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Condensation on soft substrates: a
mesoscopic perspective

Christopher Henkel, *a Ambre Bouillant, b Jacco H. Snoeijer c and
Uwe Thiele adef

We consider the condensation and evaporation of a volatile partially wetting liquid on a soft substrate in

contact with a homogeneously saturated gas phase. Recent experiments demonstrated a strong

dependence of nucleation density on the substrate softness. Motivated by these experiments, we

approach the problem considering both macroscale and mesoscale models. On the macroscale, we

employ thermodynamic considerations to determine the critical nuclei energies and the resulting

nucleation probabilities in the limits of rigid and liquid substrates. On the mesoscale, we use a gradient

dynamics model for a drop of volatile liquid on a soft substrate with Kelvin–Voigt viscoelasticity in

Winkler-foundation form. The governing energy functional incorporates elastic and interface energies as

well as bulk liquid energy. We show that nucleation probabilities obtained with the two models agree for

small supersaturation, but display differences when drop nuclei are small. Finally, we use the mesoscopic

model to investigate the condensation and evaporation dynamics of drops in the intermediate elastic

regime and relate the results to the experimental findings.

1 Introduction

When breathing against a cold window pane, one notices how it
becomes opaque. A close look reveals, that this results from a
rather dense random arrangement of numerous tiny drops that
scatter light. Such breath figures form on cool surfaces due to
condensation of liquid from the adjacent vapor and are exten-
sively investigated.1–5 Depending on the surface properties, the
liquid condenses into droplets or into a uniform film. The
spontaneous local gathering of vapor particles that initiate the
formation of drops of another thermodynamic phase is called
nucleation. While condensation, i.e., the clustering of vapor
molecules into liquid drops, is accessible to observation and
study, it is triggered by nucleation, a microscopic process that
normaly occurs at scales that make it challenging to study. Yet
nucleation plays a central role in a wide range of phenomena,
from crystallization,6 electron condensation in solids,7 tectonic
events such as earthquakes8 and volcanic eruptions,9 to

meteorological processes like cloud formation, snow, and
rainfall,10,11 pathological conditions such as decompression
sickness,12 and even the formation of black holes.13 In general,
nucleation is important for phase transitions of first order,
which is a subject of great interdisciplinary interest and prac-
tical importance. Since Gibbs achieved the first insights into
the matter14 various theories have been developed. The widely
used classical nucleation theory (CNT)15–18 determines the
energy cost of cluster formation based on purely macroscopic
quantities such as interface and bulk energies. The CNT is
extended, e.g., by the dynamic nucleation theory (DNT) and by
the extended modified liquid drop (EMLD) model that incor-
porate translational motion and small fluctuations in the
particle number, respectively.18–20 In contrast to these phenom-
enological approaches, kinetic theory calculates the energy of
cluster formation by directly considering the molecular inter-
actions on the microscale thereby avoiding the use of macro-
scopic quantities. Considering the particles to be hard shapes
molecular dynamics (MD) and Monte Carlo simulations are
often utilized.21–24 In contrast, density functional theory (DFT)
describes the system in terms of a microscale ensemble-
averaged density and is used, e.g., to consider colloidal
crystals.25 The direct observation of nuclei of only a few
molecules in size still remains an experimental challenge.18,20

Here, we consider how a soft substrate influences nucleation
and growth of sessile drops of a partially wetting liquid from
vapor, i.e., condensation onto soft substrates. It is known that
the ability of a substrate to deform under external pressure
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crucially influences the nucleation density.26 This observation
is confirmed by ref. 27 using MD simulations. There, it is
further found that also condensation rate and heat transfer
efficiency increase with the softness of the substrate. It also
affects the condensation mode, i.e., whether drops or films are
formed. Sharma et al.28 observe that even though the overall
condensation of drops increases with the softness of the
substrate, the growth of individual drops may be reduced by
cloaking effects, e.g., by uncrosslinked PDMS chains leaking
from the substrate. Further it is found that coalescence is
significantly delayed as the substrate softness increases26,29

and it is confirmed by gradient dynamics models that as well
the coarsening mode is affected by the substrate softness.30

Recently, experiments on dew formation presented in ref. 31
were performed on substrates of different softness. There, flat
homogeneous layers (millimetric thickness) of silicone elasto-
mers are deposited on a cooling stage in a chamber with
controlled humidity (mixture of water vapor and N2) as illu-
strated in Fig. 1(a). Condensation is achieved by cooling down
the gel while simultaneously fixing the chamber humidity and
pressure until a phase transition is induced [see Appendix A].
The threshold of phase transition is referred to as saturation.
The impact of substrate elasticity on dew formation is investi-
gated by tuning the gel stiffness through its crosslinking
density. The breath figures are recorded from above using a
high resolution magnifying objective. Since the resolution of

the objective is E1 mm the experiment does not directly record
the nucleation process but rather the subsequent mesosopic
dynamics. Fig. 1(c) provides examples of the resulting breath
figures, each taken as soon as drops are visible, for decreasing
substrate softness (from left to right) quantified by the shear
storage modulus G0. As the latter increases, that is, with
decreasing elasto-capillary length cec = g/G0, the initial number
of drops is found to decrease. Remarkably, once condensation
has started, there are no further nuclei forming in the dry
regions between the already growing drops, which is due to the
decrease of vapor concentration below saturation in the proxi-
mity of the substrate as discussed in ref. 24 and 31. In Fig. 1(b)
the drop density c is displayed as a function of cec for two
different humidities, rH = 1.22 (n) and rH = 2.42 ( ).† Remark-
ably, while the drop density appears to be strongly affected by
the substrate softness, i.e., it increases with cec, it is barely
affected by changes in the supersaturation, that is the relative
humidity rH at the substrate. Consider ref. 24 and 31 for a more
extensive discussion regarding the later stages of droplet
condensation.

Further, in ref. 33–36 it is predicted, that in the regime of
intermediate softness the contact angles of steady drops transit
smoothly between Young’s and Neumann’s laws, which is
experimentally confirmed (see Fig. 2).‡ This transition in the
contact angle is reminiscent of the transition observed in the
drop density c when going from rigid to liquid-like substrates

Fig. 1 (a) Schematic of the experimental setup. A gel substrate (red) is
placed inside a controlled-humidity chamber and cooled down to Ts =
5 1C using a Peltier element (green). (b) Drop density c as a function of
substrate softness quantified via the elasto-capillary length cec, based on
data from ref. 31. The experiment used various PDMS gels – Sylgard 184
with mixing ratios ranging from 10 : 1 to 80 : 1, CY52-276 (Dow Corning)
with ratios of 1.3 : 1 and 1 : 1, and PVS Elite16 (1 : 1). Measurements were
conducted at two imposed relative humidities: rH = 2.42 ( ) and rH = 1.22
(n). Horizontal lines indicate the limiting cases of a rigid substrate (red;
nanometric PDMS brush grafted on a silicon wafer, see ref. 32) and a
liquid-like substrate (blue; uncrosslinked PDMS). The color gradient from
red to blue indicates the transition between these two limits. (c) Top-view
images of breath figures formed on substrates with different softness
levels, taken at the onset of drop visibility. The apparent nucleation density
decreases with increasing substrate stiffness, characterized by the shear
storage modulus G0.

Fig. 2 Liquid–gas contact angle ylg relative to the horizontal as a function
of the gel softness cec/R. Angles are measured on side-view images of
droplets with radii ranging from R E 10 mm to E1 mm, i.e., recorded at
later stages, sitting on gels with storage modulus G0 ranging from 100 Pa to
106 Pa. The lightly shaded bands indicate the contact angles experimen-
tally determined on short PDMS brushes, i.e., in the rigid limit (red), and on
uncross-linked PDMS oligomers, representing the liquid-like limit (blue) for
the same material. Again, the red to blue color gradient indicates the
transition between these two limits.

