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Phosphate compounds are promising for next-generation optoelectronic and electronic applications
due to their versatile structures and properties. In this work, NaCaPs:Og (NCPO) ceramics were
synthesized by a conventional solid-state method and crystallize in a pure triclinic phase (space group
P1), as confirmed by XRD and structural refinement. FTIR analysis verified the structural integrity through
characteristic vibrational modes. Optical studies revealed a wide direct band gap of about 3.95 eV,
highlighting the suitability of NCPO for ultraviolet optoelectronic applications. Dielectric and electrical
investigations over wide temperature and frequency ranges demonstrated semiconducting behavior with
a negative temperature coefficient of resistance. Impedance and electric modulus analyses indicated
grain-dominated conduction and non-Debye relaxation behavior. The frequency-dependent conduc-
tivity follows Jonscher’s law, and charge transport is governed by a thermally activated correlated barrier
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hopping mechanism with an activation energy of ~0.36 eV. The estimated thermal sensitivity constant
(f ~ 3597 K) and low stability factor (SF ~ 1.5) suggest strong thermistor performance and stable
DOI: 10.1039/d5ma01363a electrical properties. Overall, this study enhances the understanding of the electrical and dielectric

behavior of NCPO and underscores its potential for advanced thermistor, sensor, and optoelectronic
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1. Introduction

Over the past century, the growing demand for advanced
technologies with efficient energy usage for modern electronic
and industrial applications has become a major focus of
scientific research.'™ Due to their remarkable performance,
ceramic materials have emerged as promising alternatives,
delivering solutions that lower environmental impact while
increasing energy density, often in compact dimensions
and at lower cost.”” Recently, phosphate-based compounds,
known for their structural versatility, have attracted consider-
able attention due to their exceptional physical properties
such as high electrical conductivity, intriguing magnetic
behavior, and elevated dielectric constants.®® These features
make them ideal candidates for various advanced technologies,
including ceramic capacitors,” microwave components,"®""
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next-generation 5G/6G communication networks,'> and sen-
sors applications.®*?

The search for advanced sodium-based cationic conductors
with favorable electrochemical characteristics has intensified
in recent years, driven by their potential application in future
Na-ion rechargeable battery technologies. Several candidates
have been studied, including NaFe(POj);,"* NazV,(POy)s,"
NaZr,(PO,);,"® and Na,CoP,0,."” Structurally, these materials
are composed of frameworks that combine PO, tetrahedra with
MO,, polyhedra (where M denotes a transition metal and n
ranges from 4 to 6). This results in complex connectivity
patterns that form tunnels and cavities throughout the struc-
ture. The geometry and dimensions of these tunnels directly
influence the movement of cations within the material. There-
fore, exploring the crystal structures of such materials is
essential for gaining insights into their ionic transport mechan-
isms and optimizing their performance.

In recent years, calcium-based phosphate materials have
attracted increasing attention across a wide range of techno-
logical fields. Their structural versatility and intrinsic biocom-
patibility make them particularly suitable for advanced
bio-materials and biomedical applications."®*" Beyond these
areas, growing interest has emerged in the use of calcium

© 2026 The Author(s). Published by the Royal Society of Chemistry
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phosphates for energy-related technologies, where they have
shown promising performance in energy storage systems, such
as batteries, as well as in energy conversion devices.>> Among
the various synthesis approaches for phosphate-based materials,
the conventional solid-state reaction technique remains the most
prevalent. Its widespread adoption is attributed to its operational
simplicity, low production cost, and suitability for large-scale
synthesis.®**** Additionally, it supports the formation of phase-
pure and highly crystalline compounds, which are key factors in
achieving reliable and enhanced material performance. Within
this context, considerable attention has been directed toward the
NaMP;0, family, where M denotes divalent or trivalent metal
ions such as Fe, Mn, Ca, Sr, Co, Zn, and Mg.'"**° Despite
progress in their structural characterization, however, the
electrical and dielectric behaviors of these materials remain
insufficiently explored. This lack of data has spurred efforts to
probe their ionic transport mechanisms at the microscopic
level. Impedance spectroscopy has emerged as a powerful
technique in this regard, offering detailed insights into the
distinct roles of grains, grain boundaries, and electrode inter-
faces in governing charge transport. Moreover, these findings
can be effectively linked to morphological and structural attri-
butes, as identified by the impedance spectroscopy technique.?
Beyond this, impedance analysis enables evaluation of the
negative temperature coefficient (NTC) of resistance observed
in certain pyrophosphate compounds, positioning them as
promising candidates for applications such as thermal regula-
tion, temperature sensing, inrush current protection, and accu-
rate thermal monitoring.***' Among the NaMP;O, family,
NaCoP;0y is the only compound synthesized via the solid-
state method that has been investigated by impedance spectro-
scopy. It has demonstrated promising performance, exhibiting
an electrical conductivity of 1.01 x 10> Q' cm™ " at 753 K and
an activation energy of 1.1 eV, as derived from Arrhenius
analysis.*® This compound has also gained attention as a poten-
tial cathode material for sodium-ion battery applications.>>**

NaCaP;0,, a member of the metaphosphate family, crystal-
lizes in the triclinic system with space group P1.*° It is iso-
structural with NaSrP;O,, and their triclinic forms represent
the only polymorphs reported for these compounds, highlight-
ing the unique stability of their linear polyphosphate chains.
The relative ionic radii of M* and M** cations strongly influence
the degree of polymerization in these metaphosphates. To date,
Eu’*-doped NaCaP;0, exhibits strong photoluminescence with
tunable emission, making it promising for high-performance
white light-emitting diodes (WLEDs) and other luminescent
devices.**?*> However, its electrical and dielectric properties
have not yet been explored, underscoring the novelty and
significance of the present study.

The objective of this study is to provide the first compre-
hensive investigation of the structural, optical, and electrical
properties of NaCaP;0, (NCPO) ceramic using the conventional
solid-state reaction technique. The relatively low sintering
temperature (600 °C) and the affordability of the consti-
tuent materials make this ceramic particularly attractive.
A multi-technique approach combining X-ray diffraction (XRD),
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infrared (IR) spectroscopy, UV-visible spectroscopy, and complex
impedance spectroscopy is employed to characterize the material.
Special emphasis is placed on evaluating the optical parameters
relevant for optoelectronic applications. Furthermore, impedance
spectroscopy confirms the NTCR behavior and reveals a ther-
mally activated conduction process. To deepen our understand-
ing of charge transport, frequency- and temperature-dependent
conductivity data are analyzed. The interplay between conduction
and relaxation processes is also explored using the Kohlrausch-
Williams-Watts (KWW) model applied to the electric modulus
formalism.

