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Ashok Kumar (2 *?

The rising demand for clean and green energy sources has sparked global interest in sustainable
hydrogen production technologies. To address this problem, photocatalytic water splitting has emerged
as a promising solution for the sustainable production of green hydrogen and oxygen. We investigate
the hydrogen adsorption Gibbs free energy for hydrogen evaluation reaction (HER) and rate-limiting
Gibbs free energy for oxygen evolution reaction (OER) to analyse the catalytic activity of the transition
metal (TM) intercalated PtXY/C-phosphorene (X # Y; X, Y = S, Se, Te) van der Waals heterostructures
(vdWHs). Our workflow involves generating a large dataset, followed by performing high-throughput
first-principles density functional theory (DFT) calculations on a small fraction of the dataset to obtain
the training dataset for a machine learning (ML) framework. Incorporating the ML with the DFT
workflow, we obtained 13 potential catalysts for HER and 6 potential catalysts for OER. The interlayer
distance of the heterostructures and the bond length between the Pt and X atom emerged as the most
influential features for HER, whereas the choice of adsorption site is one of the major OER descriptors.
Overall, ML approach integrated with high-throughput first principles calculations is promising for the
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1. Introduction

With the surge in population growth and rising consequences
of energy consumption and environmental degradation, the
pursuit of green energy sources has emerged as a key priority
for research.”” Hydrogen’s remarkable properties, such as its
high energy density, lack of emissions during combustion, and
versatility across diverse applications, make it a highly promis-
ing and ideal green fuel. Over the years, green hydrogen has
been used in multiple applications such as transportation,
power generation and energy storage.®* Despite its promising
potential, one of the significant hurdles to utilising hydrogen as
a fuel is its high production cost.

Photocatalytic water splitting is a promising and one of the
leading methods for hydrogen production, harnessing two of
the most abundant and renewable resources, water and sunlight.
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prediction of potential TM-intercalated vdWHs photocatalysts for water splitting.

The low-cost implementation, low energy consumption, and
minimal infrastructure requirement for photocatalytic water
splitting offer a financially viable and efficient resource.” There
are three significant steps in the water splitting photocatalysis
process: electron-hole pairs generation by sunlight with photon
energy exceeding the semiconductor photocatalyst band gap;
photogenerated charge carriers separation and migration to the
surface of photocatalyst; the hydrogen evolution reaction (HER) to
produce hydrogen and oxygen evolution reaction (OER) to pro-
duce oxygen by the photogenerated electrons in conduction band
and photogenerated holes in valence band of photocatalyst.®®
Unlike conventional hydrogen production methods such as elec-
trolysis, thermal water splitting, and cracking of petroleum, the
photocatalytic water splitting is environmentally friendly and less
expensive.’

Two-dimensional (2D) Janus transition metal dichalcogen-
ides (JTMDCs) exhibit a unique asymmetric structure, where a
transition metal layer is sandwiched between two chalcogen
layers, thereby breaking the structural symmetry along the
z-direction."® This asymmetry creates an intrinsic dipole,
which can significantly enhance photocatalytic performance
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compared to conventional symmetric TMDCs.""'* Also, JTMDs
show high adsorption coefficients and low exciton binding
energy, which are beneficial for photocatalysis applications.**"**
Among the many promising JTMDs, PtSSe is experimentally
synthesized and has desirable properties that make it suitable
for water splitting photocatalysis."” Janus PtSSe demonstrates an
impressive solar-to-hydrogen (STH) conversion efficiency (~ 18%),
considerably higher than other active photocatalytic materials
such as Ga,S; (6.4%), Ga,SSe bilayer (7.42%), pentagonal PdSe,
(12.59%), and even Janus WSSe (14.46%)."°

In the recent past, phosphorene allotropes have gained the
interest of researchers. Heterostructures of blue phosphorene
and black phosphorene have shown promising photocatalytic
water-splitting activity.'”*® The PtSSe/(-phosphorene hetero-
structure has been demonstrated to exhibit semiconduc-
ting properties with impressively high carrier mobility of
~10° em® V7' s7%, and a type-II mechanism favourable for
water splitting photocatalysis."® It has also been shown that the
STH conversion efficiency of these heterostructures can exceed
10%, which motivates further investigation into the character-
istics of phosphorene.