† These values correspond to the relative humidity in the proximity of the
substrate, that is at T = 5 1C and can be related to the relative humidity at
different temperatures, e.g., T0 = 20 1C at the chamber roof, using eqn (43).
‡ The droplets on which the angles are measured are above micron size and
therefore not nuclei, but what they become after some time of condensation.
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[cf. Fig. 1(b)]. The cross-over between the Young regime and the
Neumann regime can be inferred from Fig. 2 to occur when the
elasto-capillary length becomes comparable to the drop base
radius cec B R (cf. Fig. 3). In Fig. 1(b) the transition is found at
cec E 10 mm and thus elasticity is expected to play a role
when cec E R E 10 mm. This observation is enigmatic for the
typical nuclei size at the employed humidities is known to
be R* { 10 mm, i.e., too small to feel the elasticity of the
substrate. As the drops grow larger, due to condensation,
they automatically undergo a size-controlled transition in
cec/R and elasticity gains impact. The transition shown in
Fig. 2 may occur even before the diffusive boundary layer has
formed.

To investigate the role of elasticity in nucleation, we use a
mesoscopic gradient dynamics model37 similar to the one
presented in ref. 30, coupling a classic thin-film equation
(TFE) for a simple liquid38,39 to the dynamics of the soft
adaptive substrate employing a Kelvin–Voigt-type dynamics in
Winkler-foundation form. In comparison to ref. 30, the model
is extended to capture condensation and evaporation applying
the one-sided approach of ref. 40–43 for evaporating sessile
drops. Thereby, the saturation of the vapor phase is considered
homogeneous as is the case in the very early stages of the
experiment where the nucleated droplets are below the optical
resolution of the equipment and therefore experimentally
inaccessible. The advantage of the gradient dynamics approach
is that it is derived directly from the governing energy func-
tional, which makes it very versatile and easily adaptable to
many scenarios. A somewhat similar model has been used in
ref. 43 to study the dynamics of droplet growth and coalescence
due to imposed local influx in dependence of the substrate
softness and viscous damping. Here, the full curvature
formulation37 is used which more exactly describes the static
drop behavior, cf. ref. 44. The model is utilized to investigate
the increase of nucleation density with increasing softness in
an extended range of supersaturation that goes beyond the
range considered in the experiment. In particular, we consider

values where the size of the nuclei becomes comparable to the
elasto-capillary length.

First, in Section 2 the macroscopic CNT is used to estimate
the nucleation energy barrier in the limiting cases of perfectly
rigid and liquid substrates, considering unstable steady macro-
scopic drops to represent the nuclei. In Section 3 the meso-
scopic gradient dynamics model is used to investigate the
critical nucleus in the regime of intermediate softness. We
compare mesoscopic and macroscopic results in the liquid and
rigid limits. Finally, the influence of substrate softness on the
nucleation energy barrier is investigated in the context of the
experimentally observed phenomena.

2 Macroscopic nuclei

According to CNT the change in energy associated with the
creation of a new phase is given by the difference in Gibbs free
energy G, implying constant temperature T, particle number N
and external pressure p.18,45–48 The bulk contribution is given
by the difference Dm in chemical potentials, between initial and
final state, to which the interface energies are added. In the
present case of vapor condensing into liquid at a solid sub-
strate, the change in Gibbs free energy is (see Appendix B for
details)18,46–48

Gmacro ¼ glvAlv þ gslAsl þ gsv Asv � A0sv
� �

� r‘V‘Dm; (1)

with gij and Aij respectively being the energies and areas of the
liquid–vapor (lv), substrate–liquid (sl) and substrate–vapor (sv)
interfaces and the difference in chemical potentials per
particle is

Dm = mv � mc = kBT ln(rH). (2)

The substrate–vapor interface area of the initial dry sub-
strate state is A0sv and rc is the particle density of the liquid. The
Gibbs free energy eqn (1) combines surface energy penalties,
which in case of drop-like structures of size R scale with BR2,
with the decrease in chemical potential per particle when
changing from the vapor to the liquid phase, scaling with the
created volume BR3. This balance results in an energy barrier
G� that must be overcome to nucleate and which defines a
critical size R*. Since the nucleation of droplets on a substrate
is a stochastic process driven by random fluctuations18 the
nucleation probability P is estimated using a Boltzmann factor

P � exp � G
�

kBT

� �
: (3)

The ratio in the exponent relates the energy barrier G� to the
thermal energy kBT. In the following, we calculate this energy
barrier for a radially symmetric drop (w.r.t. the z-axis) of base
radius R sitting on a deformable substrate, extended in the
(x, y)-plane as shown in Fig. 3. In the limits of a perfectly rigid
(cec = 0) and liquid-like (cec = N) substrate, elasticity can be
neglected and the equilibrium drop shape is exclusively gov-
erned by the interface and bulk phase energies, i.e., it adapts
spherical-cap shapes.

Fig. 3 Sketch of a radially symmetric drop of partially wetting liquid with
base radius R. The spherical cap meets the elastic substrate along a circular
three phase contact line. The macroscopic contact angle y is governed by
the energies gsv, gsl and glv of the interfaces between the respective phases.
The ratio of a surface element ds and its projection onto the (x, y)-plane
defines the metric factor

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðrfÞ2

p
of the respective profile f(r).
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2.1 Rigid limit

In the rigid limit the substrate is flat and the liquid–vapor
interface of a drop or nucleus takes the shape of a spherical cap
with curvature klv as shown in Fig. 4(a). While the contact angle
yY is given by the interface energies according to Young’s law

glv cos yY + gsl = gsv, (4)

the curvature depends on the volume of the nucleus which is
yet to be determined. In terms of klv and yY the volume is

V ¼ 8p
3klv3

2þ cos yYð Þ 1� cos yYð Þ2; (5)

while the interface areas are

Alv ¼
8p
klv2

1� cos yYð Þ; Asl ¼
4p
klv2

sin2 yY: (6)

Since the substrate is perfectly flat, the total area, that is the
area A0sv of the dry reference state, is A0sv ¼ Asv þ Asl. With
eqn (4)–(6) the energy (1) becomes

Gmacro ¼ glv
4p
klv2

2� 3 cos yY þ cos3 yY
� �

� r‘Dm
8p
3klv3

2þ cos yYð Þ 1� cos yYð Þ2:
(7)

With (2 + cos yY) (1 � cos yY)2 = 2 � 3 cos yY + cos3 yY we
then find

Gmacro ¼ p 2þ cos yYð Þ 1� cos yYð Þ2 4glv
klv2
� 8rDm

3klv3

� �

¼ pg yYð Þ glvR
2 sin yY �

1

3
R3r‘Dm

� �
;

(8)

where the base radius R = 2 sin yY/klv has been introduced and
the function

g(y) = (2 + cos y) (1 � cos y)2/sin3 y (9)

is a geometric prefactor that monotonically increases with y.
Therefore, the energy barrier increases with increasing hydro-
phobicity of the substrate, i.e. with increasing contact angle yY.

The critical nucleus has to satisfy @RGmacro ¼ 0 and its
resulting base radius is

R� ¼ 2glv sin yY
r‘Dm

: (10)

In consequence, at fixed Dm a nucleated drop of base radius
R o R* will shrink (evaporate) leaving behind the dry state,
whereas a nucleus of base radius R 4 R* will grow (condense)
without bound. The corresponding energy barrier is

G�macro ¼ Gmacro R�ð Þ ¼ 4pglv
3

3 r‘Dmð Þ2
g yYð Þ sin3 yY

¼ p
3
glvR

�2g yYð Þ sin yY:
(11)

With rH E 2.41, glv = 70 � 10�3 J m�2, rc = 3.34 � 1028 m�3 and
yY = 701 the critical nucleus has a size of R* E 1.166 nm with an
associated energy barrier G�macro

�
kBT � 30. Note, that the yY-

dependent factor of G�macro in eqn (11) increases monotonically
from g(yY)sin(yY)3 = 0 in the complete wetting case (yY = 01) to
g(yY)sin(yY)3 = 4 in the non-wetting case (yY = 1801). In other
words, low contact angles will drastically reduce the nucleation
barrier.