2. Experimental work
2.1 Material preparation of NaCaP;0, (NCPO)

The NaCaP;O, sample was synthesized using a conventional
solid-state reaction method. High-purity precursors NH,H,POy,,
CaCOj;, and Na,CO; were accurately weighed according to the
required stoichiometric ratios. The methodology of synthesis
involved several steps, as depicted in Fig. 1.

The powders were thoroughly mixed in an agate mortar at
room temperature to ensure uniformity. The resulting mixture
underwent dry grinding for one hour, followed by wet grinding
for an additional hour. This process yielded a well-homo-
genized powder. The blended powder was calcined in a pro-
grammable furnace, where the temperature was gradually
raised to 300 °C and maintained for 6 hours. After cooling,
the calcined material was finely reground for 2 hours to obtain
a lump-free texture. Cylindrical pellets were then formed using
a uniaxial press and subsequently sintered at 600 °C for 3 hours
to promote densification and phase formation. The final pro-
duct consisted of well-sintered pellets, ready for structural and
functional characterization.

2.2 Analysis and characterization

2.2.1 X-ray diffraction (XRD). The phase composition and
crystallographic structure of the NCPO compound were identi-
fied using a PANalytical X’'Pert PRO X-ray diffractometer. The
diffraction patterns were recorded over an angular range of
10°-70° with a step size of 0.02° and a dwell time of 1 s per step,
using Cu Ko radiation (4 = 1.5406 A). Structural parameters
such as unit cell dimensions and phase purity, were extracted
by performing Rietveld refinement using the FullProf Suite,*®
allowing for an accurate and detailed structural analysis of the
material.

2.2.2 Spectroscopic measurements. Infrared absorption
spectra were recorded using a PerkinElmer FTIR-100 spectro-
meter in the wavenumber range of 400-1300 cm ', with
a spectral resolution of 4 cm™" and 32 accumulated scans.
This technique was used to identify the vibrational modes of
phosphate groups and confirm the molecular structure of the
compound by analyzing characteristic bond vibrations.

The optical properties of the material were studied using
a Shimadzu UV-Vis-NIR spectrophotometer (model 3100),
operating in the spectral range of 200-800 nm.
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Solartron 1260 analyzer, covering frequencies from 0.1 Hz to
1 MHz and temperatures ranging from 393 K to 633 K, within
this interval, the electrical response exhibits thermally activated
behavior with well-defined relaxation and conduction mechan-
isms. This setup enabled the investigation of electrical trans-
port processes and dielectric relaxation behavior within the
material. This allowed for the investigation of electrical trans-
port processes and dielectric relaxation behavior within the
material.

3. Results and discussion

3.1 Structural, SEM description, and vibrational
characterization

The X-ray diffraction pattern of the synthesized NCPO com-
pound is presented in Fig. 2(a). The presence of sharp, well-
defined peaks confirms the material’s high crystallinity.
By applying Rietveld refinement, the diffraction peaks were
successfully indexed to a triclinic crystal system with space
group P1, indicating the successful formation of a single-phase
NCPO structure. Table 1 summarizes the crystallographic para-
meters determined through structural refinement. The
obtained goodness-of-fit value (x> ~ 1.01) reflects a strong
correlation between the experimental data and the calculated
diffraction pattern, confirming the reliability of the refine-
ment process. Moreover, the extracted lattice parameters show
excellent consistency with values previously reported in the
literature.>

According to JCPDS file No. 23-0669,>° the unit cell structure
of NCPO, shown in Fig. 2(b), features infinite (POs);;  chains

1660 | Mater. Adv., 2026, 7,1658-1677
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Fig. 2 (a) X-ray diffraction (XRD) pattern of NCPO recorded at room
temperature. (b) The unit cell of NCPO.

formed by phosphate tetrahedra with two short and two long
P-O bonds and an average P-O-P angle of ~134.8°. These
chains are folded to accommodate Ca** ions, which adopt

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Refined structural parameters of the NCPO compound at room
temperature

Sample NaCaP;0,q
Structure Triclinic
Space group P1

Dgc (nm) 56.886
Unit cell parameter

a(A) 6.735 (6)
b (A) 6.950 (6)
c (&) 7.642 (4)
V(A% 3160.820
o« (%) 83.502

B ) 81.260

7 () 82.804
Agreement factors

R, (%) 29.40
Rexp (%) 37.77
Ryp (%) 38

Ry (%) 1.665
Rirage (%) 2.187
2o 1.01

L

distorted dodecahedral coordination with eight oxygen atoms,
forming edge-sharing chains perpendicular to the phosphate
backbone. Na" ions occupy highly distorted octahedral (NaOg)
sites, each coordinated to six terminal oxygen atoms from
adjacent phosphate chains. NaOg octahedra link parallel Ca-
O chains, reinforcing the rigidity and stability of the triclinic
NCPO framework.

The mean crystallite size was estimated using Scherrer’s
formula,®” based on the full width at half maximum (FWHM) of
the (201) diffraction peak located at 26 = 30.97° (refer to Fig. 2(a)):

Ki

D = B cos(0)

&)
In this equation, 4 denotes the wavelength of the incident
X-ray, f corresponds to the full width at half maximum
(FWHM) of a prominent diffraction peak (expressed in radians),
0 is the associated Bragg angle, and k is the Scherrer constant,
generally taken as 0.9.7 Based on this calculation, the

1pm EHT = 7.00 kv SE1 500K X 1.88¢-003 Pa
WD = 9.0mm -1.0°

Fig. 3 (a) SEM micrographs for NCPO, (b) particle size distribution.
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crystallite size of NCPO is estimated to be around 56.886 nm,
confirming that the synthesized phosphate material exhibits
nanoscale dimensions.