The unique features, such as effective charge separation due
to the interfacial electric field in van der Waals heterostructures
(vdWHs), make them suitable candidates for photocatalytic
water splitting.>® vdWHs also show excellent solar light absorp-
tion ability, e.g., MoSe,/HfS, heterostructures demonstrate a
strengthened optical absorption intensity in both the visible
and infrared regions compared to the individual HfS, and
MoSe, monolayers;21 Gel,/C,N vdWHs display a higher redshift
around 720 nm than either of its constituent monolayers,
enhancing its ability to capture solar energy.>?

Furthermore, Janus heterostructures possess some distinc-
tive characteristics that make them highly desirable for photo-
catalytic water splitting. The coupling of the intrinsic intralayer
polarization in the Janus layer with the interlayer built-in
polarisation field provides an additional degree of freedom
for tuning the photocatalytic properties. This intrinsic polariza-
tion plays a vital role in achieving spatial charge-carrier separa-
tion across the interface.”® Beyond charge separation, the Janus
layer polarization also enables modulation of band alignment
through variations in stacking order. For instance, in the BlueP/
MoSSe heterostructure, altering the stacking sequence trans-
forms the band alignment from type-I to type-II, a configuration
particularly favourable for photocatalytic applications.*® PtSSe-
based heterostructures have shown overall excellent results for
photocatalytic water splitting.>*

Also, the metal atom intercalation can significantly influ-
ence the photocatalytic properties of vdWHs, such as improving
the charge carrier's transport, alteration in the band gap.”’
In addition, metal atoms, when intercalated into layered struc-
tures, can create an optimised charge transfer pathway.>* When
alkali metals are intercalated into graphitic carbon nitride,
it induces the charge redistribution that accelerates the separa-
tion efficiency of photogenerated carriers, with intercalated
atoms bridging the adjacent layers and enhancing the inter-
layer charge transportation.®
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Although conventional density functional theory (DFT) cal-
culations are computationally intensive for heterostructures,
accommodating lattice mismatch often requires a supercell,
which can increase the number of atoms and computational
costs. Incorporating a machine learning (ML) workflow into the
conventional DFT method could significantly reduce the time
and resources needed. Furthermore, the size of the dataset for
high-throughput computation is often in the order of hundreds
or thousands; exploring each of them poses a huge challenge.
However, machine learning-assisted screening solves this con-
straint to a great degree.”” Machine learning is also useful in
capturing the complex patterns in the dataset, and analysing
these patterns could give us insights into how the results
depend upon various material properties.>*°

Based on the insights gathered from previous research, we
have investigated Janus PtSSe/(-phosphorene (X # Y, X, Y =
S,Se,Te) heterostructures intercalated with 3d-transition-metal
elements for photocatalytic water splitting, utilising high-
throughput DFT computation and machine learning. Interca-
lating transition metals into selected sites between the layers of
the heterostructures and adsorbing H, O, OH, and OOH on
particular adsorption sites, a dataset using high-throughput
DFT computation has been generated for machine learning-
assisted screening. Machine learning has proven to be a valuable
tool, as evident from its performance. The results are further
analysed for potential photocatalytic activity descriptors.

2. Methodology

2.1. Computational details

DFT calculations were carried out utilizing the Vienna ab initio
simulation package (VASP).*" The electron-ion interactions are
modelled using the project augmented wave (PAW) method.
We used the Perdew-Burke-Ernzerhof (PBE) exchange-correla-
tion functional within the generalised gradient approximation
(GGA).** The kinetic energy cut-off for the plane wave expan-
sion is set to 400 eV. The energy convergence criterion for the
wave function is set to 10> eV. The Brillouin zone is sampled
using a Monkhorst-Pack grid®* of 12 x 12 x 1 k-point mesh. We
utilised the van der Waals DFT-D3 method for long-range vdW
interactions.>* To prevent the interaction between neighbour-
ing layers in the perpendicular direction, a vacuum spacing of
25 A is employed. Gibbs free energy profiling is widely used as a
reliable descriptor to examine the HER and OER activity, which
are obtained using the method proposed by Norskov et al.>*3®

2.2. Machine learning

We employed scikit-learn,®” an open-source Python library for
ML to train the model, which provides a wide range of methods
for feature encoding, cross-validation and feature elimination.*®
The library provides a wide variety of ML models for both classi-
fication and regression.>**° It includes linear models, such
as linear regression and Elastic Net, as well as more complex
ensemble models, including random forest regressor and
AdaBoost regressor. Apart from this, various model selection

© 2025 The Author(s). Published by the Royal Society of Chemistry
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tools, evaluation metrics and optimisation tools make sci-kit
learn a popular tool for machine learning. We utilized “One
Hot Encoder” to encode categorical features and the Min-Max
Scaler for numerical features.”* We performed a K-fold cross-
validation, with 80% of the dataset used for training and the
remaining 20% for validation.