2.2 Liquid-like limit

In the liquid-like case, i.e., for cec - N, the substrate is
deformed under the influence of the Laplace pressure caused
by the curved liquid–vapor interface until it is balanced by the
Laplace pressure of the substrate–liquid interface. This results
in the shape of a liquid lens as shown in Fig. 4(c) characterized
by constant curvatures of both interfaces. While the drop sinks
into the substrate the liquid–vapor and substrate–liquid inter-
faces form angles ylv and ysl w.r.t. the horizontal, respectively.
The angles are again governed by the interface energies accord-
ing to the components of Neumann’s law:

horizontal: glv cos ylv + gsl cos ysl = gsv, (12)

Fig. 4 Characteristic drop shapes of partially wetting liquid on substrates of different softness. (a) The substrate is rigid and very resistant against
deformations, R c cec. The drop adopts the shape of a spherical cap with curvature klv and contact angle yY selected by Young’s law. (b) The substrate is
elastic and soft enough to allow for the formation of wetting ridges at the contact lines, R E cec, but stiff enough to prevent the drop from sinking. The
local angles at the tip of the wetting ridge are given by Neumann’s law and as the softness increases the region rotates inwards such that the liquid–vapor
contact angle and curvature increasingly deviate from those in the rigid case. (c) The substrate is so soft that it is considered liquid-like and elasticity is
negligible, R { cec. The drop resembles a liquid lens described by the intersection of two spherical caps with curvatures klv and ksl. The angles at the
three-phase contact are still related by Neumann’s laws but the slope of the solid–liquid interface approaches zero.
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vertical: glv sin ylv = gsl sin ysl. (13)

Note, that the substrate beyond the drop is considered
to remain perfectly horizontal. Similar to eqn (5) the lens
volume can be expressed in terms of the curvatures and
Neumann angles

V ¼ 8p
3klv3

2þ cos ylvð Þ 1� cos ylvð Þ2þ 8p
3ksl3

2þ cos yslð Þ 1� cos yslð Þ2:

(14)

The balance of Laplace pressures results in a fixed ratio of
curvatures given by the inverse ratio of the corresponding
interface energies

�ksl
klv
¼ glv

gsl
¼ sin ysl

sin ylv
; (15)

with the second equal sign resulting from eqn (13). Note, that
the curvature of a profile is considered negative if it is convex,
as is the case for the substrate–liquid interface beneath the
drop, and positive if it is concave, like the liquid–vapor inter-
face (cf. Fig. 4). In consequence, the difference in the Gibbs free
energy (1) becomes

Gmacro ¼ p g ylvð Þ þ g yslð Þ½ � glvR
2 sin ylv �

1

3
R3r‘Dm

� �
; (16)

where g(ylv) + g(ysl) = 3V/(pR3). The critical radius and energy
are then

R� ¼ 2glv sin ylv
r‘Dm

and (17)

G�macro ¼
4pglv

3

3 r‘Dmð Þ2
g ylvð Þ þ g yslð Þ½ � sin3 ylv

¼ pglvR
�2

3
g ylvð Þ þ g yslð Þ½ � sin ylv;

(18)

respectively. Note, that the form of the expression for the
critical radius R* is identical in the rigid and liquid-like limit
[cf. eqn (10) and (17)] and that the energy for the case of a rigid
substrate [eqn (8)] is recovered from eqn (16) in the limit ylv = yY

and g(ysl) = 0. Further, the ratio G�rigid
.
G�liquid � 1 and depends

only on the interface energies but not on supersaturation, i.e.,
not on R* and Dm. For example, if the interface energies are glv =
70� 10�3 N m�1, gsl = 48� 10�3 N m�1 and gsv = 72� 10�3 N m�1

the nucleation barrier differs by a factor G�rigid
.
G�liquid ¼ 2:28

between the rigid and liquid-like case.

3 Mesoscopic model

In contrast to the rigid and liquid-like limit, in the intermediate
elastic regime the substrate profile is not analytically known.
We denote the corresponding radially symmetric height pro-
files by w(r) for the liquid–vapor interface and x(r) for the
substrate profile. The liquid layer thickness profile is then
h(r) = w(r) � x(r) (see Fig. 5). So far, only steady macroscopic
drops have been considered. We now formulate a fully dynamic

mesoscopic model that is applicable in the intermediate elastic
regime as well as in the rigid and liquid-like limits. To do so, we
include the mesoscopic wetting energy f (h) that governs the
effective interaction of the solid–liquid and liquid–vapor inter-
face. It is assumed to result from long-range van der Waals
interactions and short-range repulsive interactions

f ðhÞ ¼ A

2h2
2

5

ha

h

� �3

�1
" #

: (19)

The minimum of f (h) at h = ha [cf. thin lines in Fig. 6(a)]
ensures that a macroscopically dry substrate is always covered
by an ultra-thin adsorption layer of height ha, the energy of
which has to be taken into account. The precise thickness h� of

Fig. 5 Sketch of a mesoscopic radially symmetric drop of partially wetting
liquid on an elastic substrate. The local liquid layer thickness and the
substrate–liquid interface are described by scalar functions h(r) and x(r),
respectively. Both resemble spherical caps centered at r = 0 and transit
into the precursor layer of height h� (see the zoom) along a circular three
phase contact region at r = R. The macroscopic base radius R is estimated
by the position of maximal curvature of the liquid–vapor interface and the
solid–gas interface energy is modeled by the wetting energy f (h).

Fig. 6 Dimensionless (a) wetting energy f and (b) Derjaguin (disjoining)
pressure P as functions of the film thickness h with Cy = 1. Since P = �qhf
the zeros of the P correspond to the extrema of f and reflect steady film
states. At saturation, i.e. p = 0 (thin lines), the functions allow for only one
stable steady film state h� ( ). For p 4 0, e.g., p = 0.1 (thick lines). A second
unstable film state h+ (.) exists. (c) With increasing p the two states
approach each other and annihilate in a saddle-node bifurcation (~). The
sign of P + p determines whether the film grows due to condensation or
shrinks by evaporation (gray shaded), as indicated by the arrows for p = 0.1.
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this layer depends on supersaturation and equals ha only for
Dm = 0 as will be further discussed in Section 3.1. In conse-
quence, in the mesoscopic description, the macroscopic sub-
strate–vapor interface energy is represented by the sum of the
energies of the adsorption layer, substrate–liquid interface and
liquid–vapor interface.

Demanding consistency between the meso- and macro-
scopic descriptions at Dm = 0 leads to the condition49

gsv = glv + gsl + f (ha). (20)

Then, together with Young’s law (4), the Hamaker constant A
corresponds to

A ¼ 10

3
ha

2glv 1� cos yYð Þ: (21)

Further, the energy associated with the elastic deformation
of the substrate is now taken into account. Employing the
Winkler-foundation model50 it is given by

F el ¼
1

2S

ð
x2ðrÞ2prdr; (22)

with S being an effective softness, i.e., the inverse of the elastic
stiffness. This formulation effectively describes the substrate as
a continuous spring and follows from the fundamental solution
for a finite-thickness layer with linear elasticity exposed to a
localized force at the free surface. For a detailed discussion cf.
ref. 30.

The complete energy functional combines eqn (1) and (22),
thereby expressing the interface areas and volumes in terms of
h and x and the substrate–vapor interface energy gsv in terms of
the wetting potential f [eqn (19) and (20)]. The energy Gmeso of a
substrate with liquid coverage (drop or thick film) relative to
the reference state of a macroscopically dry flat substrate is
given by

Gmeso ¼ Gwetmeso � Gdrymeso; (23)

with

Gwetmeso ¼ 2p
ðL
0

glv

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @rhþ @rxð Þ2

q�

þ gsl þ f ðhÞ½ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @rxð Þ2

q
� r‘Dmhþ

x2

2S

	
rdr;

(24)

Gdrymeso ¼ pL2 glv þ gsl þ f h�ð Þ � r‘Dmh�½ �; (25)

where the domain has been restricted to a circular area
of radius L c R. The dry substrate state is characterized by
h = h�(Dm). Note, that the constant rDm can either be seen as an
imposed chemical potential (relative humidity) or as a Lagrange
multiplier for volume conservation

r‘Dm
ðL
0

h� h0ð Þ2prdr ¼ r‘DmDV ¼ 0; (26)

with h0 being an arbitrary mean liquid layer thickness that is to
be conserved.