The SEM micrographs were employed to analyze the surface
morphology of the synthesized phosphors. Fig. 3(a) displays
the SEM image of the NCPO sample, revealing agglomerated
particles with mixed sizes. The observed grain size lies in the
micrometer range rather than the nanometer scale, which can
be attributed to the aggregation of smaller particles during the
annealing process. This agglomeration occurs because smaller
particles, possessing higher surface energy, tend to merge into
larger ones to minimize their overall surface free energy. The
resulting particle sizes are thus on the order of a few micro-
meters. The morphology and particle dimensions of the
obtained phosphors suggest their potential suitability for white
LED (WLED) applications.®® Fig. 3(b) presents the Lorentz-fitted
grain size distribution histogram. Image analysis indicates an
average grain size of approximately 1 um. The grain size
determined from SEM images is larger than that estimated
from XRD analysis, a difference that can be explained by the
fact that each grain observed in the SEM micrograph is
composed of several crystallite domains.*®

FTIR spectroscopy plays a crucial role in the structural
characterization of the NCPO compound by revealing detailed
insights into its vibrational properties. The infrared spectrum
of the synthesized sample is shown in Fig. 4, and the corres-
ponding absorption bands, along with their tentative assign-
ments, are summarized in Table 2. These assignments
are based on previously reported data®****! and follow a typical
order of metaphosphate vibrational modes, arranged by
decreasing frequency. The FTIR spectrum exhibits characteris-
tic absorption bands associated with polyphosphate groups,
including asymmetric PO, stretching modes (v,) at 1288, 1262,
and 1212 cm™ ', and symmetric PO, stretching modes (v,) at
1150, 1110, and 1085 cm™*. Additionally, the bands observed
within the 702-1045 cm ' range are attributed to sym-
metric and asymmetric P-O-P stretching vibrations. The lower

B Particule size
Lorentz Fit

(b)

00 02 04 06 08 10 12 14 16 18

Particule size (um)
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Fig. 4 Experimental infrared spectrum of NCPO at room temperature.

Table 2 IR vibrational frequencies (cm™2) for NCPO compound at room
temperature

Wave number (cm ™) Assignments

1288
1262
1212
1150
1110
1085
1045
897
778
745
702
580
561
531
509
476
454
446

Vas (POy)
vs (PO,)

Vas (POP)

vs (POP)

P-O & O-P-O bend

frequency region, spanning from 446 to 580 cm ™', corresponds
to bending modes involving P-O and O-P-O linkages. These
regions show medium to strong absorption intensities, con-
firming the presence of linear (PO3);;~ chains rather than cyclic
phosphate units.

3.2 Optical characteristics

UV-Visible spectroscopy serves as a fundamental technique for
investigating the optoelectronic properties of semiconducting
materials, enabling detailed insights into their band structure
and electronic transitions. The optical behavior of the synthe-
sized sample was systematically analyzed through its absor-
bance spectra to elucidate its electronic structure. Prominent
absorption features were identified, allowing precise determi-
nation of the optical band gap as well as the Urbach energy,
which reflects the degree of structural disorder. Additionally,
critical optical constants including the extinction coefficient,

1662 | Mater. Adv, 2026, 7,1658-1677
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penetration depth, and refractive index were evaluated as
functions of photon energy. This comprehensive analysis pro-
vides crucial information for assessing the material’s poten-
tial suitability and performance in advanced optoelectronic
applications.

3.2.1 Analyses of UV-VIS and optical energy band gap (E,).
The experimental UV-vis absorption spectrum of the NCPO
compound, measured at room temperature over the wavelength
range of 200-800 nm, is shown in Fig. 5(a). The absorption
spectrum exhibits a broad band with a peak near 250 nm,
which is attributed to a charge transfer transition from 0>~ to
Ca®" ions.*” Additionally, the (PO5);~ group shows a charge
transfer from oxygen legends (O®7) to the central phosphor
atom (P°*), consistent with previous findings.**> The observed
UV absorption suggests promising optical activity, attributed to
charge-transfer-driven electronic transitions across the band-
gap. Various techniques can be employed to precisely deter-
mine the bandgap energy (Ey).

The inset of Fig. 5(a) displays the derivative of the absor-
bance curve (dA/dZ) plotted against wavelength. The optical
bandgap E, of NCPO was estimated from the curve’s minimum
using the formula E, = 1240/4 (with 4 in nm). From the
main peak at 300 nm, the bandgap is calculated to be about
4.13 eV, placing the material in the wide bandgap semiconduc-
tor range, suitable for UV photonics and high-power electronics
devices.***> However, this method does not allow for distin-
guishing between direct and indirect bandgaps. To overcome
this limitation, Tauc’s method, which is well-adapted for pow-
dered materials, was applied using the following relation:

(ahv)'™ = A(hw — Eg) 2)

In this framework, the nature of the bandgap is analyzed by
examining the relationship between photon energy (Av) and the
absorption coefficient (o) of the material. The exponent n
characterizes the type of optical transition, where n = 1/2
corresponds to allowed direct transitions and n = 2 to allowed
indirect transitions.*®

As illustrated in Fig. 5(b), the plots of (ahv)* and (ahv)?
versus photon energy (hv) reveal linear regions. By extrapolating
these linear portions to the energy axis, the optical bandgap
energies E, can be determined. The intercepts correspond to
the direct and indirect bandgaps, denoted as Eg;q and Eg,
respectively. The estimated values are 3.95 eV and 2.99 eV for
the direct transition (n = 1/2) and the indirect transition (n = 2)
respectively.

To determine whether the material exhibits a direct or
indirect bandgap, a mathematical verification is necessary
and should be systematically applied.*”

Ln(ahv) = In(og) + nln(hv — Eg) (3)

To confirm the direct nature of the bandgap in our NCPO
sample, we utilized the previously determined bandgap energy
(Eg = 4.13 eV). We analyzed the relationship between In(xhv)
and In(hv — Ey), as presented in Fig. 5(c). The resulting linear
plot yields a slope of approximately 0.4, consistent with a direct

© 2026 The Author(s). Published by the Royal Society of Chemistry
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allowed transition. Direct bandgaps are preferred in optoelec-
tronic applications due to their higher luminous efficiency, as
they enable radiative recombination without phonon involve-
ment, leading to enhanced light emission.*®*® Consequently,
the NCPO sample shows significant potential for light-emitting

© 2026 The Author(s). Published by the Royal Society of Chemistry
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diode (LED) fabrication. Metaphosphate materials, such as
NCPO, typically exhibit wide bandgaps and absorb light in
the ultraviolet region, as reported by Abudoureheman et al.,*®
making them promising candidates for UV-emitting optoelec-
tronic devices.

