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We consider the condensation and evaporation of a volatile partially wetting liquid on a soft substrate in
contact with a homogeneously saturated gas phase. Recent experiments demonstrated a strong
dependence of nucleation density on the substrate softness. Motivated by these experiments, we
approach the problem considering both macroscale and mesoscale models. On the macroscale, we
employ thermodynamic considerations to determine the critical nuclei energies and the resulting
nucleation probabilities in the limits of rigid and liquid substrates. On the mesoscale, we use a gradient
dynamics model for a drop of volatile liquid on a soft substrate with Kelvin—Voigt viscoelasticity in
Winkler-foundation form. The governing energy functional incorporates elastic and interface energies as
well as bulk liquid energy. We show that nucleation probabilities obtained with the two models agree for
small supersaturation, but display differences when drop nuclei are small. Finally, we use the mesoscopic
model to investigate the condensation and evaporation dynamics of drops in the intermediate elastic
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1 Introduction

When breathing against a cold window pane, one notices how it
becomes opaque. A close look reveals, that this results from a
rather dense random arrangement of numerous tiny drops that
scatter light. Such breath figures form on cool surfaces due to
condensation of liquid from the adjacent vapor and are exten-
sively investigated.' Depending on the surface properties, the
liquid condenses into droplets or into a uniform film. The
spontaneous local gathering of vapor particles that initiate the
formation of drops of another thermodynamic phase is called
nucleation. While condensation, i.e., the clustering of vapor
molecules into liquid drops, is accessible to observation and
study, it is triggered by nucleation, a microscopic process that
normaly occurs at scales that make it challenging to study. Yet
nucleation plays a central role in a wide range of phenomena,
from crystallization,® electron condensation in solids,” tectonic
events such as earthquakes® and volcanic eruptions,” to
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regime and relate the results to the experimental findings.

meteorological processes like cloud formation, snow, and
rainfall,"®"" pathological conditions such as decompression
sickness,'” and even the formation of black holes.'® In general,
nucleation is important for phase transitions of first order,
which is a subject of great interdisciplinary interest and prac-
tical importance. Since Gibbs achieved the first insights into
the matter' various theories have been developed. The widely
used classical nucleation theory (CNT)™® determines the
energy cost of cluster formation based on purely macroscopic
quantities such as interface and bulk energies. The CNT is
extended, e.g., by the dynamic nucleation theory (DNT) and by
the extended modified liquid drop (EMLD) model that incor-
porate translational motion and small fluctuations in the
particle number, respectively.'®*° In contrast to these phenom-
enological approaches, kinetic theory calculates the energy of
cluster formation by directly considering the molecular inter-
actions on the microscale thereby avoiding the use of macro-
scopic quantities. Considering the particles to be hard shapes
molecular dynamics (MD) and Monte Carlo simulations are
often utilized.>"** In contrast, density functional theory (DFT)
describes the system in terms of a microscale ensemble-
averaged density and is used, e.g, to consider colloidal
crystals.>® The direct observation of nuclei of only a few
molecules in size still remains an experimental challenge.'®>°

Here, we consider how a soft substrate influences nucleation
and growth of sessile drops of a partially wetting liquid from
vapor, i.e., condensation onto soft substrates. It is known that
the ability of a substrate to deform under external pressure
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crucially influences the nucleation density.>® This observation
is confirmed by ref. 27 using MD simulations. There, it is
further found that also condensation rate and heat transfer
efficiency increase with the softness of the substrate. It also
affects the condensation mode, i.e., whether drops or films are
formed. Sharma et al.>® observe that even though the overall
condensation of drops increases with the softness of the
substrate, the growth of individual drops may be reduced by
cloaking effects, e.g., by uncrosslinked PDMS chains leaking
from the substrate. Further it is found that coalescence is
significantly delayed as the substrate softness increases*®*°
and it is confirmed by gradient dynamics models that as well
the coarsening mode is affected by the substrate softness.*
Recently, experiments on dew formation presented in ref. 31
were performed on substrates of different softness. There, flat
homogeneous layers (millimetric thickness) of silicone elasto-
mers are deposited on a cooling stage in a chamber with
controlled humidity (mixture of water vapor and N,) as illu-
strated in Fig. 1(a). Condensation is achieved by cooling down
the gel while simultaneously fixing the chamber humidity and
pressure until a phase transition is induced [see Appendix A].
The threshold of phase transition is referred to as saturation.
The impact of substrate elasticity on dew formation is investi-
gated by tuning the gel stiffness through its crosslinking
density. The breath figures are recorded from above using a
high resolution magnifying objective. Since the resolution of
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Fig. 1 (a) Schematic of the experimental setup. A gel substrate (red) is
placed inside a controlled-humidity chamber and cooled down to T, =
5 °C using a Peltier element (green). (b) Drop density i as a function of
substrate softness quantified via the elasto-capillary length /e, based on
data from ref. 31. The experiment used various PDMS gels — Sylgard 184
with mixing ratios ranging from 10:1 to 80:1, CY52-276 (Dow Corning)
with ratios of 1.3:1 and 1:1, and PVS Elitel6 (1:1). Measurements were
conducted at two imposed relative humidities: ry = 2.42 (Y) and ry = 1.22
(A). Horizontal lines indicate the limiting cases of a rigid substrate (red;
nanometric PDMS brush grafted on a silicon wafer, see ref. 32) and a
liquid-like substrate (blue; uncrosslinked PDMS). The color gradient from
red to blue indicates the transition between these two limits. (c) Top-view
images of breath figures formed on substrates with different softness
levels, taken at the onset of drop visibility. The apparent nucleation density
decreases with increasing substrate stiffness, characterized by the shear
storage modulus G'.
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Fig. 2 Liquid—gas contact angle 04 relative to the horizontal as a function
of the gel softness Z../R. Angles are measured on side-view images of
droplets with radii ranging from R ~ 10 um to ~1 mm, i.e., recorded at
later stages, sitting on gels with storage modulus G’ ranging from 100 Pa to
10° Pa. The lightly shaded bands indicate the contact angles experimen-
tally determined on short PDMS brushes, i.e., in the rigid limit (red), and on
uncross-linked PDMS oligomers, representing the liquid-like limit (blue) for
the same material. Again, the red to blue color gradient indicates the
transition between these two limits.

the objective is &1 um the experiment does not directly record
the nucleation process but rather the subsequent mesosopic
dynamics. Fig. 1(c) provides examples of the resulting breath
figures, each taken as soon as drops are visible, for decreasing
substrate softness (from left to right) quantified by the shear
storage modulus G'. As the latter increases, that is, with
decreasing elasto-capillary length 7., = y/G’, the initial number
of drops is found to decrease. Remarkably, once condensation
has started, there are no further nuclei forming in the dry
regions between the already growing drops, which is due to the
decrease of vapor concentration below saturation in the proxi-
mity of the substrate as discussed in ref. 24 and 31. In Fig. 1(b)
the drop density y is displayed as a function of /.. for two
different humidities, ry = 1.22 (A) and ry = 2.42 (). Remark-
ably, while the drop density appears to be strongly affected by
the substrate softness, i.e., it increases with /.., it is barely
affected by changes in the supersaturation, that is the relative
humidity ry at the substrate. Consider ref. 24 and 31 for a more
extensive discussion regarding the later stages of droplet
condensation.

Further, in ref. 33-36 it is predicted, that in the regime of
intermediate softness the contact angles of steady drops transit
smoothly between Young’s and Neumann’s laws, which is
experimentally confirmed (see Fig. 2).% This transition in the
contact angle is reminiscent of the transition observed in the
drop density y when going from rigid to liquid-like substrates

F These values correspond to the relative humidity in the proximity of the
substrate, that is at 7 = 5 °C and can be related to the relative humidity at
different temperatures, e.g., T, = 20 °C at the chamber roof, using eqn (43).

+ The droplets on which the angles are measured are above micron size and
therefore not nuclei, but what they become after some time of condensation.