The energy is extremized by calculating its variations w.r.t.
the variables h and x yielding

dGmeso

dh
¼ �glvkðhþ xÞ �PðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @rxð Þ2

q
� r‘Dm (27)

dGmeso

dx
¼ �glvkðhþ xÞ

� 1

r
þ @r

� �
gsl þ f ðhÞ½ �@rðhþ xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @rhþ @rxð Þ2

q
0
B@

1
CAþ 1

S
x (28)

with the local curvature kðjÞ ¼ 1

r
þ @r

� �
@rjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @rjð Þ2
q

0
B@

1
CA of a

field j and the Derjaguin (disjoining) pressure P(h) = �qhf (h)
(cf. Fig. 6).§ Note, that for h c ha one has P - 0 and eqn (27)
depends only on w = h + x, indicating that (at uniform super-
saturation) the liquid–vapor interface of a steady drop always
forms a spherical cap of curvature klv = �rcDm/glv, entirely
independent of elasticity. In consequence, at fixed contact
angles also the volume of a steady drop is directly determined
by the supersaturation.

To capture the time evolution we employ a gradient
dynamics approach,30,37,51 i.e., we use the kinetic equations

@h

@t
¼ r 	 QðhÞrdGmeso

dh

� 	
�M

dGmeso

dh
; (29)

@x
@t
¼ �1

z
dGmeso

dx
: (30)

The dynamics of the liquid layer thickness h corresponds to
a thin-film equation with mobility QðhÞ ¼ h3

�
3Z and dynamic

viscosity Z52 which is extended by a non-conserved term that
incorporates phase transition-limited mass exchange between
liquid and vapor37,42,53 driven by the variation dG=dh with the
transfer mobility M. For a discussion of other evaporation
models see ref. 54. The dynamics of the substrate corresponds
to the Kelvin–Voigt model and describes an exponential relaxa-
tion in time scaled by the effective substrate viscosity z.30 To
reduce the number of parameters, the equations are non-
dimensionalized using characteristic length and time scales

t = Tt̃, r = har̃, x = ha
~x, h = hah̃. (31)

with T = 3Zha/glv. After dropping the tildes one obtains

@th ¼ �
1

r
þ @r

� �
h3@r kðhþ xÞ þ CyPðhÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @rxð Þ2

q� 	� �

þm kðhþ xÞ þ CyPðhÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @rxð Þ2

q
þ p

� 	 (32)

@tx ¼
1

t
kðhþ xÞ þ 1

r
þ @r

� �
sþ Cyf ðhÞ½ �@rxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ @rxð Þ2
q

0
B@

1
CA� x

s

2
64

3
75 (33)

§ Thereby, k(h + x) corresponds to the curvature klv and k(x) to ksl.
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with the dimensionless parameters

Cy ¼
A

glvha2
¼ 10

3
1� cos yYð Þ;

p ¼ ha
r‘Dm
glv
¼ r‘ha

3 log rHð Þ ¼ hak�lv;

t ¼ zha
glvT

¼ z
3Z
; m ¼ 3Z

ha
M; s ¼ gsl

glv
; s ¼ glvS

ha2
: (34)

Here, k�lv ¼ 2 sin ylv=R� is the predicted curvature of the
liquid–vapor interface of the macroscopic critical nucleus
[eqn (17)]. From here on, p refers to the (dimensionless) super-
saturation, defined above. The thickness of the adsorption layer

is chosen as the thermal capillary length ha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=glv

p
, which

is used in molecular kinetic theory (MKT) of wetting and
capillary wave theory (CWT).55–57 It scales the thermal fluctua-
tion of the liquid–vapor interface and in that sense the diffu-
sivity of the latter. From an energetic perspective it defines the
scale at which the thermal energy competes with the energy
penalty associated with an increased interfacial area due to the
interface tension glvha

2 = kBT. Hence, in the following all
energies are expressed in terms of the thermal energy kBT.
With OðgÞ � 10�2 N m�1 and OðTÞ � 102 K it follows that
O hað Þ � 10�9 m. The elastocapillary length used in Fig. 4 is
related to the softness s by30

s ¼ ‘ec
ha

� �2

: (35)

The shape of a steady drop sitting on an elastic substrate
and the profile of the latter are usually characterized by the

ratio of elastocapillary length to drop size, e.g., cec/R or ‘ec
� ffiffiffiffi

V3
p

[cf. Fig. 4].¶

3.1 Steady film states

Before turning to the critical nuclei, we consider the case of a
steady liquid layer of uniform thickness h(r) = h0 on an
undisturbed flat substrate x(r) = 0. Then, the Laplace pressures
vanish and the dimensionless total pressures [eqn (27) and
(28)] reduce to

dGmeso

dh
¼ �CyP h0ð Þ � p;

dGmeso

dx
¼ 0: (36)

In Fig. 6(b) the total pressure dGmeso=dh [eqn (36)] is shown
as a function of uniform liquid layer thickness for p = 0.1.
Fig. 6(a) displays the associated energy f (h) � ph. The respective
thin lines give the case p = 0. According to eqn (36) a steady film

state may only exist if the supersaturation is balanced by the
Derjaguin pressure, leading to

�P h0ð Þ ¼
p

Cy
; i:e:; h
 ¼

Cy

2p
1


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 4

p

Cy

r� �� 	1
3

: (37)

Hence, two different steady film states may exist depending
on the value of p, controlled by the relative humidity rH. The
adsorption layer height h� represents the dry substrate state
and corresponds to a minimum in the energy f (h) � ph, i.e., it is
linearly stable [cf. Fig. 6(c)]. Note, that, as h� changes with p, the
value of f (h�) changes as well resulting in turn in an increased
substrate–vapor interface energy, according to the consistency
condition (20).

From eqn (37) it is found, that in the limit p - 0 the liquid
layer thickness either diverges to h+ - N or becomes h� = 1,
i.e., h� = ha in dimensional terms. From there, the two flat film
states asymptotically follow h� E 1 + p/3Cy and h+ E (Cy/p)1/3.
Increasing the supersaturation to p 4 0 the pressure is corre-
spondingly shifted while the energy is tilted by the linear term
�ph. This results in a second zero crossing of the pressure, i.e.,
an additional maximum of the energy, associated with h+. The latter
is hence unstable and represents a threshold similar to a nucleus but
for uniform film states, that is, every uniform film of thickness h 4
h+ grows by condensation while for h o h+ it shrinks by evaporation
until the dry state h� is reached. As p increases further, h� and h+

approach each other until they finally meet and vanish in a saddle-

node bifurcation at pc = �Pmin = Cy/4 where h
 ¼
ffiffiffi
23
p

[eqn (37)] as
shown in Fig. 6(c). For p 4 �Pmin the Derjaguin pressure
cannot compete with the supersaturation any more and nothing
prevents the vapor from condensing into the liquid film.

3.2 Critical nuclei

3.2.1 Numerical approach and parameters. The meso-
scopic model is now utilized to explore the critical nuclei in
the regime of intermediate elasticity by numerically solving
eqn (32) and (33). To this end, the open source C++ library
Oomph-lib58 is used to perform parameter continuation and time
simulations. As discussed before, the critical nucleus is asso-
ciated with a maximum of the Gibbs free energy G. Thus, in the
mesoscopic model one has to solve dGmeso=dh ¼ dGmeso=dx ¼ 0.
To do so numerically, by using a Newton solver, a proper starting
state is required, which has to closely resemble the final solution.
While in the rigid and liquid-like limit the macroscopic sphe-
rical cap profiles might be sufficiently suited, this is usually not
the case in the intermediate elastic regime 0 o s o N.
Further the critical nucleus cannot be found using time simu-
lations as it is associated with a maximum of the Gibbs free
energy and thus unstable. Therefore, we make use of a trick;
instead of an isothermal–isobaric ensemble, a canonical
ensemble is considered. The drop state then corresponds to a
minimum of the Helmholtz free energy and can thus be
approached using time simulations. Thereby, the supersatura-
tion is used as a Lagrange multiplier and adapts freely during
the simulation to enforce conservation of an imposed volume
V0. The stable steady drop found in the canonical ensemble

¶ It should be kept in mind, that at constant supersaturation p the volume V* and
thus also the radius R* of the critical nucleus are unknown functions of the
softness s. In consequence, the ratios cec/R* and ‘ec

. ffiffiffiffiffiffi
V�3
p

can not be assumed to

be �
ffiffi
s
p

in such a scenario.
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exactly corresponds to a critical nucleus in the isothermal–
isobaric ensemble if the supersaturation is set to p ¼ dF=dh.