Considering that the analyzed NCPO compound exhibits
semiconducting behavior with a direct bandgap, we attempted
to theoretically estimate the positions of the conduction band
minimum (Ecg) and valence band maximum (Eyg) using the
following empirical formula:*>*

Ecp =1 — Ee — 0.5 x Eg (4)

EVB = ECB + Eg (5)

In this equation, y represents the absolute electronegativity
of the compound, while E. is a fundamental constant corres-
ponding to the free electron energy on the hydrogen scale,
typically taken as 4.5 eV. The electronegativity of the sample can
be estimated using the following expression:>>

1= [X(AQ)X(B/;)X(OV)}W (6)

In this context, o, ff, and y denote the multiplicities of atoms
Na, Ca, and oxygen positions, respectively. Based on our
calculations, the absolute electronegativity of the sample was
determined to be 5.7 eV. Using this value along with the
calculated Evg, Ecg, and E,, we constructed a schematic repre-
sentation of the band structure, as illustrated in Fig. 6. These
properties further support NCPO’s potential for UV-emitting
LED applications, as the wide bandgap (E, = 3.95 eV) enables
emission in the ultraviolet region, critical for applications such
as sterilization, water purification, and UV sensing. The direct
allowed transition enhances radiative recombination efficiency,
ensuring high quantum yield, while the calculated Ecg and Eyg
align favorably with common electrode materials, facilitating
efficient charge carrier injection in LED device structures.

3.2.2 Urbach energy and threshold wavelength. To quan-
tify structural disorder, defect density, and impurity levels in
materials, The Urbach energy E,, a crucial optical parameter,

Energy —
s
I
(93]
o
9}
(¢
<
Band Gap

Fig. 6 Descriptive scheme of the band structure.
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Fig. 7 (a) Variation of Ln(a) as a function of incident photon energy. (b) (A/4)? vs. 1// plots for the NaCaPs0Og compound.

must be resolute.”* It provides insight into the exponential
absorption edge and the formation of localized states within
the bandgap. Theoretical estimation of E, is commonly per-
formed using the Urbach-Martienssen model, defined by the

fOHOWing relation:
o = 0 CX[) hV
0 E

In this equation, o, is a constant and hv is the photon
energy. As shown in Fig. 7(a), the Urbach energy (E,) for NCPO
is estimated to be approximately 0.58 eV, corresponding to
14.68%. This relatively low E, value suggests high crystallinity
and minimal structural disorder, further supporting the mate-
rial’s suitability for efficient UV-emitting LEDs, as low defect
densities enhance carrier mobility and radiative recombination
efficiency.

Extending Urbach’s rule, Skettrup proposed the steepness
factor () as an additional optical parameter, which can be used
to further evaluate the Urbach energy through the following
empirical relation:*’

)

(8

where kg is the Boltzmann constant, T is the absolute tempera-
ture (typically taken as 300 K). In addition, the steepness
parameter (s) describes how sharply the absorption edge broad-
ens, reflecting the influence of electron-phonon interactions
within the bandgap. Furthermore, ¢ is directly linked to the
electron-phonon coupling strength (E._pp,), and this correlation
can be expressed using the following equation:*”>*
Eeopn =3 ©)

The calculated values for the steepness parameter and
the electron-phonon interaction strength are approximately
0.0446 eV™' and 14.94 eV, respectively. Electron-phonon

interaction refers to the coupling between charge carriers and
lattice vibrations (phonons) in solids, playing a crucial role in
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governing fundamental properties such as electrical resistivity,
superconductivity, and thermal conductivity.*”

In the context of optoelectronic devices, the maximum
wavelength of incident radiation denoted as A or threshold
wavelength is a key parameter for assessing a material’s suit-
ability for such applications. It represents the shortest wave-
length capable of initiating optoelectronic processes, such as
absorption or emission, within the material. The 4 value in our
study was estimated using the following relation:>®

67-<)- )
A A Ar

In this equation, o represents the absorption coefficient, 4 is
the wavelength of the incident radiation, and C is a constant.
From the fitted curves, the A, value for our sample was
determined to be 325 nm, as shown in Fig. 7(b).

3.2.3 Penetration depth, extinction coefficient and refractive
index. The skin depth (9) is a key parameter that indicates the
extent to which incident radiation or light can penetrate into the
material. Using the absorption coefficient «(1), 6 was calculated
according to the relation provided in the referenced study:*®

1
=

(10)

(11)

The 6(7) values for the NCPO sample exhibit distinct regions
that correspond to variations in the absorption coefficient, as
shown in Fig. 8(a). In the 200-300 nm range, the material
effectively blocks UV-vis radiation, indicating its potential as a
UV filter.”” As the wavelength shifts toward the visible region,
the J values increase, with a noticeable sharp peak observed at
365 nm. Within the visible spectrum, the J values then decrease
progressively, accompanied by a prominent absorption band.

The extinction coefficient (k) can be calculated from the
absorption coefficient «(1) using the relation:*’

oA
k= In (12)
which describes the material’s ability to absorb and scatter
light, indicating its effectiveness in attenuating incident

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 (a) Variation of the penetration depth ¢ against 4 for the studied

NCPO material. (b) Variation of the extinction coefficient and refractive
index as a function of wavelength (2).

radiation. Similarly, the refractive index (n) is a fundamental
optical parameter influenced by electronic polarization and
internal fields, and is critical for designing optical devices such
as filters, switches, and modulators.”® It can be determined
using the following expression:

4R 2
(1-R)?

(13)

Fig. 8(b) shows the variation of the extinction coefficient (k)
and refractive index (n) as functions of the incident wavelength.
Both n and k decrease with increasing wavelength, exhibiting
high values in the UV region and declining to relatively low
levels in the visible range. This behavior reflects the excellent
optical quality and compactness of the synthesized samples.
The gradual decrease in optical opacity from the UV to the
visible region confirms strong UV absorption. Based on these
observations, the material shows great potential for use in UV
sensing applications.’®*° Consequently, it can be considered a

© 2026 The Author(s). Published by the Royal Society of Chemistry
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promising candidate for integration into optoelectronic
devices.

