparison of subspace similarity between random subspaces and active subspaces for the JT-VAE tree decoder, SELFIES-VAE decoder,
and SMILES-VAE decoder. Each entry of the normalized similarity is computed via eqn (18) between subspaces generated using two different
random seeds. For each VAE model, we constructed two (corresponding to two random seeds) 20-dimensional active subspaces - each using 100
gradient samples corresponding to randomly selected 100 molecules from the training dataset. Across the two seeds, we obtained two projection
matrices P; and P, with Algorithm 1, starting from the pre-trained model weights.

the alternative hypothesis that Qol values obtained by our
approach of optimization over the active subspace
distribution parameters are better than those of the pre-
trained model (PTM). Specifically, we considered the paired
Qol data, i.e. Qol for the pre-trained and finetuned models in
the Wilcoxon signed-rank test. As shown in Table S2 of the
SI, all cases showed statistically significant improvement over
the pre-trained model, with the exception of SAS optimization
using the JT-VAE model with the REINFORCE strategy.

Since BO outperforms REINFORCE in the JT-VAE model,
we ran additional JT-VAE experiments to assess the effect of a
noisy EI acquisition function, Jy; sensitivity, the effect of
active-subspace dimension k in BO, and the generalizability

This journal is © The Royal Society of Chemistry and IChemE 2025

of the fine-tuned distribution's impact on the JT-VAE latent
space (see SI section S7).

6.4 Does active subspace have an intrinsic bias?

We construct the active subspace from n = 100 gradient
samples (see Algorithm 1), with each gradient sample derived
from the loss for a single molecule. It is natural to question
whether these gradient samples lead to a learned active
subspace similar to a random subspace. To investigate this,
we compare the subspace similarity between two active
subspaces constructed using two random seeds. We use the
Grassmann distance-based normalized subspace similarity
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Table 1 Comparison of Qol values obtained by our approach of optimization over the active subspace distribution parameters for the JT-VAE tree
decoder, SELFIES-VAE decoder, and SMILES-VAE decoder. The Qol for each pre-trained model (PTM) is shown as a baseline to highlight improvements
by optimization algorithms: Bayesian optimization (BO) and REINFORCE (R). Results are averaged over 3 optimization trials for 10 different Q sets. The

italicized value corresponds to statistically insignificant improvement

Models Pre-trained/fine-tuned LogP (1) SAS (1) NP score (1) DRD2 (1) JNK3 (1) GSK3p (1)
JT-VAE PTM 4.263 (0.084)  2.034 (0.027)  0.039 (0.037)  0.039 (0.008)  0.061 (0.004)  0.135 (0.009)
PTM + BO 4.367 (0.078)  2.017 (0.029)  0.076 (0.039)  0.047 (0.009)  0.065 (0.005)  0.140 (0.008)
PTM + R 4.332(0.093)  2.031 (0.034)  0.062 (0.042)  0.042 (0.010)  0.062 (0.004)  0.138 (0.009)
SELFIES-VAE ~ PTM 4.741 (0.083)  2.086 (0.043)  0.722 (0.035)  0.039 (0.008)  0.065 (0.006)  0.126 (0.007)
PTM + BO 5.059 (0.043)  2.010 (0.017)  0.798 (0.028)  0.064 (0.005)  0.076 (0.002)  0.146 (0.004)
PTM +R 5.044 (0.039)  2.001 (0.018)  0.801 (0.021)  0.069 (0.009)  0.076 (0.002)  0.147 (0.004)
SMILES-VAE PTM 4.869 (0.050)  1.952 (0.024)  0.194 (0.050)  0.036 (0.009)  0.067 (0.005)  0.117 (0.011)
PTM + BO 5.050 (0.042)  1.903 (0.008)  0.284 (0.022)  0.059 (0.006)  0.080 (0.004)  0.137 (0.006)
PTM + R 5.069 (0.055)  1.900 (0.010)  0.289 (0.027)  0.063 (0.004)  0.081 (0.003)  0.140 (0.005)

measure from Hu et al.>® For two subspaces with projection
matrices P; and P,, the subspace similarity is defined as:

2
UlTuJ H
H o 2lp

Sim(Pl,Pz, l7J) = (18)

min(i, j)
where UL is the first i columns of Py after normalization. For
our 20-dimensional active subspaces over the JT-VAE tree
decoder, SELFIES-VAE decoder, and SMILES-VAE decoder,
Fig. 3 shows this similarity measure for the two active
subspaces across two random seeds. For reference, we also
show the similarity between two random subspaces of the
same dimension, where the projection matrices are drawn
from a normal distribution.