From this given critical nucleus, a continuation routine may
be used to obtain the critical nucleus at a specific value of p.
Such continuation techniques rely on the concept that small
changes in a parameter, e.g., p, cause only small changes to a steady
state in turn. Hence, if a steady state is known for a given parameter
value p0, it is assumed to be well suited as initial condition to find
the steady state at p = p0 + Dp if Dp is sufficiently small. This way, a
steady state can be followed in parameter space.59–61

For all results the parameters are fixed to the values

glv ¼ 70� 10�3 N m�1; gsl ¼ 48� 10�3 N m�1;

gsv ¼ 72� 10�3 N m�1

r ¼ 3:34� 1028 m�3; kBT ¼ 3:8� 10�21 kg m2 s�2;

rH ¼ 1:055

(38)

if not stated otherwise. The adsorption layer thickness is

ha ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=glv

p
¼ 2:33� 10�10 m. The corresponding values of

the dimensionless parameters are p E 0.0226, Cy E 2.2 and
s E 0.6857. Note, that in this setting a steady drop on a rigid
substrate exhibits yY = 701 and R*/ha E 83.

3.2.2 Consistency in the rigid and liquid limit. To validate
our numerical results, first, the mesoscopic pendant of the
macroscopic radius-dependent energy GmacroðRÞ [eqn (16)] is
calculated for comparison. In the mesoscopic picture, the base
radius R of a steady drop, i.e., a critical nucleus, is not known
a priori. However, the macroscopic calculations in the rigid and
liquid-like cases provide reasonable estimates also for the elastic
regime, since R is assumed to transit monotonically between these
two limits. Since there is no sharp three phase contact line in the
mesoscopic description, the base radius is instead defined by the
position R of maximal curvature of the liquid–vapor interface,
i.e., k(h + x)|r=R = max[k(h + x)] (cf. Fig. 5), which is equivalent to
P(h)|r=R = min[P(h)]. It is thus encoded in the profiles h and x such
that Gmeso½h; x� can be seen as GmesoðRÞ. Note, that the adsorption
layer height h� specifies a lower bound for the liquid layer
thickness h, which in turn imposes a restriction to the minimal
critical nucleus size min(R*) B h�, in contrast to the macroscopic
picture where no such limit exists. This restriction in turn sets a
critical supersaturation pc, since R* B p�1, beyond which no
steady nucleus states are possible anymore. The energy GmesoðRÞ
can be calculated in two different ways:

(1) Quasi-static relaxation: in the first method, we consider
the dynamics of a drop state as given by eqn (32) and (33) using
a very small transfer mobility m such that all hydrodynamic
relaxation processes due to capillarity and wettability (the
conserved part of the dynamics) take place much faster than
the exchange of mass between the phases. Starting from the
critical nucleus state, the liquid height profile h is disturbed
using white noise with a small positive or negative mean to
nudge condensation or evaporation, respectively. While the
drop then slowly shrinks or grows, the base radius and energy

are calculated. Due to the very slow mass transfer, the drop is
considered quasi-static during the process, which allows for
GmesoðRÞ to be faithfully recovered.

(2) Continuation: in the second method, continuation is
used to trace the critical nucleus state over a range of p. As the
size of the critical nucleus is R*(p) B p�1, a continuation in p
effectively corresponds to a continuation in R*. Inserting the p
values from the continuation into eqn (24) and (25) along with
the corresponding profiles h*(r;p) and x*(r;p) gives the nuclea-
tion energy barrier as a function of supersaturation or base
radius Gmeso h�ðr; pÞ; x�ðr; pÞ; p½ � ! G�mesoðpÞ , G�mesoðRÞ. How-
ever, right now we are not looking for the energy barrier
G�mesoðRÞ but for GmesoðRÞ, the two of which differ only by the
value of p used in the calculation, at otherwise fixed para-
meters. Basically we ask: How does the energy of the critical
nucleus characterized by h* and x* look like, if we evaluate it at
another value of p than the one at which it is a steady state?
From eqn (24) and (25) it is seen, that the difference in
Gmeso½h; x; p� caused by a change Dp is given by

Gmeso½h; x; p� � Gmeso½h; x; pþ Dp� ¼ 2p
ð
Dp h� h�ð Þrdr: (39)

Hence, the energy barriers G�meso h�ðr; pÞ; x�ðr; pÞ; p½ � obtain for
a set of values p during the continuation can be mapped to an
arbitrary value p̃ to obtain

Gmeso h�ðr; pÞ; x�ðr; pÞ; ~p½ � ¼ G�meso h�ðr; pÞ; x�ðr; pÞ; p½ �

þ 2p
ð
p� ~pð Þ h� h�ð Þrdr:

(40)

Fig. 7 shows Gmeso as a function of drop radius in the liquid
limit (blue), the rigid limit (red) and for an intermediate elastic
case (purple). Both described methods are compared to the
macroscopic result. While the mesoscopic values obtained by

Fig. 7 Comparison of the macroscopic energy Gmacro and mesoscopic
energy Gmeso as functions of the base radius R. The macroscopic energies
are obtained analytically and plotted as dashed lines for the liquid-like
(blue) and rigid (red) limit respectively. The mesoscopic energies are
calculated using quasi-static time simulations (1st method, solid lines)
and continuation (2nd method, symbols). The critical radii and the
energetic maxima are indicated by the . symbols. The mesoscopic model
is also used to capture the regime of intermediate elasticity, here the
quasi-static method is used for s = 103 (dark purple curve).
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continuation ( symbols) agree very well with the ones obtained
by the quasi-static approach (solid lines), both are slightly
smaller than the macroscopic analytical predictions (black
dashed). This results from the differences between the macro-
scopic and mesoscopic nucleus profiles in the contact line
region.8 More importantly, the positions of the energy maxima,
i.e., the critical radii R* (marked by .), are correctly recovered.
The overall agreement between macroscopic and mesoscopic
model is quite satisfactory, allowing us to use the latter for
exploring the critical nucleus characteristics in the elastic
regime. The purple line in Fig. 7 shows the energy as obtained
by the first method for an exemplary intermediate softness s =
103 and lies between the rigid and liquid-like limits, as
expected.

3.2.3 Influence of supersaturation and elasticity. Key to the
investigation of the nucleation probability are the critical
nuclei, i.e., the steady states corresponding to the maxima in
Fig. 7. The corresponding results obtained from the continua-
tion in supersaturation p as explained in Section 3.2.2, are
shown in Fig. 8(a), giving the volume as a function of p on a log–
log scale. The stable and unstable flat film states h� and h+

discussed in Section 3.1 are given as black solid and dashed
lines, respectively. The volumes are given by V
 = ph
L2. The
volumes of the critical nuclei are shown for the rigid (red) and
liquid (blue) limit. Thereby, the macroscopically obtained
results (thin lines) [eqn (5) and (14)] are compared to the
mesoscopically obtained ones (thick lines). The volumes are
obtained by integration of the numerically determined thick-

ness profiles, V ¼
Ð L
0 2phrdr. The volumes of all states, except

for h�, increase with decreasing supersaturation p. In the low
p limit, i.e., at large volumes, the macroscopic and mesoscopic
critical nucleus states well agree and show the predicted scaling
V B p�3. As the nucleus size decreases (increasing p), the
mesoscopic results deviate from the macroscopic predictions
(see Section 3.2), approach Vdry = ph�L2, and eventually end in a
pitchfork bifurcation, very close to the saddle-node bifurcation
of the uniform states (~ symbol). Note further, that the volumes
of the mesoscopic states all depend on the system size L, since
the adsorption layer, which is present in the macroscopically
dry areas, contributes with a volume per unit area ha. Therefore,
we also provide in the inset Fig. 8(b) the effective condensed
volume V�eff ¼ V� � ph�L2 for the mesoscopic states, i.e., the
volume above the adsorption layer. This measure is indepen-
dent of system size.