3.3 Frequency-dependent electrical properties assessed by
impedance spectroscopy

Impedance spectroscopy is a versatile and powerful technique
widely employed to investigate the electrical and electrochemi-
cal properties of materials, offering valuable information about
charge transport mechanisms and electronic structure in elec-
trochemical and semiconducting systems. By analyzing a mate-
rial’s response to an applied alternating electric field over a
broad frequency range, this method allows one to assess the
processes governing energy storage and dissipation, which are
directly linked to the intrinsic properties of the material.®*¢*
The electrical response in the high-frequency domain is pri-
marily attributed to the bulk (grain) contribution, where charge
carriers move through the crystalline lattice with relatively low
resistance. Conversely, the low-frequency region is mainly
governed by grain boundary effects, characterized by higher
resistive behavior arising from structural disorder, defect accu-
mulation, and the presence of potential barriers at grain
interfaces. These grain boundaries function as charge carrier
trapping sites, resulting in extended relaxation times compared
to those associated with the grain interiors. The observed
relaxation phenomena are mainly driven by thermally activated
hopping of charge carriers between localized states and across
interfacial barriers, and are strongly affected by microstructural
heterogeneity. Comparable grain and grain boundary contribu-
tions, as well as similar relaxation behavior, have been reported
for phosphate- and oxide-based ceramic materials, confirming
the effectiveness of impedance spectroscopy in distinguishing
bulk and interfacial transport processes.®*®® The complex
impedance is expressed as the sum of a real part, represen-
ting the resistive component, and an imaginary part, corres-
ponding to the capacitive component, according to the relation
z* =7 +j7".

Fig. 9(a) illustrates how the real part of the complex impe-
dance (Z’) varies with angular frequency across a temperature
range of 393 K to 633 K for the studied NCPO system. The
curves exhibit two characteristic zones. At low frequencies,
Z' shows a nearly flat response, indicating DC conduction
dominated by long-range charge transport, where carriers move
between neighboring sites through successful hopping.®°”°®
At higher frequencies, a significant dispersion in Z’ is observed,
which is attributed to AC conduction caused by localized
motion of carriers, reflecting limited or incomplete hopping
processes. This dual behavior highlights two distinct con-
duction mechanisms: DC conduction is evident at lower fre-
quencies due to extended charge migration, while at higher
frequencies, the influence of localized relaxation and short-
range motion becomes dominant, contributing to AC conduc-
tivity. With rising temperature, the transition point where Z’
begins to depend on frequency shifts to higher frequencies
(from 10 rad s~ " at 393 K to 312 rad s~ " at 633 K), suggesting
that the system undergoes a thermally driven relaxation
process.
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Fig. 9 (a) Variation of the real part of the complex impedance (Z') as a

function of angular frequency at different temperatures ranging from
393 K to 633 K. (b) Variation of the imaginary part of the complex
impedance (Z”) as a function of angular frequency at different tempera-
tures ranging from 393 K to 633 K.

At high frequencies, Z' levels off and reaches a minimum
value regardless of temperature, implying that thermal energy
helps reduce the number of barriers impeding charge flow.
In the low-frequency domain, a clear decrease in Z’' with
increasing temperature is noted, which reflects a negative
temperature coefficient of resistance (NTCR). This trend is a
typical indicator of semiconducting behavior and confirms that
the material exhibits NTC thermistor characteristics.*

The imaginary component of the impedance spectrum
provides valuable insight into the dielectric relaxation behavior
of the NCPO compound, which is influenced by the movement
of charge carriers or the reorientation of dipolar entities under
an applied electric field. As shown in Fig. 9(b), the —Z" values
are plotted against angular frequency across various tem-
peratures (393-633 K), revealing the evolution of relaxation
dynamics with thermal excitation. Each spectrum exhibits a
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prominent peak, approximately corresponding to the transition
region between DC and AC conduction, as previously identified
in the real part of the impedance (see Fig. 9(a)). This peak,
referred to as the relaxation frequency, signifies the shift from
long-range charge transport to localized carrier dynamics.
The noticeable broadening of these peaks indicates a depar-
ture from the ideal Debye relaxation model,*” reflecting the
complex nature of polarization and conduction processes in the
material. Below the relaxation peak, charge transport is pri-
marily governed by long-range carrier motion, whereas above
this frequency, the conduction behavior is mainly influenced by
localized relaxation phenomena.

To get additional information on charge carrier dynamics
can be obtained from the analysis of Nyquist plots, which are
especially effective in differentiating the electrical responses
originating from the bulk (grain) and interfacial (grain boundary)
regions of the material. In this work, Fig. 10(a) and (b) displays
the Nyquist plots (Z” vs. Z') for the NCPO compound. The
impedance spectra exhibit clear semi-circular arcs, primarily
attributed to the bulk (grain) contribution, with negligible
evidence of grain boundary effects.”® These arcs are notably
depressed, with centers lying below the real axis (Z'), suggesting
a non-ideal relaxation process that deviates from classical
Debye behavior and is more accurately described by the Cole-
Cole model. As the temperature increases, the diameter of the
arcs decreases, reflecting a decline in bulk resistance, which is
characteristic of thermally activated conduction.

To model the impedance data accurately, fitting was performed
using ZView software,”" which identified the most appropriate
equivalent circuit consisting of a parallel combination of a
resistor (R), a constant phase element (CPE), and a capacitor
(C), as shown in the Fig. 10(c). The corresponding fitting
parameters are summarized in Table 3.

The results summarized in Table 3 reveal a noticeable
reduction in resistivity as the temperature rises, indicating
the sample exhibits semiconducting behavior. To extract key
parameters such as activation energy, sensitivity constant, and
stability factor, Fig. 10(d) illustrates the variation of In(R x T) as
a function of the reciprocal temperature (1000/7). The resulting
plot exhibits a clear linear trend, indicating that resistivity
decreases steadily with increasing temperature an expected
behavior for materials exhibiting excellent negative tempera-
ture coefficient resistance (NTCR) characteristics. Within the
investigated temperature range, the data align well with the

Arrhenius equation:
R —E,
=—ex
TP \iep x T

In this expression, “A” denotes the pre-exponential factor,
“kg” is Boltzmann’s constant, and “E,” represents the activation
energy.

Fig. 10(d) reveals a clear linear trend in the temperature-
dependent electrical behavior, supported by a strong correla-
tion coefficient (R*> = 0.99587), which confirms the presence
of thermally activated conduction. The slope of the linear fit

(14)
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(a) and (b) Nyquist plots (Z” vs. Z') of the NCPO compound recorded at various temperatures; (c) equivalent circuit model used for impedance

fitting; (d) Arrhenius plot of In(R x T) as a function of inverse temperature (1000/T7), illustrating thermally activated conduction behavior.