The schematic representation of the methodology is shown
in Fig. 1. The features used to train the ML models are
presented in Table S2 of the SI. We employed a set of supervised
ML regression algorithms, including linear models such as
ridge and LASSO, which incorporate regularisation to prevent
overfitting, as well as ensemble and tree-based models such as
random forest regressor (RFR), gradient boosting regressor
(GBR), and ada boost regressor (ABR), which were extensively
used previously.*> Also, an artificial neural network (ANN),
specifically a multi-layer perceptron model (MLP), was consid-
ered due to its ability to capture complex non-linear relations.**
Additionally, neighbor-based models such as KNeighbors
Regressor (KNR) were also utilized. The various ML models
used in the study is given in Table S3, SI.

The K-fold cross-validation method is used for model selec-
tion with 10-fold splits. The randomized search CV method is
used to optimize the hyperparameters. The quantitative evalua-
tion of the optimized model is carried out using standard
regression metrics: mean absolute error (MAE) and coefficient
of determination (R?). The factors driving the predictions of the
ML model are crucial for identifying the key indicators of
photocatalytic activity. SHaply Additive explanations (SHAP)**
is a robust framework for interpreting ML models. SHAP is
based on cooperative game theory, which enables the quanti-
tative assessment of the importance of each input feature and
provides insights into the model’s final prediction.

High-throughput i
Computation

Machine Learning Screening

Model selection ‘

- ‘ Model training and
prediction for HER/OER
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3. Results and discussion

2D Janus monolayers (PtSSe, PtSTe, PtSeTe) and {-phosphorene
monolayer possess a hexagonal and rectangular unit cell,
respectively. The calculated lattice constants of PtSSe, PtSTe
and PtSeTe are 3.65 A, 3.80 A and 3.88 A, respectively, which are
consistent with the previously reported values.*>™” After
obtaining the optimised monolayers, we constructed a 1 x
3 x 1 supercell of PtXY monolayers and a 1x2x1 supercell for
{-phosphorene to minimise the lattice mismatch. The lattice
mismatch of PtSSe/(-phosphorene, PtSTe/{-phosphorene,
PtSeTe/(-phosphorene vdWHs along x- and y-directions is
2.01% and 2.46%, 1.07% and 5.47% and 3.14% and 7.35%,
respectively.

3.1. High-throughput DFT computation to generate datasets

Due to the asymmetrical nature of the Janus PtXY layers, six
distinct heterostructures were obtained. Prior to further analy-
sis, we examined various stacking patterns for each of these six
heterostructures to determine the minimum energy stacking.
The different stacking patterns and their energies are presented
in Fig. S1-S6 (SI). In each of the six cases, AF stacking is the
most stable stacking method. The six basic heterostructures,
arranged in their stable stacking pattern, are shown in Fig. 2.
To confirm the stability of these heterostructures, we calculated
the binding energy for different AF stacking patterns as:

Ep = Epxy/e—p — Epexy — Ezp (1)

where Epixy/z—p is the total energy of the heterostructure, Epexy

and E;_p are the total energies of the individual monolayers.
The calculated value of binding energy of PtSSe/-phospho-

rene (S-side), PtSSe/(-phosphorene (Se-side), PtSTe/(-phosphorene

Fig. 1 The schematic representation of a machine learning workflow integrated with high-throughput DFT computation. The steps include data
generation, feature engineering, model optimization, model training and target prediction.

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 The energetically stable heterostructures of (a) PtSSe/{-phosphorene (S-side), (b) PtSSe/(-phosphorene (Se-side), (c) PtSTe/{-phosphorene (S-
side), (d) PtSTe/(-phosphorene (Te-side), (e), PtSeTe/(-phosphorene (Se-side), (f) PtSeTe/{-phosphorene (Te-side).