Fig. 8(b) shows a better agreement of mesoscopic and
macroscopic results that is maintained up to higher super-
saturation. Only as pc = Cy/4 is approached a clear deviation is
visible. Linear stability analysis for an infinite domain size
shows, that the bifurcation point where the branch of meso-
scopic critical nuclei emerges coincides with the saddle-node
bifurcation. For a finite domain, however, the bifurcation is
shifted a bit along the h+ branch. Most remarkably, this

bifurcation is then found at different positions (marked by )
in the rigid and liquid-like limit. Again, the disagreement of
macroscopic and mesoscopic model for p - Cy/4 is assumably
caused by the different nucleus shapes due to the diffuse
contact region present in the latter, which gains impact as
the nucleus size decreases.

In the same way, the nucleation barrier can be calculated
from the mesoscopic profiles using eqn (24) and (25) and
compared to the macroscopic prediction eqn (18). In Fig. 9
the energy barrier is shown as a function of supersaturation
(using the same line styles as in Fig. 8). Again, both levels of
description agree well in the small p limit, recovering the
predicted power law G�meso � p�2. The barrier increases with
decreasing supersaturation in agreement with Section 3.2.
Beyond that, the mesoscopic model estimates the energy bar-
rier for p - pc to be up to several orders of magnitude smaller

Fig. 8 Volume of the mesoscopic flat uniform steady film states (black)
and of the critical nuclei in the rigid (red) and liquid-like (blue) limit as a
function of the supersaturation p. (a) The total volume of the steady states,
which in the mesoscopic picture includes the adsorption layer and there-
for depends on system size. For small p the mesoscopic (thick lines) and
macroscopic (thin lines) results agree and recover the scaling law V B p�3.
For larger p, the mesoscopic nuclei deviate form the macroscopic ones. All
branches of mesoscopic states end at or near the saddle-node bifurcation
of the film states (~ symbol). (b) The inset gives the effective condensed
volume, namely the volume above h�, as a function of p in the range close
to the bifurcation shaded gray in (a). The numerical domain was restricted
to circular region of radius L = 500ha.

Fig. 9 Nucleation energy barrier G� as a function of supersaturation p.
The presented data are the same as in Fig. 8.

8 This difference is constant and does not depend on drop size. It therefore
becomes less important as the drop size and the associated energies increase.
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than the macroscopic value. This indicates, that the CNT, i.e.,
the employed macroscopic model, strongly underestimates the
nucleation probability close to the critical point. In Fig. 10 a
mesoscopic critical nucleus on a soft substrate is shown for p E
pc. At pc = Cy/4 the mesoscopic nucleation energy barrier even
vanishes, such that the vapor condenses uncontrollably into the
liquid phase for p 4 pc. The dimensionless critical super-
saturation pc = Cy/4 translates to the critical relative humidity

rcH ¼ exp
5

6

gsl þ glv � gsv
rglvha3

� �
¼ exp

5

6

ffiffiffiffiffiffiffiffiffi
glv
kBT

r
glv þ gsl � gsv

rkBT

� �
; (41)

which for the values given in eqn (38) is rc
H E 3.6553.

Finally, the mesoscopic model is used to investigate the
influence of elasticity on the nucleation probability. Once
again, continuation is employed, however, this time we explore
the substrate softness cec/R* at fixed supersaturation p. The
resulting energy barrier is displayed in Fig. 11. With the
transition from the rigid to the liquid-like limit, i.e. with
increasing softness, the energy barrier decreases by a factor
greater than 2. This decrease in the energy barrier is amplified
through the Boltzmann exponent [eqn (3)], and may therefore
strongly affect the nucleation probability and, consequently,

the observed droplet density, (qualitatively) explaining recent
observations in ref. 31. Note that the transition occurs approxi-
mately when R* B cec.

4 Conclusion

Recent experiments showed that the nucleation density of dew
is strongly affected by the softness of the elastic substrate
controlled by the crosslinking ratio of a gel. The nucleation
probability can be predicted as a Boltzmann factor and is
therefore governed by the energy barrier G� given by the critical
nucleus. This barrier in Gibbs free energy has been calculated
in the macroscopic picture in both, the rigid and the liquid-like
limit. For the given interface energies the nucleation energy in
the liquid-like limit is about half the one in the rigid limit. To
further explore the regime of intermediate elasticity, a meso-
scopic gradient dynamics model has been employed to deter-
mine the energy as a function of supersaturation p and softness
cec/R*. The macroscopic and mesoscopic models were found to
agree in the limit of rigid and liquid substrates, as long as the
critical nucleus is of sufficiently large volume, i.e., when a
relatively small supersaturation is considered. Both models
predict a decrease in the energy barrier with increasing super-
saturation, indicating an overall increased nucleation density at
higher supersaturation. At large supersaturation, the macro-
scopic model considerably overestimates the energy barrier by
several orders of magnitude as compared to the mesoscopic
theory, resulting in an underestimated nucleation probability.
This deviation is caused by the difference in nucleus shape;
while mesoscopic nuclei exhibit diffuse contact regions that
increasingly influence their shape as R* - h�, the shape of
macroscopic nuclei is (in the rigid and the liquid-like limit)
invariant under changes in size, which is most likely not
justified as microscopic scales are approached. Next, the
change of the energy barrier with increasing substrate softness
at fixed supersaturation has been investigated using the meso-
scopic model. The decrease in the energy barrier has been
shown to coincide with the transition of contact angles from
Young (rigid) to Neumann (liquid-like) at cec B R*. However, in
the experiments the increase in drop number occurred in the
range 10�7 m o cec o 10�3 m and since the critical nuclei are
considered to be of nanometer size, it is still unclear why
nucleation depends on the substrate softness at all. Beyond
that, the critical nucleus volume is found to decrease with the
substrate softness, allowing for the formation of more nuclei if
the vapor access is limited, e.g., by slow transport in the
gas phase.

Finally, the nucleation energy barriers, even those predicted
by the mesoscopic model, are about two orders of magnitude
too large to satisfactorily explain the experimentally observed
nucleation densities, even though the tendency with changing
softness fits qualitatively. To appreciate the implications of
such large energy barriers, we consider the resulting nucleation
probabilities in the rigid and liquid-like regimes, for which
the difference in energy barriers is about 50%. Using the

Fig. 10 Shape of a mesoscopic critical nucleus on an elastic substrate for
p E pc = Cy/4. The profiles h and x exhibit only slight modulations of O hað Þ
and barely resemble spherical caps.

Fig. 11 Threshold energy as a function of substrate softness at fixed
supersaturation p = 0.1. The energy barrier decreases with increasing
softness, resulting in a strongly increased nucleation probability. Note,
that the transition takes place at about cec B R*.
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Boltzmann factor to estimate the nucleation probability would
for p = 0.1 yield

prigid

pliq:
� exp

G�liq:
kBT

�
G�rigid
kBT

� �
o 10�60: (42)

A similar argument can be applied to the comparison of the
energy barrier at different p, resulting in huge differences in the
nucleation probability and indicating a strong dependence of
the nucleation rate on the supersaturation, which could not be
observed in the experiments. That being said, it was found that
the mesoscopic nucleation energy barrier drastically decreases

as pc is approached and reaches Oð1Þ at about p � 1

2
which

translates to rH E 3.2657 or r0
H = 1.2184. The behavior at large p

depends strongly on the nucleus shape and, in turn, on the
functional form of the wetting potential f (h) – many different
forms are discussed in the literature.38–42,49,52–54,59 Further, the
range of attractive microscopic interactions is determined by
the rate at which f converges to zero as h increases. Increasing
this range increases the width of the contact region, which in
turn causes the energy barrier to fall off quicker as pc is
approached.