Table 3 Electrical values of the equivalent circuit parameters calculated
for NCPO compound at different temperatures

T (K) R (MQ) C (107" F) Q (107 F) o

633 42.66 3.341 1.644 0.61925
613 50.379 3.342 1.593 0.61851
593 63.594 3.337 1.331 0.63248
573 80.868 3.324 0.8607 0.67241
553 109.8 3.354 1.194 0.62405
533 145 3.287 0.6215 0.71270
513 204.2 3.295 0.6148 0.70946
493 276.8 3.280 0.4424 0.74262
473 378.8 3.304 0.3108 0.75810
453 535.9 3.289 0.3576 0.75905
433 721.8 3.332 0.3309 0.74483
413 1085 3.466 0.8024 0.50460
393 1364 3.356 0.1786 0.78068

allowed for the determination of the activation energy, calcu-
lated to be 0.31 eV. Using this value, the thermal sensitivity

constant f§ defined by the relation f = (f—;) ,! was found to
be approximately 3597.4 K. This value is notably higher than
that reported for similar thermistor materials, such as
Cuo,NipsZnMn, ;0, (f = 3356 K),”* indicating the superior
thermal response of the NCPO system. In addition, the materi-
al’s electrical stability over temperature was assessed by calcu-
lating the stability factor (SF), which is the logarithmic ratio
between the maximum and minimum resistivity recorded
within the measured temperature range.”® The resulting SF ~
1.5 suggests minimal resistivity fluctuations, which is in the

© 2026 The Author(s). Published by the Royal Society of Chemistry

same order of the value reported for ZnO nanoceramics (SF ~
1.796),”* indicating stable electrical behavior.

Together, these results affirm that NCPO exhibits both
high thermal sensitivity and electrical stability, making it a
strong candidate for use in thermistor and thermal sensing
technologies.

3.4 Study of modulus formalism and relaxation behavior

The complex electric modulus formalism is a powerful tool
used to examine charge transport mechanisms and relaxation
dynamics in ceramic materials, particularly those involving
charge carrier accumulation and mobility.”* These phenomena
are fundamental contributors to both dielectric polarization
and electrical conductivity, which are critical factors in evaluat-
ing the dielectric performance and multifunctional behavior of
the NCPO ceramic system. The complex electric modulus M*(w)
is mathematically defined in terms of the complex impedance
Z*(w) as follows:”®

M*() = joCy(Z' +jZ") = joCoZ' — wCoZ"

(15)
Based on this relation, the real and imaginary components

of the modulus can be expressed as follows:

M'(0) = ©CoZ" (16)

(17)

where C, = gA/d is the vacuum capacitance of the sample
geometry (with ¢, the vacuum permittivity, A the electrode area,
and d the sample thickness).

M'(w) = wCyZ'
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Fig. 11 displays the M" versus M’ plots of the complex electric
modulus for the studied compound across a range of tempera-
tures. These diagrams consistently exhibit single, well-shaped
semicircular arcs, which are indicative of a uniform, single-
phase system.”* Utilizing the electric modulus formalism
proves advantageous, as it minimizes the effects of electrode
polarization and enhances the resolution between bulk (grain)
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and interfacial (grain boundary) contributions. The consistent
presence of one semicircular arc across all measured tempera-
tures suggests that electrical conduction in the material is
primarily driven by grain (bulk) processes. In contrast, a multi-
phase material would typically exhibit multiple arcs or features,
each associated with distinct conductive regions. Thus, this
analysis not only provides insight into the relaxation dynamics
but also reinforces the conclusion that the NCPO sample
exhibits single-phase behavior and conduction dominated by
the bulk region.

Fig. 12(a) illustrates the evolution of the imaginary part of
the complex electric modulus (M") with angular frequency at
various temperatures (393-633 K) for the NCPO compound.
At lower frequencies, the M” values remain nearly negligible,
indicating the absence of significant electrode polarization
effects in this spectral region.””””® As the frequency increases,
M’ exhibits a notable rise, reaching a distinct peak that signals
the onset of a relaxation process. This peak progressively shifts
to higher frequencies as the temperature increases, confirming
the thermally activated character of the dynamic relaxation
behavior. The observed broad and asymmetric nature of the
M" peaks indicate a deviation from ideal Debye relaxation,
pointing toward a distribution of relaxation times within the
system. Analyzing the curve in two segments, it is evident that
frequencies below the characteristic relaxation frequency (wp)
correspond to long-range charge displacement within the bulk,
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(a) Variation of the imaginary part of the electric modulus (M”) as a function of angular frequency at temperatures ranging from 393 K to 633 K;

(b) evolution of the f parameter with temperature; (c) temperature dependence of the characteristic angular frequency (wp); (d) Arrhenius plot of In(wp x

T) versus inverse temperature (1000/T7).

1668 | Mater. Adv., 2026, 7,1658-1677

© 2026 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ma01363a

Open Access Article. Published on 13 January 2026. Downloaded on 2/20/2026 4:29:21 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

while frequencies above w,, reflect localized carrier dynamics.
This crossover underscores the coexistence of extended and
confined charge transport processes within the material.

To better capture the asymmetric nature of the modulus
spectra, the Bergman model an extension of the modified
Kohlrausch-Williams-Watts (KWW) function is commonly
used and is expressed as follows:””

M// )
max (1 8)

(-0 () )+ (2) ]

In this formulation, M, represents the maximum of the
imaginary part of the electric modulus, occurring at the char-
acteristic angular frequency wp,. The parameter f, which lies
between 0 and 1, quantifies the extent of relaxation dispersion.
A “p” value of 1 signifies ideal Debye-type relaxation, typically
associated with uniform dipole-dipole interactions. Conver-
sely, values of f less than 1 reveal deviations from Debye
behavior, indicating the involvement of more distributed or
complex relaxation mechanisms.”* As illustrated in Fig. 12(b),
the f parameter exhibits a temperature-dependent trend. Its
values remain consistently below one, indicating a deviation
from ideal Debye-type relaxation. This behavior implies a wide
distribution of relaxation times, likely arising from irregular
dipole-dipole interactions in the NCPO system.