Since random subspaces are independently generated,
there is no similarity between them (the subspace similarity
measure is near 0). Active subspaces are also generated
independently across two random seeds, but the learned
projection matrices share a certain degree of intrinsic
structure for the JT-VAE tree decoder and SELFIES-VAE
decoder, where the first few projection vectors show
significant similarity (values closer to 1). This indicates that
the learned active subspace focuses on a specific model
parameter space, even though it is created through random
perturbation (Algorithm 1) around the pre-trained model
parameters. Since we construct the active subspace by taking
gradients around the pre-trained model parameters, this
pattern of subspace similarity implies that the pre-trained
model is located in such a loss landscape, where moving
along certain directions can significantly impact the loss
function. Such subspace similarity also means that our
proposed active subspace optimization approach explores the
model parameter space in 20 directions that are highly
relevant to the molecular optimization task, rather than just
randomly selected directions. In the JT-VAE's case, this
similarity is particularly pronounced which may contribute to
its higher Qol improvements using Bayesian optimization
over REINFORCE. This intrinsic bias might be introduced
due to the way the JT-VAE tree decoder reconstructs a
molecule from its latent space. In contrast, the SMILES-VAE
decoder's active subspaces show negligible similarity, despite
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the similar architecture to the SELFIES-VAE, except for
different molecular representations. This difference suggests
that the SMILES-VAE's pre-trained weights may reside in a
very sharp loss surface. Perturbing the weights (for active
subspace construction) in any direction can cause large loss
changes, yielding subspaces akin to random ones. These
observations highlight the need for robust input
representations, as in the JT-VAE and SELFIES-VAE, to learn
meaningful low-dimensional active subspaces. Furthermore,
it may be possible to construct subspaces that favor Qol-
optimal regions, offering a promising future direction.

6.5 Active subspace-based optimization of the acquisition
function in latent space Bayesian optimization can enhance
query efficiency (RQ2)

We consider three commonly used high-dimensional
optimization tasks,*™>* ie., generating molecules with a
maximum penalized water-octanol partition coefficient
(penalized log P), fitting an arithmetic expression to a target
expression, and producing a binary image with maximum
similarity to a target topology. We have provided a brief
description of these standard optimization tasks in the SI.
For each of these three tasks (denoted as Molecule, Expression
and Topology, respectively), we apply the PG-LBO weighted-
retraining framework,>* performing 10 weighted retraining
iterations and using latent-space Bayesian optimization to
suggest 50 diverse samples at the end of each iteration.

We introduced our active subspace-based optimization
(RQ2) within each BO iteration, keeping all other
components of weighted retraining the same as in PG-LBO.
Fig. 4 shows the top-1 sample's objective score and total
unique queries out of 500 suggested samples over 10
weighted retraining iterations for 5 trials across three tasks,
both with (‘w AS’) and without (‘w/o AS’) active subspace-
based optimization of the acquisition function. In Fig. 4,
each best objective score was found by the optimization
procedure, ie., 10 iterations of weighted retraining, and the
number of unique queries represents the number of unique
samples we needed to evaluate for the Bayesian
optimization. Note that each weighted retraining iteration

This journal is © The Royal Society of Chemistry and IChemE 2025
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Fig. 4 Impact of active subspace-based optimization of the acquisition function in latent space Bayesian optimization for three benchmark

problems of latent space optimization. Each scatter plot shows the top-1 sample's objective score (1/l indicates that higher/lower is better) and
the number of unique queries made over 10 PG-LBO weighted retraining iterations, with and without active subspace-based optimization of the
acquisition function (‘w AS’ and ‘w/o AS’ respectively). The experiment for each task is repeated 5 times.