(S-side), PtSTe/(-phosphorene (Te-side), PtSeTe/(-phosphorene
(Se-side), and PtSeTe/(-phosphorene (Te-side), is —37 meV A2,
—22 meV A2 —25 meV A2, —21 meV A2, —24 meV A2 and
—22 meV A2 respectively. The negative value of the binding
energy indicates good energetic stability of these heterostructures.
The calculated binding energies are comparable with other
layered crystals, such as graphite® and MoS,.*

For the six stable primary heterostructures, we investigated
two distinct interlayer sites for the intercalation of ten 3d-
transition-metal atoms: Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu and
Zn. The relative position of the intercalating sites is illustrated
in Fig. 3. In this way, we obtained 120 intercalated configura-
tions from each with two intercalation sites with different
metals atoms. After obtaining the optimised 120 structures,
we calculated the binding energy of the intercalated transition
metal element as:

Eb = ETM/subtrate - ETM - Esubtrate (2)

where Eryysubtrate 1S the total energy of the TM intercalated
heterostructure and Ety and Egyperate are the total energies of
the transition metal atom and PtXY/(-Phosphorene heterostruc-
tures, respectively. The intercalated transition metal binding
energy is depicted in a heatmap in Fig. 4. The heatmap reveals
that the binding energy is highly dependent on the choice of
transition metal. Notably, the Zn-intercalated structures exhibit

(@) (b)

Fig. 3 (a) Schematic representation of the relative position of intercala-
tion sites for transition metals and (b) adsorption sites in Janus
PtXY/C-phosphorene (X # Y; X, Y =S, Se, Te) heterostructures.

Mater. Adv.

low binding energy, indicating their instability. Even though
Cu-intercalated structures show better energetic stability than
Zn, they indicate lower stability than the rest of the transition
metals.

After obtaining the 120 intercalated vdWHs and evaluating
their stability through binding energy, we identified two active
sites for hydrogen adsorption, with one on each layer of the
heterostructure. The active site ‘one’ is on top of the topmost
phosphorus atom of the phosphorene layer, while active site ‘two’
is located above the topmost chalcogen atom of the PtXY layer.
The position of the adsorption sites relative to the layers is
illustrated in Fig. 3(b). Each of 120 intercalated heterostructures
features two distinct adsorption sites, resulting in a total of 240
configurations for hydrogen adsorptions. For hydrogen adsorp-
tion, we prepared a set of 240 configurations from which 120
entries (50% of the dataset) were randomly selected for further
DFT calculations. We used the Panda’s library in Python for the
random selection of data entries. Random selection ensures that
the training data can represent the entire dataset. For the
adsorption calculation, all the atoms of the intercalated vdWHs
are kept fixed in their equilibrium positions, and the adsorbed
hydrogen atom is allowed to move freely in the z-direction.

Similarly, we have prepared a dataset of 240 entries each for
OER calculations involving adsorption of O, OH, and OOH. We
separately selected 120 random entries from these datasets for
DFT calculation. In the case of OER, rate-limiting Gibbs free
energy is the target property, so the rate-limiting step is
determined from the Gibbs free energy values. In this way, we
obtained the dataset using high-throughput computation for
HER and OER, with hydrogen adsorption Gibbs free energy and
rate-limiting Gibbs free energy being the target properties for
the respective processes. The details of Gibbs free energy
calculations are given in SI.

3.2. Machine learning for HER

We evaluated about 18 ML models to identify the best for our
problem (Fig. S7-S12, SI). It is observed that linear models

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Heatmap of the binding energy of transition metals intercalated at site 1 and site 2 of Janus PtXY/(-phosphorene (X # Y; X, Y =S, Se, Te)

heterostructures.

exhibited poor performance, as linear models assume a linear
relationship between the target and feature values. The poor
performance of linear models indicates a highly nonlinear
relationship between target and feature values, further sup-
ported by the superior performance of ensemble models, which
are better at capturing nonlinear patterns. Even though the
performance of tree-based models is not acceptable, they show
a slightly better performance than linear models. The other
models didn’t show satisfactory performance (Table S4, SI).
Owing to the superior performance of ensemble models, parti-
cularly the RandomForestRegressor, we consider these models
for further evaluation.