Fig. 12(c) illustrates how the relaxation angular frequency
(wp) varies with temperature, showing an upward trend as
temperature rises. This increase indicates that the relaxation
process shifts to higher frequencies, consistent with thermally
activated dynamics. To evaluate the activation energy governing
this relaxation, Fig. 12(d) plots In(w, x T) against the inverse
temperature (1000/7). The linear behavior confirms that the
relaxation process follows an Arrhenius-type dependence. From
the slope of the fitted curve, the activation energy was calcu-
lated to be 0.33 eV. This value closely matches that obtained
from electrical resistivity analysis, indicating that both the
relaxation dynamics and the charge transport mechanism are
governed by similar thermally activated processes.'**®°

M”(w) _

3.5 Modeling the conduction mechanism in NCPO

This section focuses on the detailed investigation of charge
transport mechanisms in the NCPO compound by examining
the variation of electrical conductivity as a function of both
angular frequency and temperature (393-633 K). Fig. 13 illus-
trates how conductivity evolves with frequency, highlighting
complex conduction behavior. In the low-frequency range
(region I), particularly below 100 rad s ', the conductivity
spectrum o(w) exhibits a plateau corresponding to the DC
conductivity (oq4.), reflecting frequency-independent behavior.
As the frequency increases, the system enters region II, char-
acterized by a dispersive increase in conductivity. The para-
meter oy (the hopping frequency) precisely characterizes
the onset of the AC conductivity regime (see Table 4). This
transition is well-described by Jonscher’s empirical universal

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 13 Frequency-dependent electrical conductivity spectra of the
NCPO compound recorded over the temperature range of 393 K to 633 K.

Table 4 Jonscher law parameters for NaCaPzOg at different temperatures

T (K) Oge X 107° s A x 10712 o

393 0.123 0.83503 0.83235 396.486
413 0.176 0.83377 0.86384 586.488
433 0.238 0.83073 0.91021 812.860
453 0.331 0.82955 0.93414 1183.724
473 0.473 0.82070 1.05725 1697.398
493 0.610 0.80747 1.26256 2108.914
513 0.827 0.80431 1.32857 2978.074
533 1.18 0.78828 1.67268 4106.998
553 1.52 0.77388 2.07059 5047.692
573 2.06 0.76367 2.44065 6791.591
593 2.66 0.74176 3.33203 8176.163
613 3.35 0.73796 3.63234 10414.561
633 4.10 0.72678 4.33603 12 426.529

power law, which characterizes the frequency dependence of
AC conductivity as follows:”®

o(0,T) = 04e(T) + A (19)

In this expression, the parameter A serves as a scaling factor
that determines the magnitude of the frequency-dependent
component of the conductivity. It reflects the degree of charge
carrier polarization in response to an alternating field.”®
The exponent s, often referred to as the frequency exponent,
characterizes the variation of conductivity with frequency. The
first term in the equation corresponds to the DC conductivity,
which remains constant regardless of frequency, while the
second term accounts for the AC conductivity, which increases
with frequency due to dynamic charge transport mechanisms.
The “s” parameter is especially informative, as it provides
insight into the nature and strength of interactions between
mobile charge carriers and the crystal lattice, offering a deeper
understanding of the material’s conduction behavior.®® The
dc conductivity (o4.), pre-exponential factor (A), and frequency
exponent (s) were evaluated using eqn (19), and the resulting
values are listed in Table 4.
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Several models have been proposed to describe the frequency
exponent behavior, including the correlated barrier hopping
(CBH) model introduced by Elliott.* In addition, tunneling-
based mechanisms such as quantum mechanical tunneling
(QMT),** overlapping large-polaron tunneling (OLPT), and non-
overlapping small-polaron tunneling (NSPT) have been consid-
ered, all of which involve charge transport between localized
states near the Fermi level.**

Fig. 14(a) illustrates the temperature dependence of the
frequency exponent s and the parameter In(A4). Both quantities
decrease systematically with increasing temperature, while the
exponent s remains below unity, indicating non-Debye relaxa-
tion behavior.* This behavior is in good agreement with the
correlated barrier hopping (CBH) model,®" which suggests that
charge transport in the NCPO system is primarily governed by
thermally activated hopping of localized charge carriers. Recent
studies on ceramics show that ac conduction is dominated by
thermally activated hopping of localized charge carriers, well
described by the correlated barrier hopping (CBH) model. This
approach accounts for charge transport between defect-related
states over potential barriers and explains the temperature-
dependent, non-Debye relaxation behavior observed in these
materials.®*%’

To further probe the conduction mechanism, we analyzed
the variation of DC electrical conductivity (g4.) with temperature
across a broad range (393-633 K). This investigation helps
elucidate both the nature of electrical conduction and the
dominant hopping and scattering processes that influence the
transport response of NCPO. Fig. 13(b) presents the evolution of
g4 With temperature, revealing an increasing trend indicative of
a thermally activated process. This increase is attributed to the
activation of a small polaron hopping (SPH) mechanism, as
described by Mott and Davis.®® In this framework, the tempera-
ture dependence of DC conductivity is expressed by:

Ey

oo %%
0ae(T) = e () (20)
Here, E, denotes the activation energy required for a charge

carrier to hop between localized states, g, is the pre-exponential
factor, and kg is Boltzmann’s constant.
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(b) Scaled conductivity spectra at various temperatures for the NCPO
compound.

The plot of In(oq. x T) versus 1/kgT, shown in Fig. 15(a),
yields a linear fit with a correlation coefficient R* = 0.99333. This
confirms that the SPH mechanism is the dominant conduction
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process. From the slope of the Arrhenius plot, the activation
energy was calculated to be 0.36 eV. The activation energy
corresponds to the minimum energy required for charge carriers
to overcome potential barriers or hop between localized states
during electrical conduction. It reflects the degree of carrier
localization and the ease of charge transport within the material,
where a lower activation energy indicates enhanced mobility and
more efficient conduction. Consequently, the activation energy
provides important insight into the dominant charge transport
mechanism governing the electrical behavior of the system.