© 2026 The Author(s). Published by the Royal Society of Chemistry
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[¢f: Fig. 1(b)]. The cross-over between the Young regime and the
Neumann regime can be inferred from Fig. 2 to occur when the
elasto-capillary length becomes comparable to the drop base
radius /.. ~ R (¢f. Fig. 3). In Fig. 1(b) the transition is found at
/ec & 10 um and thus elasticity is expected to play a role
when /.. & R ~ 10 pm. This observation is enigmatic for the
typical nuclei size at the employed humidities is known to
be R* « 10 pm, ie., too small to feel the elasticity of the
substrate. As the drops grow larger, due to condensation,
they automatically undergo a size-controlled transition in
/e./R and elasticity gains impact. The transition shown in
Fig. 2 may occur even before the diffusive boundary layer has
formed.

To investigate the role of elasticity in nucleation, we use a
mesoscopic gradient dynamics model®” similar to the one
presented in ref. 30, coupling a classic thin-film equation
(TFE) for a simple liquid®***° to the dynamics of the soft
adaptive substrate employing a Kelvin-Voigt-type dynamics in
Winkler-foundation form. In comparison to ref. 30, the model
is extended to capture condensation and evaporation applying
the one-sided approach of ref. 40-43 for evaporating sessile
drops. Thereby, the saturation of the vapor phase is considered
homogeneous as is the case in the very early stages of the
experiment where the nucleated droplets are below the optical
resolution of the equipment and therefore experimentally
inaccessible. The advantage of the gradient dynamics approach
is that it is derived directly from the governing energy func-
tional, which makes it very versatile and easily adaptable to
many scenarios. A somewhat similar model has been used in
ref. 43 to study the dynamics of droplet growth and coalescence
due to imposed local influx in dependence of the substrate
softness and viscous damping. Here, the full curvature
formulation®” is used which more exactly describes the static
drop behavior, ¢f. ref. 44. The model is utilized to investigate
the increase of nucleation density with increasing softness in
an extended range of supersaturation that goes beyond the
range considered in the experiment. In particular, we consider

Fig. 3 Sketch of a radially symmetric drop of partially wetting liquid with
base radius R. The spherical cap meets the elastic substrate along a circular
three phase contact line. The macroscopic contact angle 0 is governed by
the energies 7y, 75 and y,, of the interfaces between the respective phases.
The ratio of a surface element ds and its projection onto the (x, y)-plane
defines the metric factor /1 + (V¢)? of the respective profile ¢(r).

© 2026 The Author(s). Published by the Royal Society of Chemistry
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values where the size of the nuclei becomes comparable to the
elasto-capillary length.

First, in Section 2 the macroscopic CNT is used to estimate
the nucleation energy barrier in the limiting cases of perfectly
rigid and liquid substrates, considering unstable steady macro-
scopic drops to represent the nuclei. In Section 3 the meso-
scopic gradient dynamics model is used to investigate the
critical nucleus in the regime of intermediate softness. We
compare mesoscopic and macroscopic results in the liquid and
rigid limits. Finally, the influence of substrate softness on the
nucleation energy barrier is investigated in the context of the
experimentally observed phenomena.

2 Macroscopic nuclei

According to CNT the change in energy associated with the
creation of a new phase is given by the difference in Gibbs free
energy G, implying constant temperature 7, particle number N
and external pressure p.'®*>™*® The bulk contribution is given
by the difference Au in chemical potentials, between initial and
final state, to which the interface energies are added. In the
present case of vapor condensing into liquid at a solid sub-
strate, the change in Gibbs free energy is (see Appendix B for
details)"®*0*8

gmacro = VlvAlV + VslASl + Vsv (ASV - Aév) — Py V(A:u’ (1)

with y; and 4; respectively being the energies and areas of the
liquid-vapor (lv), substrate-liquid (sl) and substrate-vapor (sv)
interfaces and the difference in chemical potentials per
particle is

Ap = py — py = kgTIn(ry). (2)

The substrate-vapor interface area of the initial dry sub-
strate state is 4., and p, is the particle density of the liquid. The
Gibbs free energy eqn (1) combines surface energy penalties,
which in case of drop-like structures of size R scale with ~R?,
with the decrease in chemical potential per particle when
changing from the vapor to the liquid phase, scaling with the
created volume ~R’. This balance results in an energy barrier
G* that must be overcome to nucleate and which defines a
critical size R*. Since the nucleation of droplets on a substrate
is a stochastic process driven by random fluctuations'® the
nucleation probability P is estimated using a Boltzmann factor

P ~ exp (—ki—*r) . (3)

The ratio in the exponent relates the energy barrier G* to the
thermal energy kgT. In the following, we calculate this energy
barrier for a radially symmetric drop (w.r.t. the z-axis) of base
radius R sitting on a deformable substrate, extended in the
(x, y)-plane as shown in Fig. 3. In the limits of a perfectly rigid
(Zeec = 0) and liquid-like (/.. = o0) substrate, elasticity can be
neglected and the equilibrium drop shape is exclusively gov-
erned by the interface and bulk phase energies, i.e., it adapts
spherical-cap shapes.

Mater. Adv.
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2.1 Rigid limit is a geometric prefactor that monotonically increases with 6.
Therefore, the energy barrier increases with increasing hydro-
phobicity of the substrate, i.e. with increasing contact angle 0y.

The critical nucleus has to satisfy OrGmacro =0 and its
resulting base radius is

In the rigid limit the substrate is flat and the liquid-vapor
interface of a drop or nucleus takes the shape of a spherical cap
with curvature xj, as shown in Fig. 4(a). While the contact angle
Oy is given by the interface energies according to Young’s law

DeCOS Oy + 741 = o (4) T (10)
the curvature depends on the volume of the nucleus which is

. . In con n fi Au a nucl I f radi
yet to be determined. In terms of x;, and 0y the volume is consequence, at fixed Au a nucleated drop of base radius

R < R* will shrink (evaporate) leaving behind the dry state,

v 8n ) 09)(1 o)’ whereas a nucleus of base radius R > R* will grow (condense)

N 3;qv3( +oosOy)(1 = cosby )", () without bound. The corresponding energy barrier is
i : * * 4TEV1V3 : 3
while the interface areas are Gmacro = Gmacro(R*) = ——=—g(fy) sin” Oy
3(pAp) (1)

8 4n . 2

=" = = T, .

Ay K1v2(1 cosly), Aqg g sin” Oy. (6) _ g”/lvR 2(0y) sin 0.

With ry & 2.41, 9, =70 x 10 *Jm ™2, p,=3.34 x 10** m > and
Since the substrate is perfectly flat, the total area, that is the 6y =70° the critical nucleus has a size of R* ~ 1.166 nm with an
area A, of the dry reference state, is A, = Aq + Aq. With  associated energy barrier /kBT ~ 30. Note, that the 0y

%
gmacro

eqn (4)-(6) the energy (1) becomes dependent factor of G; .., in eqn (11) increases monotonically
4 from g(0y)sin(0y)® = 0 in the complete wetting case (0y = 0°) to
Gmacro = y,v—n2(2 — 3cos Oy + cos’ Oy) g(0y)sin(0y)® = 4 in the non-wetting case (0y = 180°). In other
. 7) words, low contact angles will drastically reduce the nucleation
8 ier.
- p[A,u?,K—n3(2 + cos0y)(1 — cos Oy)*. barrier
v

2.2 Liquid-like limit

With (2 + cosfy) (1 — cosfy)” = 2 — 3cosfy + cos’Oy we 1 the liquid-like case, ie., for /.. — oo, the substrate is

then find deformed under the influence of the Laplace pressure caused

4 oA by the curved liquid-vapor interface until it is balanced by the

Ty _ 28k Laplace pressure of the substrate-liquid interface. This results

Klvz 3Kjlv3 : . . . . .