Next, we addressed the overfitting problem of the ensemble
models, when the model is too complicated for the problem at
hand, so the model learns from the training dataset, on the
underlying noise, so as a result, the model performs exception-
ally well for the training dataset but performs worse when
presented with an unfamiliar prediction dataset. To check
whether the selected model is overfitting, we employed a
train-test verification approach. We trained the models with
80% of the available dataset and the remaining 20% test set,
which allows us to compare the performance of the seen and
unseen datasets. Train-test verification metrics are given in
Table S5 (SI). The ExtraTreeRegressor achieved a perfect score
for the training dataset, but slightly reduced the lower perfor-
mance for the testing data, indicating the potential for over-
fitting. The remaining model exhibits comparable performance
on both the training and testing datasets. We used best best-
performing model, RandomForestRegressor, for further study.

Now we performed the recursive feature elimination process
on the random forest regressor (RFR) model with the best
combination of hyperparameters (n_estimators = 80, min_
samples_split = 2, min_samples_leaf = 1, max_features = 15,
max_depth = 30). A learning curve depicting the variation of

© 2025 The Author(s). Published by the Royal Society of Chemistry

model accuracy (R*) with the number of samples in the training
dataset is plotted (Fig. S13, SI). For a higher number of training
samples, the accuracy of both the training dataset and the
testing dataset is close to each other. After the feature elimina-
tion and hyperparameter optimisation process, the model
metrics are obtained as R> = 0.84 and MAE = 0.11 eV. This
model, trained on the DFT-generated dataset, is further used to
predict the Gibbs free energy of the rest of the dataset. During
the filtration of the most promising candidates of the datasets,
we only considered those structures with Gibbs free energy
lying between —0.3 and 0.3 eV,”° and also, while selecting a
photocatalyst, we considered the thermodynamic stability of
those which having binding energies more than —5 eV.

The plot between Gibbs free energy and dataset index is
shown in Fig. 5; the selection criterion for Gibbs free energy is
denoted by horizontal dotted lines. We observed that the
structures in this region are of PtSTe/(-phosphorene (Te side)
heterostructures. Also, by flagging the scatter points with the
adsorption sites Fig. 5(a), the adsorption site 2 is the most
favourable for hydrogen adsorption. Adsorption site 2 is the
one on the chalcogen of the Janus layer and is not facing the
C-phosphorene layer. Fig. 5(d) represents the Gibbs free energy
values obtained from DFT calculations and ML predictions,
which are plotted for both training and testing data. The blue
line shows perfect matching between the two values, indicating
that our model closely matches the actual values. The dotted
lines show a deviation of +0.1 eV most of our data points are
well within this limit.

Furthermore, we employed SHAP analysis to examine the
influence of each feature on the model’s final output, identify-
ing the best descriptors of photocatalytic activity among
the selected features. The SHAP analysis results are depicted
in Fig. 6. From SHAP analysis, we observed that the Pt-X
bond length (L_Pt-X), interlayer thickness (D_layer), choice of

Mater. Adv.
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intercalation sites (A_site_A_1, A_site_A_2), Pt-Y bond length
(L_Pt-Y), and binding energy show the most excellent mean
SHAP value. A bar diagram of the average SHAP value for each
feature, along with a waterfall plot for a particular prediction,
is provided in Fig. S14 and S15 of the SI. The SHAP analysis

Mater. Adv.

of two individual predictions (Fig. S15, SI), one corresponding
to a promising catalyst i.e. Cr intercalated PtSTe/zeta-P hetero-
structure (Te side) with AG = 0.06 eV and another for a poor
catalyst i.e. Zn intercalated PtSSe/zeta-P heterostructure (S side)
with (AG = 1.11 eV), indicate that the interlayer distance and
Pt-X bond length make the most significant contributions to
reaching the final prediction. The good catalyst has an inter-
layer distance of 2.88 A and whereas poor catalyst has 2.56 A.
It has also been observed in the previous studies that increased
interlayer distance leads to the good HER activity by iimproving
the Gibbs free energy.”’**> Based on the benchmark of Gibbs
free energy between the limits —0.3 eV to 0.3 eV, the 21
structures are selected (Table S6, SI), out of which 13 structures
having binding energy more than —5 eV are given in Table 1.
To benchmark the performance of our selected structures,
we compared them with the commercially used Pt catalyst,
which exhibits a hydrogen evolution Gibbs free energy close to
zero. Our calculated Gibb’s free energy values span from
0.09 eV to —0.0005 eV, highlighting their excellent catalytic
potential relative to the Pt benchmark. Comparable efficiencies
have been reported for transition-metal-intercalated Ti-doped