In addition, various scaling models have been proposed in
the literature to further analyze frequency-dependent conduc-
tivity behavior.®~°' Among these, the Ghosh model has gained
considerable attention due to its effectiveness in describing
hopping conduction mechanisms. It is expressed as:”*

a(w) )
——=f— 21
Odc f(wh) ( )
where the hopping frequency wy, is defined as:
Ode\ /s
o= (%) o

Fig. 15(b) displays the temperature-dependent evolution of

.. a(w .
the scaled conductivity, represented as Q plotted against the
Odc

reduced frequency wﬂ The fact that all curves collapse onto a
h

single master curve across the entire temperature range
strongly suggests that the underlying charge transport mecha-
nism does not change with temperature.’ This superposition
behavior supports the applicability of the time-temperature
superposition principle (TTSP) and indicates that the same
fundamental conduction dynamics are maintained throughout
the measured conditions.”

To establish a correlation between the electrical behavior
and structural characteristics and to identify the charge carriers
responsible for conduction within the framework of the CBH
(correlated barrier hopping) model. According to this model,
the frequency-dependent AC conductivity can be expressed
using the following equation:**

n

5 4n2NNpp/wa"

Tac(w) = (23)

In this expression, the polaron number 7 (typically 1 or 2)
reflects the number of polarons participating in the hopping
mechanism, while NN, is proportional to the square of the
density of available states (NN, = N;° for the bipolaron case;
(NN, = Ni* exp(—Uei/2ksT) (for the single polaron case). The
term o represents the angular frequency, and ¢’ corresponds to
the real part of the dielectric permittivity.

Additionally, Rw represents the hopping distance. These
parameters can be determined using the following expressions:>*

&2

Rw:
g(W+k-T-In(w-1))

(24)

In this relation, e = charge of electron, ¢ = dielectric
constant, k = Boltzmann constant, 7 = temperature, W denotes

© 2026 The Author(s). Published by the Royal Society of Chemistry
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the binding energy required to move a charge carrier from one
site to another and 7, = characteristic relaxation time.

Fig. 16 presents the variation of In(o,.) as a function of 1000/
T. A strong agreement is observed between the experimen-
tal data points (represented as scatter) and the theoretical
predictions (depicted by the fitted line). The various parameters
employed in the fitting procedure are compiled in Table 5.
Furthermore, the analysis indicates that the frequency-
dependent increase in the density of localized states N in NCPO
suggests reduced structural disorder, enabling more efficient
ionic hopping. Concurrently, the decline in effective barrier
energy U with frequency supports a CBH-type conduction
mechanism. These results highlight the key role of localized
states in governing AC conductivity, reinforcing the potential of
NCPO for solid-state ionic applications.®>°°

Fig. 17(a) illustrates the temperature dependence of the
hopping distance Rw. According to the correlated barrier hopping
(CBH) model, this distance tends to increase with temperature.
As thermal energy rises, charge carriers (polarons) gain sufficient
energy to hop over longer distances, facilitating improved inter-
chain interactions and enhancing charge transport.”

On the other hand, Fig. 17(b) presents the evolution of the
hopping distance Rw as a function of different frequencies. It is
evident that Rw exhibits a stronger temperature dependence in
the high-frequency range, whereas this sensitivity progressively
diminishes at lower frequencies. This behavior suggests that
thermal activation has a more pronounced effect on short-
range hopping processes dominating at higher frequencies.

Table 5 Parameters obtained from the fitting of experimental data of total
Ac conductivity with CBH model for NCPO compound

Frequency (Hz) N (10 ev ' em™?) Uest (€V)
100 2.538 0.1817
1000 2.563 0.1425
10000 5.456 0.1225
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Fig. 18 presents a schematic representation of the CBH
conduction model in NCPO. To validate this mechanism, the
hopping distance R was compared to the Na-Na interatomic
spacing. The close agreement between the calculated Ro values
(~4.18 A) and the average Na-Na distance (~4.16 A)* strongly
suggests that charge transport is primarily facilitated by loca-
lized Na’ ion migration through a small polaron hopping
process, consistent with the CBH model.

4. Conclusion

This comprehensive study presents a detailed investigation of
the structural, optoelectronic, and electrical properties of
NaCaP;0, (NCPO) metaphosphate synthesized via a straight-
forward and scalable solid-state method. The successful

1672 | Mater. Adv., 2026, 7, 1658-1677

structural refinement confirmed the pure triclinic phase crys-
tallizing in the P1 space group, providing a robust platform for
multifunctional properties. The identified wide direct band gap
(~3.95 eV) positions NCPO as a compelling candidate for
ultraviolet (UV) optoelectronic devices, including UV photo-
detectors and transparent electronic components, where strong
UV absorption and high optical transparency are essential.

Our extensive impedance spectroscopy analysis revealed
NCPO’s intrinsic semiconducting behavior marked by a nega-
tive temperature coefficient of resistance (NTCR), a key attri-
bute for thermistor and sensor applications demanding reliable
temperature sensitivity and stability.

The thermally activated conduction with an activation
energy =0.36 eV and compliance with Jonscher’s power law
confirm that charge transport is governed by localized Na*
ion hopping within the correlated barrier hopping (CBH)
framework, a key factor in tailoring the material’s electronic
performance.

Based on the activation energy obtained, the thermal sensi-
tivity constant f was estimated to be around 3597.4 K. This
relatively high value, compared with those reported for com-
parable thermistor materials, reflects the enhanced thermal
response of the NCPO system. Moreover, the stability factor SF,
close to 1.5, indicates low resistivity fluctuations when com-
pared to typical literature values (SF ~ 1.796), confirming the
good electrical stability of the material.

Furthermore, modulus spectroscopy unveiled complex di-
electric relaxation behavior with both short- and long-range ionic
mobility, captured effectively by the Kohlrausch-Williams-Watts
(KWW) function. The close agreement of activation energies
obtained from modulus (0.33 eV) and conductivity analyses
underscores the interconnected nature of dielectric and
electrical processes in NCPO, reflecting a unified thermally
activated mechanism.

Collectively, these findings underscore the material’s
exceptional multifunctionality combining structural stability,
favorable optical absorption, and robust electrical conduction
making NaCaP;O, metaphosphate not only a scientifically

© 2026 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ma01363a

Open Access Article. Published on 13 January 2026. Downloaded on 2/20/2026 4:29:21 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

intriguing system but also a highly promising candidate for
next-generation optoelectronic devices, temperature sensors,
and energy storage technologies. Our study significantly expands
the understanding of phosphate-based metaphosphates and lays
a critical foundation for future exploration and optimization of
these materials in advanced electronics and photonics.
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