(8) in the shape of a liquid lens as shown in Fig. 4(c) characterized
by constant curvatures of both interfaces. While the drop sinks
into the substrate the liquid-vapor and substrate-liquid inter-
faces form angles 0j, and 64 w.r.t. the horizontal, respectively.

where the base radius R = 2 sin fy/k}, has been introduced and  The angles are again governed by the interface energies accord-

Gmacro = (2 + cos Oy) (1 — cos Oy )? (

. 1
= mg(y) (ylsz sin Oy — §R3p€Au),

the function ing to the components of Neumann’s law:
2(0) = (2 + cos0) (1 — cos0)*/sin’ 0 9) horizontal: y}, cos 0y, + 4 €0s Og = Vg, (12)
(a) R>> lec (b) R~ lec (c) R << lec

Fig. 4 Characteristic drop shapes of partially wetting liquid on substrates of different softness. (a) The substrate is rigid and very resistant against
deformations, R » /... The drop adopts the shape of a spherical cap with curvature k, and contact angle 6y selected by Young's law. (b) The substrate is
elastic and soft enough to allow for the formation of wetting ridges at the contact lines, R ~ /¢, but stiff enough to prevent the drop from sinking. The
local angles at the tip of the wetting ridge are given by Neumann'’s law and as the softness increases the region rotates inwards such that the liquid—vapor
contact angle and curvature increasingly deviate from those in the rigid case. (c) The substrate is so soft that it is considered liquid-like and elasticity is
negligible, R « /¢c. The drop resembles a liquid lens described by the intersection of two spherical caps with curvatures «,, and k. The angles at the
three-phase contact are still related by Neumann'’s laws but the slope of the solid-liquid interface approaches zero.

Mater. Adv. © 2026 The Author(s). Published by the Royal Society of Chemistry
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vertical: yy, sin 0}, = 74 sin 0. (13)

Note, that the substrate beyond the drop is considered
to remain perfectly horizontal. Similar to eqn (5) the lens
volume can be expressed in terms of the curvatures and
Neumann angles

8 8

3K|v3

V=
3Ky?

(14)

The balance of Laplace pressures results in a fixed ratio of
curvatures given by the inverse ratio of the corresponding

interface energies
_Ka _ _ sinly

Ky Vsl o sin 91‘,7

(15)

with the second equal sign resulting from eqn (13). Note, that
the curvature of a profile is considered negative if it is convex,
as is the case for the substrate-liquid interface beneath the
drop, and positive if it is concave, like the liquid-vapor inter-
face (cf. Fig. 4). In consequence, the difference in the Gibbs free
energy (1) becomes

. 1
gmacm = n[g(elv) + g(esl)] (V]v R2 Sin 01\/ - gRspgAH) (16)

where g(0y,) + g(0s) = 3V/(nR®). The critical radius and energy
are then

29y, sin Oy

R =- p[A” and (17)
% 471:?]v3 .3
gmacro = m[g(elv) + g(981)] sin 91\/
PeAR as)
_ TWIVR*2

3 [g(01) + g(04)] sin O,

respectively. Note, that the form of the expression for the
critical radius R* is identical in the rigid and liquid-like limit
[¢f: eqn (10) and (17)] and that the energy for the case of a rigid
substrate [eqn (8)] is recovered from eqn (16) in the limit 0, = 0y

and g(0q) = 0. Further, the ratio Gy, / Gliquia > 1 and depends

only on the interface energies but not on supersaturation, i.e.,
not on R* and Ap. For example, if the interface energies are y;, =
70 x 10 °Nm™ ', 74=48 x 10 °Nm 'and y, =72 x 10 > Nm ™"

the nucleation barrier differs by a factor Gy / Gliquia = 2.28
between the rigid and liquid-like case.

3 Mesoscopic model

In contrast to the rigid and liquid-like limit, in the intermediate
elastic regime the substrate profile is not analytically known.
We denote the corresponding radially symmetric height pro-
files by y(r) for the liquid-vapor interface and &(r) for the
substrate profile. The liquid layer thickness profile is then
h(r) = y(r) — &(r) (see Fig. 5). So far, only steady macroscopic
drops have been considered. We now formulate a fully dynamic

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 Sketch of a mesoscopic radially symmetric drop of partially wetting
liqguid on an elastic substrate. The local liquid layer thickness and the
substrate—liquid interface are described by scalar functions h(r) and &(r),
respectively. Both resemble spherical caps centered at r = 0 and transit
into the precursor layer of height h_ (see the zoom) along a circular three
phase contact region at r = R. The macroscopic base radius R is estimated
by the position of maximal curvature of the liquid—vapor interface and the
solid—gas interface energy is modeled by the wetting energy f (h).

mesoscopic model that is applicable in the intermediate elastic
regime as well as in the rigid and liquid-like limits. To do so, we
include the mesoscopic wetting energy f(h) that governs the
effective interaction of the solid-liquid and liquid-vapor inter-
face. It is assumed to result from long-range van der Waals
interactions and short-range repulsive interactions

1) :;,;2[§<’;)1]

The minimum of f(k) at & = h, [¢f. thin lines in Fig. 6(a)]
ensures that a macroscopically dry substrate is always covered
by an ultra-thin adsorption layer of height h,, the energy of
which has to be taken into account. The precise thickness #_ of

(19)

3.0
©
::\«, ‘\ 425
= \
=
- \ Dy 20
N §
(b) (h) + 15
— +
= heo o
E o2
1 L 1 1 1 05
05 1.0 15 20 25 3000 0.2
h/ha P/CO

Fig. 6 Dimensionless (a) wetting energy f and (b) Derjaguin (disjoining)
pressure IT as functions of the film thickness h with Cy = 1. Since IT = —0,f
the zeros of the IT correspond to the extrema of f and reflect steady film
states. At saturation, i.e. p = O (thin lines), the functions allow for only one
stable steady film state h_ (1). Forp > 0, e.g., p = 0.1 (thick lines). A second
unstable film state h, (V) exists. (c) With increasing p the two states
approach each other and annihilate in a saddle-node bifurcation (¢). The
sign of IT + p determines whether the film grows due to condensation or
shrinks by evaporation (gray shaded), as indicated by the arrows for p = 0.1.
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this layer depends on supersaturation and equals /, only for
Ap = 0 as will be further discussed in Section 3.1. In conse-
quence, in the mesoscopic description, the macroscopic sub-
strate-vapor interface energy is represented by the sum of the
energies of the adsorption layer, substrate-liquid interface and
liquid-vapor interface.

Demanding consistency between the meso- and macro-
scopic descriptions at Ay = 0 leads to the condition®’

Ysv = Vv T Vsl +f(ha)- (20)

Then, together with Young’s law (4), the Hamaker constant A
corresponds to

10

A=—
3

ha?y (1 — cos Oy). (21)
Further, the energy associated with the elastic deformation
of the substrate is now taken into account. Employing the

Winkler-foundation model® it is given by

1
Feo = —chz (r)2mrdr,

75 (22)

with S being an effective softness, i.e., the inverse of the elastic
stiffness. This formulation effectively describes the substrate as
a continuous spring and follows from the fundamental solution
for a finite-thickness layer with linear elasticity exposed to a
localized force at the free surface. For a detailed discussion cf.
ref. 30.