All of this points towards the incompleteness of the proce-
dure to estimate the nucleation probability using only the
Boltzmann factor. As discussed in ref. 31 the relation between
the observed drops and the nucleation rate is much more
intricate than that. On the one hand, the classical nucleation
theory is a strongly approximated description that considers
macroscopic concepts like interface energies. The validity of the
latter is at least questionable in the context of microscopic
nuclei of only a few particles in size, which renders the entire
CNT obsolete. Even though the mesoscopic model accounts for
the influence of microscopic interactions in terms of the
wetting potential, the use of a more advanced model, e.g., the
dynamic nucleation theory (DNT) or the extended modified
liquid drop (EMLD) model or both, might deliver more satisfy-
ing results. On the other hand, the experimental capabilities of
capturing the nucleation process are strongly confined with
regard to spatial as well as temporal resolution, both of which
are of importance. In consequence, it cannot be ruled out that
other physical processes are interfering. In particular, the
halted nucleation of new drops in the dry regions of the initial
breath figure is caused by the formation of a saturated diffusive
boundary layer close to the substrate,24,31 which requires to
spatially resolve the vapor density. A suspected cause that
might enhance this effect is the cloaking of drops by liquids
leaking from the substrate. This would alter the droplet shape
and interface energy and therefore explain the discrepancy
between experiments and theory. In addition the coarsening
of drops was found to be suppressed on softer substrates both
experimentally,26 and theoretically30 resulting in an increased
drop density in turn. Finally, even though contaminants and
impurities were ruled out as an additional source of nucleation
in the experiments, there might still be microscopic hetero-
geneities present at the substrate surface, e.g., due to the
molecular structure of the polymer network, which affect the

nucleation rate. The impact of such effects is largely unknown
and may be subject of future investigation.
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Appendices
A Temperature-induced condensation

The threshold of phase transition, i.e., saturation, can be
predicted by the Clausius–Clapeyron relation. This relation is,
however, often corrected to match experiments. For instance,
the Rankine law introduces empirical constants to capture the
temperature dependence of latent heat, while the Arden-Buck
law further accounts for water vapor non-idealities over a wide
temperature range.62 We adopt the latter semi-empirical law,
which is widely used in meteorology and engineering for its
accuracy and practicality

psatðTÞ ¼ a exp b� T

c

� �
T

d þ T

� �� 	
; (43)

with T in 1C and p in kPa and the empirical constants a E
0.61121 kPa, b E 18.678, c E 234.5 1C and d E 257.14 1C which
are valid for T 4 0 1C. For example, fixing the chamber
humidity to r0

H = 0.9 at the roof and cooling the gel from
20 1C to 5 1C, the relative humidity in the immediate vicinity
of the substrate is rH E 2.41.

B Classical nucleation theory

The transition of a particle from an initial phase to another one
may occur spontaneously only if that process is associated with
a decrease in free energy. This condition must be met also in
the context of nucleation in order for a new phase to sponta-
neously emerge and grow. The formation of the latter, however,
is always accompanied by the creation of an interface (with the
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surrounding initial phase), which represents an energy penalty.
Assuming the new cluster to adapt a shape that minimizes the
surface to volume ratio (provided the material is able to do that)
the energy penalty is minimized as well. Since this ratio usually
decreases further with increasing volume, the decrease in free
energy per particle entering the new phase eventually predomi-
nates the penalty associated with the interface created in the
same course. The minimal structure at which that happens
corresponds to an energetic maximum and is referred to as a
nucleus. It is these nuclei that initiate the formation of a new
phase, once the associated energy barrier is overcome. In other
words, the nucleus corresponds to a steady yet unstable thresh-
old state, meaning that every smaller structure decays and every
larger structure grows. The exact form of the governing energy
and thus the characteristics of the nucleus crucially depend on
the considered scenario. Two general cases are distinguished:

Homogeneous nucleation

A homogeneous initial phase, consisting of only one particle
type, is considered. Due to thermal fluctuations these particles
occasionally form small clusters of a new phase, that eventually
start growing spontaneously if they exceed a critical size or
particle number. In other words, these clusters of the same
particle type may serve as nuclei. The energy penalty is exclu-
sively governed by the interface energy between the initial and
new phase and a lower bound may be estimated by assuming
the nucleus to take a spherical shape.

Heterogeneous nucleation

The initial state is assumed heterogeneous in a sense that
particles of different type may be present in some form ranging
from microscopic impurities up to macroscopic structures (e.g.
a solid substrate). If the interaction of the nucleating particle
type with another type (expressed in terms of interface energies)
is stronger than the interaction with its own type, nucleation is
energetically favored wherever that other type is present. An
example are the considered breath figures, where water vapor
condenses to the liquid state at the surface of a cooled
substrate. The energy penalty is then given by the interplay of
interface energies between all the various phases.

The bulk energy gain associated with the nucleation is given
by the difference in Gibbs free energy, and thus by the differ-
ence in chemical potentials, between initial and final
state,18,45–48 implying constant temperature T, particle number
N and external pressure p.** In the following we consider a
small region in the immediate vicinity of the substrate such
that the temperature in the gas phase is approximately constant

and equal to the temperature of the substrate. The chemical
potentials mc, mv of the liquid and vapor phase can be quantified
either by employing a real gas theory, e.g. by considering a van
der Waals gas, and performing a standard Maxwell construc-
tion or by assuming the vapor to behave like an ideal gas and
fixing the chemical potential and particle density in the liquid.
Following the latter route, the vapor obeys the corresponding
equation of state pV = NkBT and its chemical potential is

mv ¼ kBT ln L3N

V

� �
; (44)

with Boltzmann constant kB and the thermal wavelength L, i.e.
the de Broglie wave length at thermal energy. Note, that the
chemical potential is a function of temperature and pressure
m(T,p) via the equation of state. Consequently, chemical
potential and pressure are not independent variables in an
isothermal process. At equilibrium in an isothermal situation,
the change in chemical potential associated with a change in
pressure is determined by the Gibbs–Duhem relation

Ndm = Vdp. (45)

Including the ideal gas law and after integrating we find for
the vapor

mv pvð Þ � mv p0v
� �

¼ kBT ln
pv

p0v

� �
; (46)

with p0v being an arbitrary reference pressure. Assuming con-
stant particle density in the liquid rc = Nc/Vc eqn (45) becomes

m‘ p‘ð Þ � m‘ p0‘
� �

¼ V‘

N‘
p‘ � p0‘
� �

: (47)

Then, the liquid pressure and chemical potential are directly
related via the constant particle density. The difference in
chemical potentials between liquid and vapor phase results to

Dm ¼ m‘ p‘ð Þ � mv pvð Þ ¼
V‘

N‘
p‘ � p0‘
� �

� kBT ln
pv

p0v

� �
þ m‘ p0‘

� �
� mv p0v

� �
:

(48)

Demanding phase coexistence at a specific saturation pres-
sure psat

v , i.e. mc(p
sat
v ) = mv(psat

v ), the reference pressures have to be
set to p0‘ ¼ p0v ¼ psatv , leading to

Dm ¼ V‘

N‘
p‘ � psatv

� �
� kBT ln rHð Þ; (49)

with the relative humidity rH = pv/psat
v . Fixing the chemical

potential, and hence also the pressure, of the liquid to those
of the vapor at saturation, i.e. mc = mv(psat

v ) and pc = psat
v , only the

logarithmic term remains. If the gas phase is considered an
ideal mixture of K species (e.g. water vapor in N2) its total
pressure p is the sum of all partial pressures pi according to

** In view of the experiments in ref. 31 the assumption of conserved particle
number seems rather unjustified since the system has access to an infinite
particle reservoir. In fact, it would be more convenient to consider fixed volume V

and chemical potential m instead. In other words, the system represents a
realisation of a grand canonical ensemble and is driven by minimization of the
corresponding grand canonical potential O (or Landau potential). It was shown,
though, that the difference in grand potential associated with nucleus formation
can be interpreted as a change in Gibbs free energy and is related to the change in
Helmholtz free energy20,45,63,64 (see Appendix B.1).
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Dalton’s law p ¼
PK
i

pi. The Gibbs–Duhem relation then writes

V
X
i

dpi ¼
X
i

Nidmi: (50)