involves performing Bayesian optimization (with or without
our active subspace) to generate 50 samples and retraining
the VAE model with the weighted dataset of existing
training samples updated with the suggested 50 samples. As
detailed in section 4.2, under the active subspace-based
optimization of the acquisition function, we accept the
latent point zi suggested by this decoder optimization only
if its acquisition score exceeds that of zi found by
optimizing the acquisition function over the latent space.
This potentially skips the samples suggested by regular BO
(‘w/o AS’). For Molecule and Expression, this reduces unique
queries without largely affecting the top-1 score. This boosts
query efficiency, i.e., it limits the number of unique samples
to be evaluated for their objective score, which can be
crucial for expensive black-box objective functions. In the
Topology task, weighted retraining using vanilla BO (without
active subspace) and BO with active subspace ended up
generating all 500 unique samples, resulting in a constant
number of unique queries for all trials. This task involves
generating a 40 x 40 binary image where two generated
samples are identical when they match exactly in all pixels,
and this has a very low probability of occurrence (2'°°
possible binary images). Hence, having a duplicate image
from the weighted retraining process is a very rare event
and this potentially explains the constant number of unique
queries. This result highlights that BO with active subspace
(RQ2) can improve the query efficiency (in terms of unique
samples) in the weighted retraining framework, but the
performance depends on the data space encoded by the
VAE.

7 Conclusion and discussion

We introduced an uncertainty-guided fine-tuning approach
that leverages a pre-trained VAE-based generative model's
low-dimensional active subspace to quantify and exploit
model uncertainty for performance enhancement in
downstream molecular design tasks. Our method showed
significant improvements over pre-trained models in
optimization tasks for six molecular properties across three

This journal is © The Royal Society of Chemistry and IChemE 2025

VAE variants: JT-VAE, SELFIES-VAE, and SMILES-VAE. By
using black-box optimization, our approach fine-tunes the
generative model to improve predicted properties using any
property predictor, either ML or mechanistic. Our Bayesian
optimization framework can also extend to multi-objective
optimization when multiple molecular properties are of
interest simultaneously. For instance, one can quantify QoI
for each ith property in multiple property optimization,
where the molecules are ranked in terms of their ith property
values. Subsequently, these multiple QoI's can be used in
multi-objective Bayesian optimization where the design space
remains the same (ie, the active subspace distribution
parameters). However, considering each property separately
for ranking the molecules may not be ideal when there are
trade-offs due to conflicting properties. In such a case, the
Pareto optimality-based ranking®® may be used for ranking
the molecules based on multiple properties. Our results
highlight varied impacts of the models derived from the
active subspace distribution across different molecular
properties, motivating objective-guided active subspace
development. Finally, active subspace inference enables
formal uncertainty quantification of generative models and
property predictors in a computationally efficient manner,
which may offer insights into data-driven generative
molecular discovery.

In our work, we have used the top 10% average as the
reward (Qol), which can be a bottleneck for expensive oracles,
e.g. wet-lab experiments, physics-based simulation, etc.
Specifically, such a rank-based objective requires evaluation
of all molecules in the current batch before taking the top
10% average of their properties, and this complexity
increases with the size of the batch. However, one can utilize
property predictors as a proxy for the expensive oracles to
estimate the top 10% reward that can be used as the
objective in our proposed active subspace-based
optimization. For example, rank-based acquisition functions,
e.g. qPO (multiple point probability of optimality) proposed
by Fromer et al.,>® can be potentially applied to suggest the
optimal batch (top 10%) for evaluation under resource-
constrained scenarios.
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It is important to note that the success of our proposed
fine-tuning approach hinges on the quality of the pre-trained
generative model, as we learn the active subspace posterior
distribution parameters over which the design space is
defined, by perturbing the pre-trained weights. If the pre-
trained model fails to capture the underlying molecular
generation rules, our active subspace-based method is
unlikely to improve the design. In this direction, we explored
(in RQ2) the potential of integrating our approach with
iterative refinement methods**?****® to enhance the
generative model's sampling efficiency. If surrogate models
used for Qol feedback misrepresent the ground truth, this
may misguide the fine-tuning method.>” To mitigate this,
one can also leverage our black-box treatment to adopt a
systematic, formal risk-aware optimization approach for
robust fine-tuning under uncertainty.
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