The complete energy functional combines eqn (1) and (22),
thereby expressing the interface areas and volumes in terms of
h and ¢ and the substrate-vapor interface energy v, in terms of
the wetting potential f[eqn (19) and (20)]. The energy Gmeso of a
substrate with liquid coverage (drop or thick film) relative to
the reference state of a macroscopically dry flat substrate is
given by

gmeso = gmztso — gﬂ{eyso, (23)
with
L
Gmeso = 2“[ {vlv 14 (00 + 0,6)*
0
(24)
52
b 15 00—+ S
g?rgso =Ly, +7vq +/(h-) = p,Auh_], (25)

where the domain has been restricted to a circular area
of radius L » R. The dry substrate state is characterized by
h=h_(An). Note, that the constant pAu can either be seen as an
imposed chemical potential (relative humidity) or as a Lagrange
multiplier for volume conservation

oL

oAl (h— ho)2mrdr = p, AuAV =0, (26)
Jo

with %, being an arbitrary mean liquid layer thickness that is to
be conserved.
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The energy is extremized by calculating its variations w.r.t.
the variables 2 and ¢ yielding

ngeso

—on —ynk(h+ &) = (/14 (8,6 — pAp (27)

0Gmeso _

e ()
_G+&>[w+ﬂmaw+@ il e
! 1+ (8,h+ 8,¢)°
. 1 ar(/’
with the local curvature x(¢) = | =+ 0, of a
' 1+ (99)°

field ¢ and the Derjaguin (disjoining) pressure [1(h) = —0,f(h)
(¢f Fig. 6).§ Note, that for 2 > h, one has II — 0 and eqn (27)
depends only on y = & + &, indicating that (at uniform super-
saturation) the liquid-vapor interface of a steady drop always
forms a spherical cap of curvature x;, = —p,Au/y), entirely
independent of elasticity. In consequence, at fixed contact
angles also the volume of a steady drop is directly determined
by the supersaturation.

To capture the time evolution we employ a gradient

dynamics approach,*>*”*! j.e., we use the kinetic equations
h Gm 8Gm

% =V- [Q(h)v QSh“"] -M gg)he”, (29)

9 18Gmeso (30)

ot (&

The dynamics of the liquid layer thickness % corresponds to
a thin-film equation with mobility Q(h) = /#*/3y and dynamic
viscosity #°> which is extended by a non-conserved term that
incorporates phase transition-limited mass exchange between
liquid and vapor®”***** driven by the variation 8G/8/ with the
transfer mobility M. For a discussion of other evaporation
models see ref. 54. The dynamics of the substrate corresponds
to the Kelvin-Voigt model and describes an exponential relaxa-
tion in time scaled by the effective substrate viscosity {.*° To
reduce the number of parameters, the equations are non-
dimensionalized using characteristic length and time scales

(31)

t=Ti r=hf, E=hi, h=hah.

with T = 3nh,/yy. After dropping the tildes one obtains
1
oh = — (; + 8,.) (h30,. {x(h + &)+ Coll(h)\/ 1 + (&é)zb

+m {x(h + &) + CoIl(h)\/1 + (8,8)* +p} (32)

o+ Cymlang) ¢

1+ (8,¢) )|

1 1
ot=1 K(h+é)+(;+6r)

§ Thereby, x(h + &) corresponds to the curvature ki, and (&) to wg.
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with the dimensionless parameters

410
_Vlvha2 B 3

A
p= ha”i—“ = pohdd log(ry) = hatcl,,

I\

Cy (1 —cosby),

Cha L 3y 0
wT 30 hq

(34)

Here, «j, =2sin6;,/R* is the predicted curvature of the
liquid-vapor interface of the macroscopic critical nucleus
[eqn (17)]. From here on, p refers to the (dimensionless) super-
saturation, defined above. The thickness of the adsorption layer
is chosen as the thermal capillary length #, = \/kgT/7,,, which
is used in molecular kinetic theory (MKT) of wetting and
capillary wave theory (CWT).>> It scales the thermal fluctua-
tion of the liquid-vapor interface and in that sense the diffu-
sivity of the latter. From an energetic perspective it defines the
scale at which the thermal energy competes with the energy
penalty associated with an increased interfacial area due to the
interface tension y,k,> = kgT. Hence, in the following all
energies are expressed in terms of the thermal energy kgT.
With O(y) ~ 1072 Nm~' and O(T) ~ 10> K it follows that
O(hy) ~ 107 m. The elastocapillary length used in Fig. 4 is
related to the softness s by*°

(35)

The shape of a steady drop sitting on an elastic substrate
and the profile of the latter are usually characterized by the

ratio of elastocapillary length to drop size, e.g., Zcc/R Or lec /V/V
[¢f Fig. 4].9

3.1 Steady film states

Before turning to the critical nuclei, we consider the case of a
steady liquid layer of uniform thickness A(r) = h, on an
undisturbed flat substrate £(r) = 0. Then, the Laplace pressures
vanish and the dimensionless total pressures [eqn (27) and
(28)] reduce to

5gmeso
Sh

ngeso
s

= —CHH(/’I()) - P, =0. (36)

In Fig. 6(b) the total pressure 8Gmeso/0/ [eqn (36)] is shown
as a function of uniform liquid layer thickness for p = 0.1.
Fig. 6(a) displays the associated energy f(h) — ph. The respective
thin lines give the case p = 0. According to eqn (36) a steady film

9 It should be kept in mind, that at constant supersaturation p the volume V* and
thus also the radius R* of the critical nucleus are unknown functions of the
softness s. In consequence, the ratios /../R* and /e / V/V* can not be assumed to
be ~ /s in such a scenario.
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state may only exist if the supersaturation is balanced by the
Derjaguin pressure, leading to

. CG( p)}
e he= |1+ J1—al )|
* Lp Co

L=

~11(hy) = é

(37)

Hence, two different steady film states may exist depending
on the value of p, controlled by the relative humidity ry. The
adsorption layer height 4_ represents the dry substrate state
and corresponds to a minimum in the energy f(h) — ph, i.e., it is
linearly stable [¢f. Fig. 6(c)]. Note, that, as 2_ changes with p, the
value of f(h_) changes as well resulting in turn in an increased
substrate-vapor interface energy, according to the consistency
condition (20).

From eqn (37) it is found, that in the limit p — 0 the liquid
layer thickness either diverges to #, — oo or becomes i =1,
ie., h_ = h, in dimensional terms. From there, the two flat film
states asymptotically follow #_ ~ 1 + p/3Cy and k, =~ (Cylp)*".
Increasing the supersaturation to p > 0 the pressure is corre-
spondingly shifted while the energy is tilted by the linear term
—ph. This results in a second zero crossing of the pressure, i.e.,
an additional maximum of the energy, associated with .. The latter
is hence unstable and represents a threshold similar to a nucleus but
for uniform film states, that is, every uniform film of thickness # >
h. grows by condensation while for # < A, it shrinks by evaporation
until the dry state /_ is reached. As p increases further, 2_ and A,
approach each other until they finally meet and vanish in a saddle-
node bifurcation at p. = — Iy, = Cy/4 where he = /2 [eqn (37)] as
shown in Fig. 6(c). For p > —II;, the Derjaguin pressure
cannot compete with the supersaturation any more and nothing
prevents the vapor from condensing into the liquid film.

3.2 Critical nuclei

3.2.1 Numerical approach and parameters. The meso-
scopic model is now utilized to explore the critical nuclei in
the regime of intermediate elasticity by numerically solving
eqn (32) and (33). To this end, the open source C++ library
Oomph-lib°® is used to perform parameter continuation and time
simulations. As discussed before, the critical nucleus is asso-
ciated with a maximum of the Gibbs free energy G. Thus, in the
mesoscopic model one has to solve 8Gmeso/01 = 8Gmeso/0E = 0.
To do so numerically, by using a Newton solver, a proper starting
state is required, which has to closely resemble the final solution.
While in the rigid and liquid-like limit the macroscopic sphe-
rical cap profiles might be sufficiently suited, this is usually not
the case in the intermediate elastic regime 0 < s < oo.
Further the critical nucleus cannot be found using time simu-
lations as it is associated with a maximum of the Gibbs free
energy and thus unstable. Therefore, we make use of a trick;
instead of an isothermal-isobaric ensemble, a canonical
ensemble is considered. The drop state then corresponds to a
minimum of the Helmholtz free energy and can thus be
approached using time simulations. Thereby, the supersatura-
tion is used as a Lagrange multiplier and adapts freely during
the simulation to enforce conservation of an imposed volume
Vo. The stable steady drop found in the canonical ensemble
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exactly corresponds to a critical nucleus in the isothermal-
isobaric ensemble if the supersaturation is set to p = 8F/dh.