© 2025 The Author(s). Published by the Royal Society of Chemistry
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Table 1 The predicted adsorbed Janus PtXY/(-phosphorene (Z, M, |, A)
heterostructures with Gibbs free energy between —0.3 eV to 0.3 eV and
intercalates binding energy more than —5 eV for HER. Z, M, |, and
A represent the chalcogen side of the heterostructure, the intercalated
transition metal atom, the intercalated site, and the adsorption site,
respectively

Heterostructures Gibbs free energy (eV) Binding energy (eV)
PtSTe/zeta-P(Te,V,I1,A2) 0.09 —5.94
PtSTe/zeta-P(Te,Cr,11,A2)  0.06 —6.30
PtSTe/zeta-P(Te,Mn,I1,A2)  0.05 —6.23
PtSTe/zeta-P(Te,Fe,I11,A2) —0.0005 —5.89
PtSTe/zeta-P(Te,Co,I1,A2) —0.06 —5.42
PtSTe/zeta-P(Te,Ti,I2,A2)  0.10 —5.98
PtSTe/zeta-P(Te,V,12,A2) 0.08 —6.41
PtSTe/zeta-P(Te,Cr,12,A2)  0.05 —6.68
PtSTe/zeta-P(Te,Mn,I2,A2)  0.03 —6.79
PtSTe/zeta-P(Te,Fe,12,A2)  0.003 —6.61
PtSTe/zeta-P(Te,Co,12,A2) —0.05 —6.20
PtSTe/zeta-P(Te,Ni,]2,A2)  0.03 —5.58

WS, bilayers, which exhibit Gibbs free energies in the range
of 0.003-0.083 eV.>® Similarly, metal-intercalated bilayer boro-
phene demonstrated Gibbs free energy range —0.082 to
0.183 eV.>* Furthermore, cation-intercalated 1T-MoS, exhibited
Gibbs free energies of the same order, further reinforcing the
strong catalytic promise of our findings.>
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3.3. Machine learning for OER

In Gibbs free energy profiling of the OER pathway, the rate-
limiting step is the reaction step with the highest energy
barrier, and the rate-limiting Gibbs free energy is the corres-
ponding Gibbs free energy value. The overall rate of the whole
process is dependent upon this step. In the case of predic-
ting rate-limiting Gibbs free energy for OER using machine
learning, the same methodology has been followed as in the
case of HER. We have trained 20 different ML models for cross-
validation (Fig. S16-S20, SI). The cross-validation results are
given in Table S7. From cross-validation, the SVR model with
‘tbf’” kernel is selected as the best-performing model. Also, the
train-test verification is performed for SVR models, and the
results are given in Table S8. From the results, it is evident that
only the SVR model with ‘rbf’ kernel has comparable training
and testing metrics scores, hence this model is taken for future
predictions.

We now performed recursive feature elimination on the SVR
model. After feature elimination, we obtained 30 features for
future training. With hyperparameter tuning using Rando-
mised search CV, we were able to find the best set of hyper-
parameters for the model. The selected final SVR model with
the optimised hyperparameters is given as SVR (kernel = ‘rbf’,
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C =20, tol =1 x 107, shrinking = False, gamma = 0.1). The
learning curve for the SVR model is depicted in Fig. S13(b),
which shows favourable behaviour. The final SVR model
exhibits excellent performance with metrics MAE = —0.21 and
R*=0.83.

A graph between the rate-limiting value of Gibbs free energy
and the dataset index is plotted in Fig. 7. The scatter points are
coloured based on the adsorption site in Fig. 7(a). The adsorp-
tion site 2 shows the minimum limiting Gibbs free energy
value. The intercalation sites do not show any pattern with the
rate-limiting Gibbs free energy value (Fig. 7(b)). The graph of
rate-limiting Gibbs free energy (true values vs. ML predicted
values) is given in Fig. 7(c). The values show a close correspon-
dence with the ideal behaviour and most of the points are
within he £0.1 eV limit as denoted by the dotted lines.