Allowing only one component, e.g. i = v, to condense into a
liquid phase coexistence requires mc(psat) = mv(psat

v ) where now

psat ¼ psatv þ
PK
iav

pi is the total pressure of the mixture at satura-

tion of component v. In consequence, the reference pressures
in eqn (48) have to be chosen differently, namely p0‘ ¼ psat and
p0v ¼ psatv , yielding

Dm ¼ m‘ p‘ð Þ � mv pvð Þ ¼
V‘

N‘
p‘ � psatð Þ � kBT ln

pv

psatv

� �
: (51)

According to classical thermodynamics the Gibbs free
energy is given by G ¼ F þ pV with Helmholtz free energy

F ¼
PK
i

miNi � piVi, the externally imposed total gas pressure

p and the total volume V. The Gibbs free energies of the
coexisting liquid and gas phase (including vapor) state G and
the pure gas state G0 are given by

GðT ;N; pÞ ¼ FðT ;N;VÞ þ pV

¼ m‘N‘ � p‘V‘ þ
XK
i

miNi � piVið Þ þ pV ;
(52)

and

G0ðT ;N; pÞ ¼ F 0ðT ;N;V 0Þ þ pV 0

¼
XK
i

m0iN
0
i � p0iV

0
i

� �
þ pV 0: (53)

The energy difference then becomes

DG ¼ G � G0 ¼ m‘N‘ � p‘V‘ þ
XK
i

miNi � piVið Þ þ pV

" #

�
XK
i

m0iN
0
i � p0iV

0
i

� �
þ pV 0

" #

¼h1i m‘N‘ � p‘ � pð ÞV‘ þ
XK
i

miNi � m0iN
0
i

� �

¼h2i m‘N‘ � p‘ � pð ÞV‘ þ mvNv � m0vN
0
v þ

XK
iav

mi � m0i
� �

Ni

¼h3i m‘ � mvð ÞN‘ � p‘ � pð ÞV‘ þ
XK
i

mi � m0i
� �

Ni

¼h4i � psat � pð ÞV‘ �N‘kBT ln
pv

psatv

� �
� �N‘kBT ln

pv

psatv

� �
(54)

For clarification the separate steps are explained: at h1i the
volume of the coexistence state is divided into a liquid and a
gas part V = Vc + Vg. Further, all components of the gas mixture

share the same volume Vi = Vg = V � Vc and V 0i ¼ V 0, such that
the respective partial pressure terms cancel with eqn (50). At h2i
the particle conservation in the gas phase Ni ¼ N 0i is used for all
components of the mixture i a v. At h3i the global particle
conservation of species v is used, i.e. N 0v ¼ N‘ þNv. At h4i
eqn (50) is used again to eliminate the sum since dp = 0. Note,
that not only the total pressure p but also the partial pressures
p0i ¼ pi are held constant in the considered system. Hence, since
chemical potential and pressure are not independent in an
isotherm m0i ¼ mi. The difference in chemical potentials is
expressed using eqn (51) and finally the pressure difference
commonly neglected.46,47 Finally, the energy gap is exclusively
governed by the difference in chemical potentials. For rH 4 1,
i.e. pv 4 psat

v , the difference in the Gibbs free energy is always
negative such that a transition of particles from vapor to
condensed state is always favorable. As mentioned above, this
condition, referred to as supersaturation, is a prerequisite for
spontaneous nucleation to occur and the new phase to grow.
Finally, the change in Gibbs free energy associated with the
creation of a liquid cluster of arbitrary shape from its own vapor
in contact with a substrate is found by adding the interface
energy penalties18,46–48

DG ¼ glvAlv þ gslAsl þ gsv Asv � A0sv
� �

� r‘kBT ln rHð ÞV‘; (55)

with gij and Aij respectively being the energy and area of the
liquid–vapor (lv), substrate–liquid (sl) and substrate–vapor (sv)
interfaces and the prime referring to the pure gas state. This
equation is the starting point for the modeling approach and
corresponds to eqn (1).

B.1 Equality of Gibbs free energy and Landau potential
barrier. The difference in Landau potential (grand canonical
potential) between the state of coexisting liquid and gas phase
(including vapor) O and the pure gas state O0 is given by

DO ¼ O� O0

¼h1i F � mvN‘ �
XK
i

miNi

" #
� F0 �

XK
i

m0iN
0
i

" #

¼h2i m‘N‘ � p‘V‘ þ
XK
i

miNi � piVið Þ � mvN‘ �
XK
i

miNi

" #

�
XK
i

m0iN
0
i � p0iV

0
i

� �
�
XK
i

m0iN
0
i

" #

¼h3i m‘ � mvð ÞN‘ � p‘ � pð ÞV‘ þ
XK
i

p0i � pi
� �

V

¼h4i � psat � pð ÞV‘ � r‘kBT ln
pv

psatv

� �
V‘ � �r‘kBT ln

pv

psatv

� �
V‘:

(56)

To clarify, the separate steps are explained: at h1i the Landau
potentials of the final and initial state are expressed in terms of
the Helmholtz free energy as O ¼ F � mN. Thereby, the last
term refers to the Gibbs free energy of a pure gas state with the
same total particle number of the components and at the same
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fixed chemical potentials mi. At h2i the Helmholtz free energy is

expressed as F ¼
PK
i

miNi � piVi. At h3i the fixed volume V = V0

and the shared gas volume V 0i ¼ V 0 and Vi = V � Vc is used. At
h4i eqn (50) is used to eliminate the sum since dp = 0. The
difference in chemical potentials is expressed using eqn (49)
and the pressure difference is neglected, as is common
practice.46,47 This result is the same as eqn (54), hence DO ¼
DG in this case (Fig. 12).

B.2 Binary mixture of water vapor in N2. In the case of a
binary mixture, e.g. water vapor in N2 as used in the experiments in
Ref. 31, the change in Gibbs free energy can directly be calculated
using the chemical potential of an ideal gas (44). The Gibbs free
energy of a binary mixture coexisting with a liquid state is

G ¼F þpV ¼ m‘N‘�p‘V‘þmvNv�pvVvþmN2
NN2
�pN2

VN2


 �
þpV

¼ m‘�mvð ÞN‘� p‘�pv�pað ÞV‘þmvNH2OþmN2
NN2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G0

(57)

with p = pv + pN2
being the constant imposed pressure and V = Vc +

Vg being the total volume with Vg = Vv = VN2
. Further, conserved

total particle number N = NH2O + NN2
as well as conserved particle

numbers of the two species NN2
and NH2O = Nc + Nv are assumed.

Enforcing equilibrium at pv = psat
v leads to

dG
dN‘
¼ m‘�mv psatv

� �
� p‘�psatv �pN2

� ��
r‘¼

!
0

! m‘¼ mv psatv

� �
þðp‘�ðpsatv þpN2|fflfflfflfflffl{zfflfflfflfflffl}

psat

ÞÞ=r‘;
(58)

with the liquid particle density rc = Nc/Vc. Inserting into eqn (57)
and using eqn (44) yields

G ¼ �r‘kBT ln
pv

psatv

� �
V‘�ðpsat�p|fflfflffl{zfflfflffl}

�0

ÞV‘þmvNH2OþmN2
NN2|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

G0

!DG¼G�G0 ¼�r‘kBT ln
rv
rsat

� �
V‘

(59)

Similarly, using the Landau potential

O ¼ F �mN ¼ m‘N‘� p‘V‘þmvNv� pvVvþmN2
NN2
� pN2

VN2


 �
� mN2

NN2
þmv NvþN‘ð Þ


 �
¼ m‘�mvð Þr‘V‘� p‘� pv� pN2

� �
V‘� pvþ pN2

� �
V|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}

O0

:

(60)

Obviously DO ¼ DG.
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