From this given critical nucleus, a continuation routine may
be used to obtain the critical nucleus at a specific value of p.
Such continuation techniques rely on the concept that small
changes in a parameter, e.g, p, cause only small changes to a steady
state in turn. Hence, if a steady state is known for a given parameter
value p,, it is assumed to be well suited as initial condition to find
the steady state at p = p, + Ap if Ap is sufficiently small. This way, a
steady state can be followed in parameter space.”® ™"

For all results the parameters are fixed to the values

yy =70x 103 Nm™!, 5y =48x 103 Nm!,

Yo =72 x 103 Nm™!
(38)

p=334x108m>, kgT =38 x10"2 kgm?s72,

ru = 1.055

if not stated otherwise. The adsorption layer thickness is
hy = \/kpT /7, = 2.33 x 1071 m. The corresponding values of
the dimensionless parameters are p ~ 0.0226, Cy ~ 2.2 and
¢ ~ 0.6857. Note, that in this setting a steady drop on a rigid
substrate exhibits 6y = 70° and R*/h, ~ 83.

3.2.2 Consistency in the rigid and liquid limit. To validate
our numerical results, first, the mesoscopic pendant of the
macroscopic radius-dependent energy Gmacro(R) [eqn (16)] is
calculated for comparison. In the mesoscopic picture, the base
radius R of a steady drop, i.e., a critical nucleus, is not known
a priori. However, the macroscopic calculations in the rigid and
liquid-like cases provide reasonable estimates also for the elastic
regime, since R is assumed to transit monotonically between these
two limits. Since there is no sharp three phase contact line in the
mesoscopic description, the base radius is instead defined by the
position R of maximal curvature of the liquid-vapor interface,
ie, k(h + &)|—x = max[k(h + &)] (¢f Fig. 5), which is equivalent to
II(h)| - = min[II(A)]. It is thus encoded in the profiles # and ¢ such
that Gmeso[/1, £] can be seen as Gpeso (R). Note, that the adsorption
layer height h_ specifies a lower bound for the liquid layer
thickness %, which in turn imposes a restriction to the minimal
critical nucleus size min(R*) ~ &_, in contrast to the macroscopic
picture where no such limit exists. This restriction in turn sets a
critical supersaturation p, since R* ~ p~', beyond which no
steady nucleus states are possible anymore. The energy Gmeso(R)
can be calculated in two different ways:

(1) Quasi-static relaxation: in the first method, we consider
the dynamics of a drop state as given by eqn (32) and (33) using
a very small transfer mobility m such that all hydrodynamic
relaxation processes due to capillarity and wettability (the
conserved part of the dynamics) take place much faster than
the exchange of mass between the phases. Starting from the
critical nucleus state, the liquid height profile % is disturbed
using white noise with a small positive or negative mean to
nudge condensation or evaporation, respectively. While the
drop then slowly shrinks or grows, the base radius and energy
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are calculated. Due to the very slow mass transfer, the drop is
considered quasi-static during the process, which allows for
Gmeso (R) to be faithfully recovered.

(2) Continuation: in the second method, continuation is
used to trace the critical nucleus state over a range of p. As the
size of the critical nucleus is R*(p) ~ p~ ', a continuation in p
effectively corresponds to a continuation in R*. Inserting the p
values from the continuation into eqn (24) and (25) along with
the corresponding profiles #*(r;p) and &*(r;p) gives the nuclea-
tion energy barrier as a function of supersaturation or base
radius = Gmeso[* (r;p), & (1, p); ] — g:neso(p) A gl*neso(R)‘ How-
ever, right now we are not looking for the energy barrier
Greso(R) but for Gueso(R), the two of which differ only by the
value of p used in the calculation, at otherwise fixed para-
meters. Basically we ask: How does the energy of the critical
nucleus characterized by #2* and £* look like, if we evaluate it at
another value of p than the one at which it is a steady state?
From eqn (24) and (25) it is seen, that the difference in
Gmeso| 1, &; p] caused by a change Ap is given by

Gmeso [h, CT;P} — Gmeso [h, &p+ Ap} = 2RJAP(I1 - /’l,)rdl’. (39)

Hence, the energy barriers G . [#*(r; p), & (r; p); p] obtain for
a set of values p during the continuation can be mapped to an
arbitrary value p to obtain

Gmeso " (1), E (13 P); ] = Gineso 1" (r;2), € (15 )3 P
(40)
+ ZTEJ(p —p)(h—h_)rdr.

Fig. 7 shows Gmeso as a function of drop radius in the liquid
limit (blue), the rigid limit (red) and for an intermediate elastic
case (purple). Both described methods are compared to the
macroscopic result. While the mesoscopic values obtained by

x10*

&~
@
~
~
< QUASI STATIC CONTINUATION

_05k rigid Y rigid

’ elastic Y  liquid-like
— liquid-like === macro. analytic
1.0 1 1 1 1 1 1
0 20 40 60 80 100 120 140
R/ha

Fig. 7 Comparison of the macroscopic energy Gmaco and mesoscopic
energy Gmeso as functions of the base radius R. The macroscopic energies
are obtained analytically and plotted as dashed lines for the liquid-like
(blue) and rigid (red) limit respectively. The mesoscopic energies are
calculated using quasi-static time simulations (1st method, solid lines)
and continuation (2nd method, ¥ symbols). The critical radii and the
energetic maxima are indicated by the ¥ symbols. The mesoscopic model
is also used to capture the regime of intermediate elasticity, here the
quasi-static method is used for s = 10° (dark purple curve).
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continuation (¥ symbols) agree very well with the ones obtained
by the quasi-static approach (solid lines), both are slightly
smaller than the macroscopic analytical predictions (black
dashed). This results from the differences between the macro-
scopic and mesoscopic nucleus profiles in the contact line
region.| More importantly, the positions of the energy maxima,
i.e., the critical radii R* (marked by V), are correctly recovered.
The overall agreement between macroscopic and mesoscopic
model is quite satisfactory, allowing us to use the latter for
exploring the critical nucleus characteristics in the elastic
regime. The purple line in Fig. 7 shows the energy as obtained
by the first method for an exemplary intermediate softness s =
10> and lies between the rigid and liquid-like limits, as
expected.

3.2.3 Influence of supersaturation and elasticity. Key to the
investigation of the nucleation probability are the critical
nuclei, i.e., the steady states corresponding to the maxima in
Fig. 7. The corresponding results obtained from the continua-
tion in supersaturation p as explained in Section 3.2.2, are
shown in Fig. 8(a), giving the volume as a function of p on a log-
log scale. The stable and unstable flat film states 2 and &,
discussed in Section 3.1 are given as black solid and dashed
lines, respectively. The volumes are given by V. = nh.L> The
volumes of the critical nuclei are shown for the rigid (red) and
liquid (blue) limit. Thereby, the macroscopically obtained
results (thin lines) [eqn (5) and (14)] are compared to the
mesoscopically obtained ones (thick lines). The volumes are
obtained by integration of the numerically determined thick-

ness profiles, V' = IéZTE/’H‘dI‘. The volumes of all states, except
for h_, increase with decreasing supersaturation p. In the low
p limit, i.e., at large volumes, the macroscopic and mesoscopic
critical nucleus states well agree and show the predicted scaling
V ~ p~>. As the nucleus size decreases (increasing p), the
mesoscopic results deviate from the macroscopic predictions
(see Section 3.2), approach Vg, = nh_L?, and eventually end in a
pitchfork bifurcation, very close to the saddle-node bifurcation
of the uniform states (¢ symbol). Note further, that the volumes
of the mesoscopic states all depend on the system size L, since
the adsorption layer, which is present in the macroscopically
dry areas, contributes with a volume per unit area %,. Therefore,
we also provide in the inset Fig. 8(b) the effective condensed
volume Vi = V* —nh_L? for the mesoscopic states, ie., the
volume above the adsorption layer. This measure is indepen-
dent of system size.