Next, to identify the most important features among the
selected features for OER descriptors, we use a permutation
importance technique.>® The permutation importance value of
each feature is given in Fig. 8. All the selected features have
positive permutation importance, which means that shuffling
the feature values increases the error of the models or the
feature has a positive influence on the model prediction. The
choice of the adsorption site is the important feature by far.

From the ML predictions, we have selected 10 structures
with the minimum rate-limiting Gibbs free energy values
(Table S9, SI), out of which 6 structures exhibit a binding
energy greater than —5 eV. The structures, along with their
rate-limiting Gibbs free energy value and binding energy, are
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Fig. 8 Permutation importance of the features for OER.
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Table 2 The predicted adsorbed Janus PtXY/(-phosphorene (Z, M, |, A)
heterostructures with rate-limiting Gibbs free energy and intercalated
binding for OER. Z, M, |, and A represent the chalcogen side of the
heterostructure, the intercalated transition metal atom, the intercalated
site, and the adsorption site, respectively

Rate-limiting Gibbs free Binding
Heterostructure energy change (eV) energy (eV)
PtSTe/zeta-P(S,V,I_1,A_2) 3.68 —6.13
PtSTe/zeta-P(S,Co,l_1,A_2)  3.69 —5.66
PtSTe/zeta-P(S,Sc,I_2,A_2) 3.67 —6.76
PtSTe/zeta-P(S,Fe,I_2,A 2) 3.66 —6.83
PtSTe/zeta-P(S,Co,1_2,A_2)  3.57 —6.33
PtSTe/zeta-P(S,Ni,I_2,A_2) 3.56 —5.62

given in Table 2. The selected structures have rate-limiting
Gibbs free energy values more than 3.5 eV. These values are
comparable with previous findings or Janus PtSSe-based
vdWHSs.?* With this, we can narrow down our search to ten
promising candidates from a dataset of 240 structures. Feature
importance analysis unveils valuable insights into the catalytic
activity descriptors. The selected structures also show optimis-
tic binding energy values.

We now calculate the projected electronic bands structure of
pristine and intercalated PtSTe/(-phosphorene heterostructure
as shown in Fig. S21(a) (SI). The corresponding band align-
ments of pristine heterostructure (Fig. S22, SI) reveals a type-II
configuration, favourable to HER and OER activity. In contrast,
the Fe- and Mn-intercalated PtSTe/{-phosphorene shows a
metallic behaviour (Fig. S23, SI), arising from the introduction
of states at the Fermi level by the intercalated atoms. Intercala-
tion of a metal atom has been shown to improve photocatalytic
activity by acting as a bridge between layers for charge
transfer.””

4. Conclusions

In this study, we investigated PtXY/(-phosphorene heterostruc-
tures intercalated with TM atoms, which exhibit promising
catalytic activity for HER and OER. TM-intercalated PtSTe/
{-phosphorene (Te side) exhibits remarkable performance for
HER. We have successfully generated a dataset of about 240
adsorbed structures, and 120 have been selected for DFT
calculation. After rigorous training of selected machine learn-
ing (ML) models on the DFT dataset, we predicted the Gibbs
free energy for the entire dataset, yielding 13 candidates for
HER and 6 candidates for OER, which satisfied the benchmark.
The ML workflow showed exceptional efficiency. The best-
performing model for HER is the Random Forest Regressor,
which has shown an R? value of 0.83. In contrast, for OER, the
SVR model has demonstrated the best performance. Further-
more, we conducted a feature analysis, which provides valuable
insight into the catalyst’s structural properties that act as
descriptors of photocatalytic activity. Among these, the inter-
layer distance of the heterostructure and the bond length
between the Pt and X atom emerged as the most influential
factors that affect the Gibbs free energy predictions for HER.

© 2025 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d5ma01011j

Open Access Article. Published on 17 December 2025. Downloaded on 1/20/2026 1:43:03 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Materials Advances

In the case of OER, the choice of adsorption site has emerged as
a major descriptor of OER. Overall, the ML approach is crucial
for identifying different properties that influence the Gibbs free
energy for HER and OER processes, and for screening the most
promising candidates for photocatalytic water splitting.
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