Fig. 8(b) shows a better agreement of mesoscopic and
macroscopic results that is maintained up to higher super-
saturation. Only as p. = Cy/4 is approached a clear deviation is
visible. Linear stability analysis for an infinite domain size
shows, that the bifurcation point where the branch of meso-
scopic critical nuclei emerges coincides with the saddle-node
bifurcation. For a finite domain, however, the bifurcation is
shifted a bit along the A, branch. Most remarkably, this

|| This difference is constant and does not depend on drop size. It therefore
becomes less important as the drop size and the associated energies increase.

© 2026 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Paper
— al’h. — liquid-like meso. ~—— liquid-like macro.
- nL2h+ = rigid meso. — rigid macro.
10°
@) ® ]
" 1
o
=
=~ ~ n-1/3
>~ 107 <~ 1 1
o : S~ 02 0.4 0.6
: A\ v
IS il SO
> S~
106 P s
s L [ R | L I R | L PR R B R A
1073 1072 107! 10°

supersaturation p

Fig. 8 Volume of the mesoscopic flat uniform steady film states (black)
and of the critical nuclei in the rigid (red) and liquid-like (blue) limit as a
function of the supersaturation p. (a) The total volume of the steady states,
which in the mesoscopic picture includes the adsorption layer and there-
for depends on system size. For small p the mesoscopic (thick lines) and
macroscopic (thin lines) results agree and recover the scaling law V ~ p~>.
For larger p, the mesoscopic nuclei deviate form the macroscopic ones. All
branches of mesoscopic states end at or near the saddle-node bifurcation
of the film states (¢ symbol). (b) The inset gives the effective condensed
volume, namely the volume above h_, as a function of p in the range close
to the bifurcation shaded gray in (a). The numerical domain was restricted
to circular region of radius L = 500h,.

bifurcation is then found at different positions (marked by <)
in the rigid and liquid-like limit. Again, the disagreement of
macroscopic and mesoscopic model for p — Cy/4 is assumably
caused by the different nucleus shapes due to the diffuse
contact region present in the latter, which gains impact as
the nucleus size decreases.

In the same way, the nucleation barrier can be calculated
from the mesoscopic profiles using eqn (24) and (25) and
compared to the macroscopic prediction eqn (18). In Fig. 9
the energy barrier is shown as a function of supersaturation
(using the same line styles as in Fig. 8). Again, both levels of
description agree well in the small p limit, recovering the
predicted power law G .., ~ p 2. The barrier increases with
decreasing supersaturation in agreement with Section 3.2.
Beyond that, the mesoscopic model estimates the energy bar-
rier for p — p. to be up to several orders of magnitude smaller

108

10° |

10*

MESOSCOPIC

energy barrier G* [kgT
2

——= film MACROSCOPIC
1072 | = liquid-like — liquid-like
m— rigid — rigid
107 . MRS | . MR W
107 107! 10°

supersaturation p

Fig. 9 Nucleation energy barrier G* as a function of supersaturation p.
The presented data are the same as in Fig. 8.

Mater. Adv.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ma00936g

Open Access Article. Published on 08 December 2025. Downloaded on 1/18/2026 3:01:08 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Paper

Fig. 10 Shape of a mesoscopic critical nucleus on an elastic substrate for
p ~ pc = Cy/4. The profiles h and & exhibit only slight modulations of O(#,)
and barely resemble spherical caps.

than the macroscopic value. This indicates, that the CNT, ie.,
the employed macroscopic model, strongly underestimates the
nucleation probability close to the critical point. In Fig. 10 a
mesoscopic critical nucleus on a soft substrate is shown for p ~
Pe- At p. = Cy/4 the mesoscopic nucleation energy barrier even
vanishes, such that the vapor condenses uncontrollably into the
liquid phase for p > p.. The dimensionless critical super-
saturation p. = Cy/4 translates to the critical relative humidity

c 5 Vsl + Yiv = Vsv
Iy = exp (_¥
H 6 pylvha3

:ﬁpﬁvmm+mfm
6 kBT pkBT ’

which for the values given in eqn (38) is rf; &~ 3.6553.

Finally, the mesoscopic model is used to investigate the
influence of elasticity on the nucleation probability. Once
again, continuation is employed, however, this time we explore
the substrate softness 7../R* at fixed supersaturation p. The
resulting energy barrier is displayed in Fig. 11. With the
transition from the rigid to the liquid-like limit, ie. with
increasing softness, the energy barrier decreases by a factor
greater than 2. This decrease in the energy barrier is amplified
through the Boltzmann exponent [eqn (3)], and may therefore
strongly affect the nucleation probability and, consequently,

(41)
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Fig. 11 Threshold energy as a function of substrate softness at fixed
supersaturation p = 0.1. The energy barrier decreases with increasing
softness, resulting in a strongly increased nucleation probability. Note,
that the transition takes place at about /ec ~ R*.
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the observed droplet density, (qualitatively) explaining recent
observations in ref. 31. Note that the transition occurs approxi-
mately when R* ~ /..

4 Conclusion

Recent experiments showed that the nucleation density of dew
is strongly affected by the softness of the elastic substrate
controlled by the crosslinking ratio of a gel. The nucleation
probability can be predicted as a Boltzmann factor and is
therefore governed by the energy barrier G* given by the critical
nucleus. This barrier in Gibbs free energy has been calculated
in the macroscopic picture in both, the rigid and the liquid-like
limit. For the given interface energies the nucleation energy in
the liquid-like limit is about half the one in the rigid limit. To
further explore the regime of intermediate elasticity, a meso-
scopic gradient dynamics model has been employed to deter-
mine the energy as a function of supersaturation p and softness
/e./R*. The macroscopic and mesoscopic models were found to
agree in the limit of rigid and liquid substrates, as long as the
critical nucleus is of sufficiently large volume, ie., when a
relatively small supersaturation is considered. Both models
predict a decrease in the energy barrier with increasing super-
saturation, indicating an overall increased nucleation density at
higher supersaturation. At large supersaturation, the macro-
scopic model considerably overestimates the energy barrier by
several orders of magnitude as compared to the mesoscopic
theory, resulting in an underestimated nucleation probability.
This deviation is caused by the difference in nucleus shape;
while mesoscopic nuclei exhibit diffuse contact regions that
increasingly influence their shape as R* — h_, the shape of
macroscopic nuclei is (in the rigid and the liquid-like limit)
invariant under changes in size, which is most likely not
justified as microscopic scales are approached. Next, the
change of the energy barrier with increasing substrate softness
at fixed supersaturation has been investigated using the meso-
scopic model. The decrease in the energy barrier has been
shown to coincide with the transition of contact angles from
Young (rigid) to Neumann (liquid-like) at /.. ~ R*. However, in
the experiments the increase in drop number occurred in the
range 107’ m < /.. < 10> m and since the critical nuclei are
considered to be of nanometer size, it is still unclear why
nucleation depends on the substrate softness at all. Beyond
that, the critical nucleus volume is found to decrease with the
substrate softness, allowing for the formation of more nuclei if
the vapor access is limited, e.g.,, by slow transport in the
gas phase.

Finally, the nucleation energy barriers, even those predicted
by the mesoscopic model, are about two orders of magnitude
too large to satisfactorily explain the experimentally observed
nucleation densities, even though the tendency with changing
softness fits qualitatively. To appreciate the implications of
such large energy barriers, we consider the resulting nucleation
probabilities in the rigid and liquid-like regimes, for which
the difference in energy barriers is about 50%. Using the

© 2026 The Author(s). Published by the Royal Society of Chemistry
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Boltzmann factor to estimate the nucleation probability would

for p = 0.1 yield
gl*iq. g:igid —60
exp(kBT— kBT) < 107,

A similar argument can be applied to the comparison of the
energy barrier at different p, resulting in huge differences in the
nucleation probability and indicating a strong dependence of
the nucleation rate on the supersaturation, which could not be
observed in the experiments. That being said, it was found that
the mesoscopic nucleation energy barrier drastically decreases

Prigid
rnee o

42
Diiq. (42)

1
as p. is approached and reaches O(1) at about p =~ 3 which

translates to ry; & 3.2657 or ry = 1.2184. The behavior at large p
depends strongly on the nucleus shape and, in turn, on the
functional form of the wetting potential f(#) - many different
forms are discussed in the literature.?® 249273459 pyrther, the
range of attractive microscopic interactions is determined by
the rate at which f converges to zero as % increases. Increasing
this range increases the width of the contact region, which in
turn causes the energy barrier to fall off quicker as p. is
approached.

All of this points towards the incompleteness of the proce-
dure to estimate the nucleation probability using only the
Boltzmann factor. As discussed in ref. 31 the relation between
the observed drops and the nucleation rate is much more
intricate than that. On the one hand, the classical nucleation
theory is a strongly approximated description that considers
macroscopic concepts like interface energies. The validity of the
latter is at least questionable in the context of microscopic
nuclei of only a few particles in size, which renders the entire
CNT obsolete. Even though the mesoscopic model accounts for
the influence of microscopic interactions in terms of the
wetting potential, the use of a more advanced model, e.g., the
dynamic nucleation theory (DNT) or the extended modified
liquid drop (EMLD) model or both, might deliver more satisfy-
ing results. On the other hand, the experimental capabilities of
capturing the nucleation process are strongly confined with
regard to spatial as well as temporal resolution, both of which
are of importance. In consequence, it cannot be ruled out that
other physical processes are interfering. In particular, the
halted nucleation of new drops in the dry regions of the initial
breath figure is caused by the formation of a saturated diffusive
boundary layer close to the substrate,***' which requires to
spatially resolve the vapor density. A suspected cause that
might enhance this effect is the cloaking of drops by liquids
leaking from the substrate. This would alter the droplet shape
and interface energy and therefore explain the discrepancy
between experiments and theory. In addition the coarsening
of drops was found to be suppressed on softer substrates both
experimentally,®® and theoretically*® resulting in an increased
drop density in turn. Finally, even though contaminants and
impurities were ruled out as an additional source of nucleation
in the experiments, there might still be microscopic hetero-
geneities present at the substrate surface, e.g., due to the
molecular structure of the polymer network, which affect the
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nucleation rate. The impact of such effects is largely unknown
and may be subject of future investigation.
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Appendices
A Temperature-induced condensation

The threshold of phase transition, ie., saturation, can be
predicted by the Clausius-Clapeyron relation. This relation is,
however, often corrected to match experiments. For instance,
the Rankine law introduces empirical constants to capture the
temperature dependence of latent heat, while the Arden-Buck
law further accounts for water vapor non-idealities over a wide
temperature range.®” We adopt the latter semi-empirical law,
which is widely used in meteorology and engineering for its
accuracy and practicality

oo (0-2) )]

with T in °C and p in kPa and the empirical constants a ~
0.61121 kPa, b ~ 18.678, ¢ ~ 234.5 °C and d ~ 257.14 °C which
are valid for T > 0 °C. For example, fixing the chamber
humidity to 7y = 0.9 at the roof and cooling the gel from
20 °C to 5 °C, the relative humidity in the immediate vicinity
of the substrate is ry ~ 2.41.

(43)

B Classical nucleation theory

The transition of a particle from an initial phase to another one
may occur spontaneously only if that process is associated with
a decrease in free energy. This condition must be met also in
the context of nucleation in order for a new phase to sponta-
neously emerge and grow. The formation of the latter, however,
is always accompanied by the creation of an interface (with the
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surrounding initial phase), which represents an energy penalty.
Assuming the new cluster to adapt a shape that minimizes the
surface to volume ratio (provided the material is able to do that)
the energy penalty is minimized as well. Since this ratio usually
decreases further with increasing volume, the decrease in free
energy per particle entering the new phase eventually predomi-
nates the penalty associated with the interface created in the
same course. The minimal structure at which that happens
corresponds to an energetic maximum and is referred to as a
nucleus. It is these nuclei that initiate the formation of a new
phase, once the associated energy barrier is overcome. In other
words, the nucleus corresponds to a steady yet unstable thresh-
old state, meaning that every smaller structure decays and every
larger structure grows. The exact form of the governing energy
and thus the characteristics of the nucleus crucially depend on
the considered scenario. Two general cases are distinguished:

Homogeneous nucleation

A homogeneous initial phase, consisting of only one particle
type, is considered. Due to thermal fluctuations these particles
occasionally form small clusters of a new phase, that eventually
start growing spontaneously if they exceed a critical size or
particle number. In other words, these clusters of the same
particle type may serve as nuclei. The energy penalty is exclu-
sively governed by the interface energy between the initial and
new phase and a lower bound may be estimated by assuming
the nucleus to take a spherical shape.

Heterogeneous nucleation

The initial state is assumed heterogeneous in a sense that
particles of different type may be present in some form ranging
from microscopic impurities up to macroscopic structures (e.g.
a solid substrate). If the interaction of the nucleating particle
type with another type (expressed in terms of interface energies)
is stronger than the interaction with its own type, nucleation is
energetically favored wherever that other type is present. An
example are the considered breath figures, where water vapor
condenses to the liquid state at the surface of a cooled
substrate. The energy penalty is then given by the interplay of
interface energies between all the various phases.

The bulk energy gain associated with the nucleation is given
by the difference in Gibbs free energy, and thus by the differ-
ence in chemical potentials, between initial and final
state,"®*>*® implying constant temperature 7, particle number
N and external pressure p.** In the following we consider a
small region in the immediate vicinity of the substrate such
that the temperature in the gas phase is approximately constant

** In view of the experiments in ref. 31 the assumption of conserved particle
number seems rather unjustified since the system has access to an infinite
particle reservoir. In fact, it would be more convenient to consider fixed volume V
and chemical potential u instead. In other words, the system represents a
realisation of a grand canonical ensemble and is driven by minimization of the
corresponding grand canonical potential Q (or Landau potential). It was shown,
though, that the difference in grand potential associated with nucleus formation
can be interpreted as a change in Gibbs free energy and is related to the change in
Helmholtz free energy®”*>*** (see Appendix B.1).
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and equal to the temperature of the substrate. The chemical
potentials u,, p, of the liquid and vapor phase can be quantified
either by employing a real gas theory, e.g. by considering a van
der Waals gas, and performing a standard Maxwell construc-
tion or by assuming the vapor to behave like an ideal gas and
fixing the chemical potential and particle density in the liquid.
Following the latter route, the vapor obeys the corresponding
equation of state pV = NkgT and its chemical potential is

,h:@Tm(P%) (44)

with Boltzmann constant kg and the thermal wavelength 4, i.e.
the de Broglie wave length at thermal energy. Note, that the
chemical potential is a function of temperature and pressure
u(T,p) via the equation of state. Consequently, chemical
potential and pressure are not independent variables in an
isothermal process. At equilibrium in an isothermal situation,
the change in chemical potential associated with a change in
pressure is determined by the Gibbs-Duhem relation

Ndu = vdp. (45)
Including the ideal gas law and after integrating we find for
the vapor

(46)

1 (pv) = 1 (P}) = kpT'In (}%)

v

with p/, being an arbitrary reference pressure. Assuming con-
stant particle density in the liquid p, = N,/V, eqn (45) becomes

te(pe) — e (P)) = %(m - ph)- (47)

Then, the liquid pressure and chemical potential are directly
related via the constant particle density. The difference in
chemical potentials between liquid and vapor phase results to

A = py(pe) — iy (py) = %(m - p))
(48)
— kTln (ﬁ—) + 1, (py) — 1y (P)-

v

Demanding phase coexistence at a specific saturation pres-
sure p3™, i.e. 1/ (p3) = 1 (P32, the reference pressures have to be
set to p), = pl, = pi*, leading to

Vi

Au=—
H N,

(p[ - pf,m) —kgT ln(l'].[)7 (49)

sat

with the relative humidity ry = py/py”. Fixing the chemical
potential, and hence also the pressure, of the liquid to those
of the vapor at saturation, i.e. i, = u,(p{*) and p, = p{*", only the
logarithmic term remains. If the gas phase is considered an
ideal mixture of K species (e.g. water vapor in N,) its total

pressure p is the sum of all partial pressures p; according to

© 2026 The Author(s). Published by the Royal Society of Chemistry
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K
Dalton’s law p = 3 p;. The Gibbs-Duhem relation then writes
i
Vzdpl = ZN,dﬂl
i i

Allowing only one component, e.g. i = v, to condense into a
liquid phase coexistence requires p/(psad) = i(p3*) where now

(50)

K

Psat = P+ > p; is the total pressure of the mixture at satura-
i#v

tion of component v. In consequence, the reference pressures

in eqn (48) have to be chosen differently, namely p; = ps,« and

P, = p{, yielding

A/.L = m(pz) - ,UV(Pv) = %(])é _psal) kBTln <Ps‘n) (51)

v

According to classical thermodynamics the Gibbs free
energy is given by G =F + pV with Helmholtz free energy

K
F =3 u;N; — p;iV;, the externally imposed total gas pressure
i

p and the total volume V. The Gibbs free energies of the
coexisting liquid and gas phase (including vapor) state G and
the pure gas state G are given by

G(T,N.p) = F(T,N, V) +pV
K (52)
= wNe=peVe+ Y (;Ni = piVi) +pV,
and

G(T,N,p)=F(T,N,V') +pV’

K
= (N, = Vi)
i

The energy difference then becomes

+pV'. (53)

K
AG=G-G = {WM —pVet Y (wNi = piVi) +pV

K
- [Z (WiN = piV) +pV'

i

m

K
= puNe = (pe=p)Ve+ Y (i
i
LN, = (e = D) Vi + 1N, #N/+Z
i#Vv
(3)
=(py — iy)Ne = V;+Z

= —(Psat - ) — N¢kgT In (pmt) —NokgT In <ﬂ§dt>
v v

(54)

For clarification the separate steps are explained: at (1) the
volume of the coexistence state is divided into a liquid and a
gas part V=V, + V,. Further, all components of the gas mixture
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share the same volume V; = Vy =V — V, and V] = V7, such that
the respective partial pressure terms cancel with eqn (50). At (2)
the particle conservation in the gas phase N; = N} is used for all
components of the mixture i # v. At (3) the global particle
conservation of species v is used, i.e. N, = N, + N,. At (4)
eqn (50) is used again to eliminate the sum since dp = 0. Note,
that not only the total pressure p but also the partial pressures
P} = p; are held constant in the considered system. Hence, since
chemical potential and pressure are not independent in an
isotherm u! = y;. The difference in chemical potentials is
expressed using eqn (51) and finally the pressure difference
commonly neglected.*>*” Finally, the energy gap is exclusively
governed by the difference in chemical potentials. For ryy > 1,
ie p, > p¥, the difference in the Gibbs free energy is always
negative such that a transition of particles from vapor to
condensed state is always favorable. As mentioned above, this
condition, referred to as supersaturation, is a prerequisite for
spontaneous nucleation to occur and the new phase to grow.
Finally, the change in Gibbs free energy associated with the
creation of a liquid cluster of arbitrary shape from its own vapor
in contact with a substrate is found by adding the interface
energy penalties®*6748

AG = vads + v (A — A,) — peks T In(ru) Ve, (55)

with y; and A4; respectively being the energy and area of the
liquid-vapor (lv), substrate-liquid (sl) and substrate-vapor (sv)
interfaces and the prime referring to the pure gas state. This
equation is the starting point for the modeling approach and
corresponds to eqn (1).

B.1 Equality of Gibbs free energy and Landau potential
barrier. The difference in Landau potential (grand canonical
potential) between the state of coexisting liquid and gas phase
(including vapor) Q and the pure gas state Q' is given by

AQ=Q-Q

oo oo

YIVAIV +

—{mNe PeVH-Z iNi = piVi) = iy Ne — Zul }

K K
- {Z (iNT = piVT) = D KGN
1

i

=(pe — 1y)Ne — (pe

K

4
<:> —(Psac —P) Ve PekBTln(p ) Vi~ —pkpT In (psat) V.

(56)

To clarify, the separate steps are explained: at (1) the Landau
potentials of the final and initial state are expressed in terms of
the Helmholtz free energy as Q = F — uN. Thereby, the last
term refers to the Gibbs free energy of a pure gas state with the
same total particle number of the components and at the same

Mater. Adv.


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d5ma00936g

Open Access Article. Published on 08 December 2025. Downloaded on 1/18/2026 3:01:08 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Fig. 12 Visualization of a nucleation process from two different perspec-
tives. (a) Consider a fixed particle number N of vapor particles in an initial
volume V. As the condensation of vapor into the liquid state takes place the
pressure p is held constant and the volume occupied by the particles reduces
to V. The energy difference is given by the change in Gibbs free energy
AG=G— 7. (c) Consider a fixed volume V including an initial number of
vapor particles N'. As the condensation of vapor into the liquid state takes
place the chemical potential p is held constant and particles diffuse into the
area until N is reached. The energy difference is given by the change in grand
potential AQ = Q — Q'. If the final state (c), i.e., N and V, is the same in both
scenarios, the change in Gibbs energy equals the change in grand potential
AG = AQ under certain assumptions as discussed in the main text.

fixed chemical potentials p,. At (2) the Helmholtz free energy is
K
expressed as F = > y;N; — p;V;. At (3) the fixed volume V =V

and the shared gas volume V] =V’ and V; = V — V, is used. At
(4) eqn (50) is used to eliminate the sum since dp = 0. The
difference in chemical potentials is expressed using eqn (49)
and the pressure difference is neglected, as is common
practice.*®*” This result is the same as eqn (54), hence AQ =
AG in this case (Fig. 12).

B.2 Binary mixture of water vapor in N,. In the case of a
binary mixture, e.g. water vapor in N, as used in the experiments in
Ref. 31, the change in Gibbs free energy can directly be calculated
using the chemical potential of an ideal gas (44). The Gibbs free
energy of a binary mixture coexisting with a liquid state is

G =F+pV=[Ne—peVe+uNy = pVy + i, NN, — PN, VN, |
+pV

= (ttg— i )Ne — (pe — py — pa) Ve + 1ty Nuyo + fin, N,
N———— —™—
g!
(57)

with p = p, + py, being the constant imposed pressure and V="V, +
Vg being the total volume with V; = V, = Vy,. Further, conserved
total particle number N = Ny o + Ny, as well as conserved particle
numbers of the two species Ny, and Ny,o = N, + N, are assumed.
Enforcing equilibrium at p, = p§** leads to

dg y y |

an, = e o) = (pe=pi —pxy) /210

= =, (P3) + (e = (O3 +px,)) e

Psat
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with the liquid particle density p, = N,/V,. Inserting into eqn (57)
and using eqn (44) yields

sat
v

G = —phyTin (;#) Vi~ (psat—P) Ve + 1ty Niyo + i, N,
N—— —_————
~0 g/

—»Ag:g—g’:—p[kBTln(pV ) v,

sat
(59)
Similarly, using the Landau potential
Q =F —uN = [uNe—peVi+ Ny = pyVy + pin, NN, — PN, VN, |
= [iny N, + g (Ny + No)|
= (e —)pVe— (pe—pv—pno) Vi—(pv+o8,) V.

e
(60)

Obviously AQ = AG.
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